Методика 1 класс
методическая разработка по математике (1 класс) на тему

Погодина Дарья Алексеевна

Методика обучения арифметическим действиям и  формирование вычислительных навыков

Скачать:

ВложениеРазмер
Файл metodika.docx38.58 КБ

Предварительный просмотр:

МЕТОДИКА ОБУЧЕНИЯ АРИФМЕТИЧЕСКИМ ДЕЙСТВИЯМ И ФОРМИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ

 

План:

1. Общие вопросы обучения арифметическим действиям.

2. Сложение и вычитание в пределах двадцати.

3. Сложение, вычитание, умножение и деление в пределах 20.

4. Таблица умножения.

5. Арифметические действия в пределах 1000.

6. Арифметические действия над многозначными числами.

Вопросы для самоконтроля.

1.Трудности обучения арифметическим действиям и формирования вычислительных навыков, пути их преодоления.

2. Практическая работа при обучении арифметическим действиям.

Обучение сложению и вычитанию в пределах 10.

С арифметическими действиями учащиеся знакомятся сразу же после изучения числа 2. Изучение каждого из чисел первого десятка (кроме 1), завершается изучением действий сложения и вычитания в пределах этого числа. Действие сложение и вычитание изучаются параллельно.

Учащиеся знакомятся со знаками сложения - плюсом (+), вычитания- минусом (-) и знаком равенства - равно (=).

При изучении данной темы учащиеся должны овладеть приемами вычисления, получить прочные вычислительные навыки, заучить результаты сложения и вычитания в пределах 10, а также состав чисел первого 10, узнавать и показывать компоненты и результаты двух арифметических действий и понимать их названия в речи учителя.

По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда нужно знакомить и с приемами сложения и вычитания, опирающимся на это свойство натурального ряда чисел. Дети учатся этим приемам прибавлять и вычитать единицу из числа, т.е. присчитывать и отсчитывать по 1.

Когда учащиеся научились прибавлять и вычитать по одному, надо учить их прибавлять по два.

Когда учащиеся овладели приемами присчитывания, учитель знакомит их с приемами отсчитывания.

Если приемами присчитывания ученики первого класса овладевают довольно быстро, то приемами отсчитывания - намного медленнее.

Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся первого класса труден. Кроме того, ученики плохо запоминают - сколько нужно отнять, сколько уже отняли, сколько ещё надо отнять.

При изучении каждого числа первого десятка учащиеся получают представление и о составе этих чисел.

В начале необходимо давать такие упражнения, в которых одно из слагаемых воспринимаются детьми наглядно, а второе они отыскивают по представлению.

При выполнении действий сложения и вычитания в пределах данного числа вводятся решение примеров с отсутствующим компонентом. Его обозначают точками, рамками, знаками вопросов и т.д., например:

[] + I – 3, 4 +... = б, ? – 2 = 4. б - ? = 2.

Запишем 1-1=0 (отсутствие предметов обозначают цифры О) Решаются еще примеры, когда разность равна нулю.

Нуль сравнивается с единицей. Устанавливается, что ноль меньше единицы, единица больше нуля, поэтому ноль должен стоять перед единицей. Однако учитель должен помнить, что ноль не относится к натуральным числам. Поэтому ряд натуральных чисел должен начинаться с единицы.

Вводить число ноль в качестве вычитаемого, а потом и слагаемого следует на большом числе упражнений. Смысл действий с нулем будет лучше понять учащимся, если ноль в качестве вычитаемого и ноль в качестве слагаемого будет вводиться не одновременно. Затем проводятся упражнения на дифференциацию примеров, в которых ноль будет слагаемым и вычитаемым.

Полезно показать учащимся и зависимость изменения суммы от применения слагаемых, а также изменения остатка от изменения уменьшаемого.

Учитель первого класса должен обращать внимание учащихся на то, что сумма всегда больше каждого из слагаемых, а остаток всегда меньше уменьшаемых.

Уменьшаемое больше или равно вычитаемому, в противном случае вычитание произвести нельзя.

Уже с первого класса ученики должны быть приучены к проверке правильности решения примеров.

Сложение и вычитание в пределах 20.

Овладение вычислительными приемами сложения и вычитания в пределах 20 основано на хорошем знании сложения и вычитания в пределах 10, знание нумерации и состава чисел в пределах 20.

При изучении действий сложения и вычитания в пределах 20, как и при изучении соответствующих действий в пределах 10, большое значение имеет наглядность и практическая деятельность с пособиями самих учащихся. Поэтому все виды наглядных пособий, используемых при изучении нумерации, найдут применение и при изучении арифметических действий.

Действия сложения и вычитания целесообразнее изучать параллельно после знакомства с определенным случаем сложения изучать соответствующий случай вычитания сопоставления со сложением.

Во втором классе учащиеся должны знать название компонентов действий сложения и вычитания.

1. Приемы сложения и вычитания, основанные на знаниях десятичного состава чисел.

2. Сложение и вычитание без перехода через десяток:

а) к двухзначному числу прибавляется однозначное число. Из двухзначного числа вычитается однозначное число;

б) получение суммы 20 и вычитание однозначного числа из 20;

в) вычитание из двухзначного числа двухзначного: 15-12, 20-15.

 Решение примеров такого вида можно объяснить разными приемами:

1. Разложить уменьшаемое и вычитаемое на десятки и единицы и вычитать десятки из десятков, единицы из единиц.

2. Разложить вычитаемое на десяток и единицы. Вычитать из уменьшаемого десятки, а из полученного числа - единицы.

3. Сложение и вычитание с переходом через ряд представляет наибольшие трудности для учащихся, с психофизическими нарушениями. вычитание с переходом через десяток тоже требует ряд операций;

- уменьшаемое разложить на десяток и единицы

- вычитаемое разложить на два числа, одно из которых равно числу уменьшаемого единицы

- вычесть единицы

- вычесть из десятка оставшееся число единиц

Подготовительная работа должна заключаться в повторении:

а) таблица сложения и вычитания в пределах 10,

б) состава чисел первого десятка (всех возможных вариантов

 из двух чисел)

в) дополнение чисел до 10

г) разложение двухзначного числа на десятки и единицы

д) вычитание из десяти однозначных чисел

е) рассмотрение случаев вида 17-7, 15-5.

Сложение и вычитание в пределах 100.

При обучении сложению и вычитанию в пределах 100 соблюдаются все требования, которые предъявляются к обучению выполнению действий в пределах 20. Многие трудности, которые испытывают дети при выполнении действий сложения и вычитания в пределах 20, не снимаются и при выполнении этих же действий в пределах 100. Как показывают опыт и специальные исследования, по-прежнему большие затруднения учащиеся испытывают при выполнении действия вычитания. Наибольшее количество ошибок возникает при решении примеров на сложение и вычитание: из единиц вычитаемого единицы уменьшаемого.

Последовательность изучения действий сложения и вычитания обусловлено нарастанием ступени трудности при рассмотрении различных случаев. Различают:

1. Сложение и вычитание круглых десятков (30 + 20, 50-20, решение основано на знании нумерации круглых десятков)

2. Сложение и вычитание без перехода через разряд.

3. Сложение двухзначного числа с однозначным числом, когда в сумме получается круглые десятки. Вычитание из круглых десятков однозначного и двухзначного числа.

4. Сложение и вычитание с переходом через разряд.

Все действия с примерами 1,2, групп выполняются приемами устных вычислений, то есть вычисления надо начинать с единиц высших разрядов. Запись примеров производится в нумерации, десятичного состава чисел, таблиц сложения и вычитания в пределах 10. Действия сложения и вычитания изучаются параллельно.

Методика изучения табличного умножения и деления.

В практике работы школы в начальных классах получила рассмотрение следующая система изучения действий умножения и деления:

1. Введение понятия об умножении как сумм одинаковых слагаемых.

2. Составление таблицы умножения числа 2.

3. Понятие деления на равные части.

4. Составление таблицы деления на 2.

5. Составление таблицы умножения в пределах 20.

6. Составление таблицы деления в пределах 20.

7. Деление по содержанию.

8.Сопоставление умножения и деления как взаимообратных действий.

9. Изучение умножения в пределах 100. Составление таблиц умножения и деления. Практическое знакомство с переместительным законом умножения.

 10. Деление с остатками

 11. Умножение на 1 и единицы. Деление на 1. Ноль как компонент умножения. Ноль как делимое. При обучении умножению и делению перед учителем стоит сложная задача - раскрыть смысл каждого арифметического действия на конкретном материале.

Обучение табличному умножению и делению в пределах 20.

В 2 классе учащиеся получают понятие об умножении и знакомятся с действиями умножения и деления в пределах 20. Лучшему осознанию учащимся смысла действия умножения способствует подготовительная работа: счет равными группами предметов, а также счет по 2, 3, 4, 5, до 20.

После того как учащиеся получают первое представление об умножении, познакомятся со знаком умножения и записью этого действия, можно переходить к изучению таблицы умножения числа 2.

Таблица умножения составляется по постоянному множимому. Этапы знакомства с табличным умножением числа 2:

1. Счет предметов от 2 до 20.

2. Счет изображений предметов по 2 на рисунках или числовых фигурках и составление примеров на сложение.

3. Замена сложения умножением и чтения таблицы умножения.

Обучение табличному умножению в пределах 1000.

В 2 классе повторяется табличное умножение в пределах 20 и заканчивается изучение всего табличного умножения и деления. По-прежнему много внимания уделяется наглядной основе и счета равными группами их числам.

После составления таблицы умножения числа 6 учитель должен обратить внимание на то что ответ каждого последующего примера может быть получен из предыдущего путем прибавления 6 (единиц множимого).

Обучение табличному делению в пределах 20.

В начальных классах действие деления рассматривается в зависимости от действия умножения. Только тогда дети хорошо усваивают сущность деления, когда сопоставляется с умножением, устанавливается взаимосвязь между этими двумя действиями. Опыт показывает, что вывод деления из умножения без объявления сущности самого процесса деления оказывается малопонятным.

Деление с остатком вводится после изучения табличного деления. На деление с остатком дети допускают много ошибок. Они либо не записывают, либо прибавляют его к частному, либо получают остаток больше делителя.

Методика изучения арифметических действий в пределах 1000

Все действия в пределах 1000 без перехода через разряд учащиеся выполняют приемами устных вычислений с записью в строчку, а с переходом через разряд - приемами письменных вычислений с записью в столбик. Важно постепенно нарастание трудности при решении арифметических примеров, каждый последующий уровень в решении примеров должен опираться на знание предыдущих случаев. Непреодолимые трудности для ребенка могут возникнуть при несоблюдении степени трудности решения примеров. Поэтому очень важно соблюдать последовательность в выборе примеров, учитывая их нарастающую степень трудности, и тщательно отрабатывать каждый случай.

Сложение и вычитание в пределах 1000.

В изучении действий сложения и вычитания в пределах 1000 можно выделить следующие этапы:

1. Сложение и вычитание без перехода через разряд.

- сложение и вычитание круглых сотен. Действие производится на основе знаний нумерации, и сводятся по существу к действиям в пределах 10;

- сложение и вычитание круглых сотен и единиц, круглых сотен и десятков;

- сложение и вычитание круглых десятков, а также круглых сотен десяток;

- сложение трехзначных чисел с однозначным числом, двухзначным и трехзначным без перехода через разряд и соответствующие случаи вычитания;

- особые случаи сложения и вычитания. К ним относятся случаи, которые вызывают наибольшие трудности и в которых чаще всего допускают ошибки. Учащихся больше всего затрудняют действия с нулем, (ноль находится в середине или в конце)

2. Сложение и вычитание с переходом через разряд.

Сложение и вычитание с переходом через разряд - это наиболее трудный материал. Поэтому учащиеся выполняют действия в столбик. Сложение и вычитание в столбик производятся над каждым разрядом в отдельности и сводятся к сложению и вычитанию в пределах 20.

При решении примеров на сложение и вычитании с переходом на разряд соблюдается следующая последовательность:

1. Сложение и вычитание с переходом через разряд в одном разряде (единиц или десятков)

2. Сложение и вычитание с переходом через разряд в двух разрядах (единиц или десятков)

3. Особые случаи сложения и вычитания, когда в сумме или разности получается один или два нуля, когда в уменьшаемом содержится один или два нуля, когда в уменьшаемом содержится единица.

4. Вычитание трехзначных, двухзначных и однозначных чисел из 1000.

Умножение и деление в пределах 1000.

Умножение и деление также как сложение и вычитание, могут производиться как устными, так и письменными приемами вычислений, записываться в строчку или в столбик.

1. Устное умножение и деление в пределах 1000:

- умножение и деление круглых сотен

- умножение и деление круглых десятков на однозначное число:

а) рассматриваются случаи умножения и деления круглых десятков, которые сводятся к табличному умножению и делению;

б) рассматриваются случаи, которые сводятся к нетабличному умножению и делению без перехода через разряд.

2. Умножение и деление трехзначных чисел на однозначное число без перехода через разряд.

3. Умножение десяти и ста, умножение на десять и сто.

4. Деление на десять и сто:

- письменное умножение и деление в пределах 1000;

- умножение и деление на однозначное число с переходом через разряд;

- умножение двухзначного числа на однозначное с переходом через разряд в разряде десятков или единиц;

- умножение двухзначного числа на однозначное с переходом через разряд в разряде единиц и десятков;

- умножение трехзначного числа на однозначное число с переходом через разряд в одном разряде - единиц или десятков;

- умножение трехзначного числа на однозначное число с переходом через разряд в двух разрядах - единиц и десятков

- особый случай умножения - первый множитель - трехзначное число с нулем на конце или в середине;

- умножение двухзначного числа на круглые десятки.

Деление изучается в такой последовательности.

1. Число сотен, десятков и единиц делитель без остатка на делитель.

2. Число сотен делится на делитель без остатка, а число десятков без остатка на делитель не делится.

3. Число сотен не делится без остатка на делитель.

4. Число сотен делимого меньше числа единиц делителя, в частном получается двухзначное число.

5. Особый случай деления, когда в частном на конце или в середине получается ноль.

6. Деление на круглые десятки.

Сложение и вычитание многозначных чисел.

Сложение и вычитание многозначных чисел, кроме случаев, указанных выше, выполняются приемами письменных вычислений. Основой алгоритмов сложения и вычитания чисел любого класса является поразрядное сложение и вычитание.

Умножение и деление многозначных чисел.

Умножение и деление многозначных чисел представляет гораздо больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики не твердо знают таблицу умножения. Даже те учащиеся, которые запоминают таблицу умножения, затруднялись применить её при решении примера с многозначными числами, то есть актуализировать свои знания и использовать их.

Трудности возникают и тогда, когда надо единицы высшего разряда перевести в низший разряд, удержать их в памяти. Неумение долгое время сосредоточить внимание на выполнение действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки.

 

ТЕМА 9: МЕТОДИКА ИЗУЧЕНИЯ ОСНОВНЫХ ВЕЛИЧИН В НАЧАЛЬНЫХ КЛАССАХ

 

План:

1. Общая характеристика методики рассмотрения основных величин и их измерения

2. Методическая схема изучения величин.

3. Формирование представлений о длине и площади, массе, времени, емкости.

4.Требования к знаниям и умениям учащихся по теме.

Вопросы для самоконтроля.

1. Виды основных величин, их особенности. Схема изучения величин.

2. Особенности изучения мер времени, трудности и пути их преодоления.

3. Единица измерения длины, площади, массы, емкости.

Литература - (1), (2), (3), (4), (5), (6),(7), (8), (9), (10)

Ключевые понятия.

– Величина - особые свойства реальных объектов или явлений.

– Основные величины - длина, стоимость, объём, площадь, масса, скорость, время.

– Изучение величин - одно из средств связи математики с жизнью.

I. Общая характеристика методике рассмотрения основных величин и их измерения

В начальных классах рассматриваются следующие величины:

Длина, площадь, масса, емкость, время и другие. Величины – важнейшее понятие математики, развивают пространственное представление, вооружают практическими навыками, являются средствами связи обучения с жизнью.

Изучаются с 1 по 4 классы, в тесной связи с изучением целых чисел и дробей, новые единицы измерения вводится вслед за введением соответственных счетных единиц. Образование, запись и чтение именованных чисел изучается параллельно с нумерацией отвлеченных чисел.

Измерительные и графические работы, как наглядное средство, используется при решении задач. (Проводятся конкретные задачи и упражнения на величина)

II. Методическая схема изучения величин состоит из следующих этапов:

1. Выяснение и уточнение имеющихся у детей представлений о данной величине (обращение к опыту ребенка)

2. Сравнение однородных величин (визуально, с помощью ощущений, наложением, путем использования различных мерок)

3. Знакомство с единицей измерения данной величины и с измерительным прибором.

4. Формирование измерительных умений и навыков

5. Сложение и вычитание однородных величин, выраженных в единицах одного наименования (в связи с решением задач).

6. Знакомство с новыми единицами величины в тесной связи с изучением нумерации по концентром, перевод однородных величин в другие и наоборот.

7. Сложение и вычитание величин, выраженных единицах двух наименований.

8. Умножение и деление величин на число.

III.Формирование представлений о длине, площади, массе, времени, емкости.

Каждую величину изучаем по вышеизложенной методической схеме.

IV.Требования к знаниям и умениям учащихся по теме.

Знать:

1.С какими величинами и их единицами знакомится учащийся в школьном курсе математики и в каком классе.

2.Общий подход к формированию представления о величинах в начального класса.

Уметь:

1. Применять методическую схему к формированию представлений о величинах при изучении длины, емкости, массы, времени, площади;

2. Целенаправленно организовать практические работы;

3. Использовать различные средства обучения при изучении темы.

4. Применять на практике методику измерительных умений и навыков у учащихся.

 Первоначальное знакомство с величинами происходит в начальных классах. Там величина наряду с числом является ведущим понятием. Величины - это особые свойства реальных объектов или явлений. Обычно изучаются основные величины: длина, стоимость, площадь, объём, масса, скорость, время. Занятия по данной теме способствуют формированию обобщений, совершенствованию, целенаправленности и точности выполнения действий, воспитанию умения доводить любую работу до конца, формированию навыков самоконтроля.

В ходе формирования практических умений и навыков развиваются внимание, память, наблюдательность, совершенствуется моторика, тактильные и зрительные восприятия и ощущения. Все это служит решению задач коррекции как познавательной деятельности, так личностных качеств детей.

Изучение величин имеет большое значение, так как понятие величины является важнейшим понятием математики. Каждая изучаемая величина - это некоторое количество реальных объектов окружающего мира. Упражнения в измерениях развивают пространственные представления, вооружают учащихся важными практическими навыками, которые широко применяются в жизни. Следовательно, изучение величин - это одно из средств связи обучения математики с жизнью. Величины рассматриваются в тесной связи с изучением натуральных чисел и дробей; обучение измерению связывается с обучением счёту; новые единицы измерения вводятся вслед за введением соответствующих счетных единиц; арифметические действия выполняются над натуральными числами и над величинами. Измерительные и графические работы как наглядное средство используются при решении задач. Таким образом, изучение величин способствует усвоению многих вопросов курса математики. Изучение материала способствует лучшему пониманию закономерностей десятичной системы счисления (соотношение единиц измерения величин, кроме единиц измерения времени, основано на десятичной системе счисления), расширению понятий арифметических действий над числами , записанными с употреблением единиц измерения величин, законы арифметических действий над числами, полученных от пересчёта предметных совокупностей, остаются справедливыми и для чисел, подученных от измерения. Производя действия над числами, учащиеся закрепляют навыки предварительного анализа задания, вычленяют черты сходства и различия в действиях с различными (по виду) числами.

Далее мы рассмотрим методику преподавания некоторых величин измерения: длину, объём, площадь.

1. ДЛИНА

С первых дней обучения в школе ставится задача уточнять пространственные представления детей. Этому помогают упражнения на сравнение предметов по протяженности, например: «Какая книга тоньше (книги прикладываются друг к другу)? Кто ниже: Саша или Оля (дети становятся рядом)? Что глубже: ручей или река (по представлению)?»

В процессе этих упражнений отрабатывается умение сравнивать предметы по длине, а также обобщается свойство, по которому происходит сравнение - линейная протяженность, длина.

Важным шагом в формировании данного понятия является знакомство с прямой линией и отрезком как «носителем» линейной протяженности, лишенным по существу других свойств. Сравнивая отрезки на глаз, дети получают представление об одинаковых и неодинаковых по длине отрезках.

На следующем этапе происходит знакомство с первой единицей измерения отрезков. Из множества отрезков выделяется отрезок, который принимают за единицу. Дети узнают его название и приступают к измерению с помощью этой единицы. Имеются различные точки зрения по вопросу о том, какую единицу измерения вводить первой. В жизненной практике дети наблюдают чаще всего измерения с помощь метра. Метр - основная единица длины, метр существует в виде отдельного эталона (мерки). С помощью его учителю легко показать процесс измерения (как откладывается мерка на отрезке, как происходит подсчёт единиц измерения). Поэтому некоторые методисты рекомендуют первой единицей измерения вводить метр. Однако при рассмотрении метра трудно провести достаточное количество упражнений в измерении отрезков так, чтобы работал каждый ученик, что совершенно необходимо для понимания самого процесса измерения. Другие методисты предлагают первой единицей измерения ввести сантиметр, что позволит каждому ученику выполнить, сидя за партой, большое количество работ по измерению. Это не исключает возможности на подготовительном этапе, опираясь на жизненные наблюдения детей, вспомнить, чем и как измеряют тесьму, ткани, ленту, и т.п., померить для примера 2-3 м. шпагата или измерить длину доски. Не устанавливая соотношений между метром и сантиметром, можно ввести сантиметр как мерку для измерения небольших отрезков, длина которых меньше метра.

Чтобы дети получили наглядное представление о сантиметре, следует выполнить ряд упражнений. Например, полезно, чтобы они сами изготовили макеты сантиметра (нарезали из узкой полоски бумаги в клетку полоски длиной в 1 см, начертили отрезки длиной в 1 см, нашли что ширина мизинца примерно равна 1 см.

Далее учащихся знакомят с измерением отрезков. Чтобы дети ясно поняли процесс измерения и что показывают числа, получаемые при измерении, целесообразно постепенно переходить от простейшего приёма укладывания моделей сантиметра и их подсчёта к более трудному - отмериванию («прошагать» меркой по отрезку и подсчитать, сколько раз отложилась единица измерения). Только затем приступать к измерению способом прикладывания линейки или рулетки к измеряемому отрезку.

Многие методисты советуют сначала пользоваться линейками, которые изготовляются детьми из листа бумаги в клеточку. На этих линейках наносятся сантиметровые деления, но цифры не пишутся. Этими линейками дети пользуются при измерении отрезков, чертят отрезки на нелинованной бумаге.

Для формирования измерительных навыков выполняется система разнообразных упражнений. Это измерение и черчение отрезков.

Позднее при нумерации чисел в пределах 100, вводятся новые единицы измерения - дециметр, а затем метр. Работа происходит в таком же плане, как и при знакомстве с сантиметром. Затем устанавливают отношения между единицами измерения ( сколько сантиметров содержится в 1 дм. В 1м) Дети упражняются в измерении с помощью двух разных мерок ( например длина крышки парты 4 дм 5 см, длина доски 2м 8 дм.). С этого времени приступают к сравнению длин на основе сравнения соответствующих отрезков.

Затем рассматривают преобразования величин: замену крупных величин мелкими (3 дм 5 см = 35 см) и мелких единиц крупными (48 см = 4 дм 8 см). Постепенно учащиеся осознают, что числовое значение длины зависит от выбора единицы измерения (например, длина одного и того же отрезка может быть обозначена и как 3 дм и как 30 см.).

Сравнение двух длин, выраженных в единицах двух наименований, теперь выполняют на основе преобразования их сравнения числовых значений, при которых стоят одинаковые наименования единиц измерения (4 дм 8 см > 39 см, так как 48 см > 39 см, или 4 дм 8 см > 3 дм 9 см).

Во 1 классе знакомство с единицами длины продолжается: дети знакомятся с миллиметром, а позднее с километром.

Введение миллиметра обосновывается необходимостью измерять отрезки, меньшие 1 см. Наглядное представление о миллиметре дети получают, рассматривая отрезки деления на обычной масштабной линейке или на миллиметровой бумаге. Сразу же устанавливается - сколько миллиметров в 1 см, и дети приступают к измерениям с точностью до миллиметра. Для развития глазомера полезно, прежде чем измерять заданные отрезки (в учебниках на карточке), прикинуть на глаз их длину. Хорошим средством закрепления измерительных графических и вычислительных навыков являются задачи на измерение и упражнения в построении отрезков и геометрических фигур.

При знакомстве с километром полезно провести практические работы на местности, чтобы сформировать представление об этой единице измерения. Чаще всего дети вместе с учителем проходят расстояние, равное 1 км (полезно заметить время, за которое удалось пройти это расстояние). Измеряют пройденное расстояние либо шагами (2 шага примерно составляют 1 м) либо с помощью рулетки или мерной веревки. Попутно дети упражняются в определении некоторых расстояний на глаз.

В 2 классе учащиеся составляют и заучивают таблицу всех изученных единиц длины и их отношений. Таблица усваивается в процессе многократных и систематических упражнений. Кроме того, продолжается работа по преобразованию и сравнению длин, выраженных в единицах двух наименований, изучаются письменные приемы вычисления над ними.

Начиная со 1 класса, в процессе решения задач знакомятся с нахождением длины косвенным путём. Например, зная длину одного класса и числа классов на этаже, вычисляют длину здания школы, зная высоту комнат и количество этажей дома, можно вычислить приблизительно высоту дома и т.д. Работу над этой темой полезно продолжать и на других предметах и на внеклассных занятиях.

2. ЁМКОСТЬ.

Еще в пропедевтический период, развивая количественные представления учащихся, учили детей измерять песок ложками, формочками, выясняли, в какую формочку песка входит меньше (больше). Во втором классе эта работа продолжается: учащиеся сравнивают емкость или вместимость, различных сосудов. Вначале сравнение проводиться на глаз (сосуды значительно отличаются по своей ёмкости). Например, предлагается сравнить, куда войдет воды больше: в банку или в кастрюлю. Перед учащимися ставятся пол-литровая банка и кастрюля емкостью 2 – 3 л, измеряется, сколько банок воды входит в кастрюлю.

Выявляя имеющийся у учащихся опыт, учитель предлагает им стандартные банки вместимостью 1л, 2л, 3л. Некоторые ребята знают вместимость этих банок, некоторые же не имеют о ней никакого представления. Учитель выясняет также, знают ли учащиеся, какими мерами измеряют молоко, керосин, бензин, растительное масло, вообще жидкости. Затем он показывает детям литровую кружку, а затем поочередно переливает воду из неё в бутылку, а затем в банку. Так учащиеся подводятся к выводу, что в банку вмещается столько же воды сколько и в кружку, и столько же, сколько в бутылку, т.е. равное количество воды – 1 л. Чтобы этот вывод был понятен учащимся, необходимо, чтобы каждый ученик проделал эту несложную работу сам. Важно, чтобы дети запомнили это новое слово, научились его правильно произносить и записывать при числах. Учащиеся должны уметь отыскивать среди других сосудов сосуд емкостью в 1л. Далее учащиеся учатся измерять вместимость сосудов и отмеривать заданное количество в литре. Они определяют, наполняя водой, емкость банок, небольших баллонов, кастрюль, ведер. Важно развивать глазомер учащихся, т.е. умение определить емкость сосудов на глаз. Учащиеся должны запомнить емкость стандартных наиболее часто встречающихся в быту сосудов: банки емкостью 1л, 2л, 3л, 5л; бидоны емкостью 1л, 2л, 3л, 5л, 10л, 20л, 40л, ведра емкость 8л, 10л, 12л. Главный упор делается на практическую работу.

3. ПЛОЩАДЬ.

Прежде всего, площадь выделяется как свойство плоских предметов среди других их свойств. Уже дошкольники сравнивает предметы по площади, при этом они пользуются наложением предметов или сравнивают их на глаз.

В процессе изучения геометрического материала в 1 - 2 классах у детей уточняются представления о площади как о свойствах плоских геометрических фигур. Более четким становится понимание того, что фигуры могут быть различными и одинаковыми по площади.

Следует также ознакомить учащихся с нахождением приближенной площади фигуры таким способом: сосчитать все не целые квадратные сантиметры и общее число разделить на два, затем полученное число сложить с числом целых квадратных сантиметров, которые содержатся в данной фигуре. Для нахождения площади геометрических фигур не разделенные на квадратные сантиметры; используют палетку. Палетка - это прозрачная пластинка, разбитая на равные квадраты. Полезно такую палетку изготовить с детьми на уроках труда. Наложив палетку на геометрическую фигуру, подсчитывают число целых и не целых квадратных сантиметров, которые в ней содержатся. Для нахождения площади фигур начерченных в тетрадях, в качестве палетки используют разлиновку тетрадей. В это же время приступают к сопоставлению площади и периметров многоугольников с тем, чтобы дети не смешивали эти понятия, а в дальнейшем четко различали способы нахождения площади и периметра прямоугольника. На следующем этапе учащиеся знакомятся с приёмом вычисления площади фигуры. Сначала рассматривают фигуры, которые уже разделены на квадратные сантиметры. Их площадь находят путем подсчета квадратных сантиметров в одном ряду, а затем полученное число умножают на число рядов. Например, если в одном ряду 6 кв. см, а таких рядов 5, то площадь ровна 6 х 5, т.е. 30 кв. см. Очень важно при этом установить соответствие между длинной прямоугольника и числом квадратных сантиметров, прилегающих к длине, шириной прямоугольника и числом рядов. Делается вывод: чтобы вычислить площадь прямоугольника нужно знать его длину и ширину и найти произведение этих чисел.

Сравнив разные способы нахождения площади, дети могут сами решить вопрос, что легче: измерить длину и ширину прямоугольника и полученные числа перемножить или разбить прямоугольник на квадратные сантиметры и сосчитать их.

При изучении единиц мер следует проводить как можно больше практических работ по измерению и выражению результатов намерения в различных единицах. Если специально не привлекать к. этому внимания учащихся, то они подсчитают, что разные числа (например, 2 м - 50 см, 250 см, 25 м) характеризуется разными величинами, т.е. происходит отрыв числа от равной величины.

Значит, надо числа, полученные от измерения, всегда записывать с наименованием мер. Если измерения проводить одной мерой, то получаются числа с одним наименованием (3м, 2м 25 см 12 ч и т.д.). При записи чисел, полученных от измерения учащиеся, плохо представляют себе реальную величину единиц мер, могут перепутать место записи наименования единиц измерения, например, записать результат так: 30 см 5 м. Поэтому полезны такие задания, как 50… 35 см 100 руб. 25… ( вписать пропущенные названия мер).

Преобразования чисел, выражающих длину, массу, стоимость и др.

Одна из трудностей в решении этого вопроса состоит в том, что ученики с трудом понимают, то что одна и также величина может иметь различную числовую характеристику, т.е. например, как может быть, что длина класса 7м, 70 дм, 700 см.

Числа разные, но они имеют одну и ту же величину - длину класса. Другая трудность возникает при выполнении преобразований, учащиеся чаще всего допускают такие ошибки.

1. При замене крупных мер мелкими мерами.

2. При замене мелких мер крупными мерами.

Последовательность изучения преобразований чисел полученных от измерения величин, связана с последовательностью изучения измерений целых неотрицательных чисел и действий над ними.

Действия над числами, полученными от измерения величин. Действия над числами, полученными в результате измерения величин, подчиняются тем же законам, что и действия над числами в пределах 100, 1000 и многозначными числами. Действия над числами, полученные от измерения величин - опираются на знание учащимися единиц измерений и их соотношения, а также умения выразить одни меры другими.

При изучении сложения и вычитания чисел, полученных от измерения величин важно соблюдать определенную последовательность. Всегда решения примера надо начинать с его предварительного анализа. Сложение и вычитание.

Действие над числами, полученными от измерения величин, выполняются также как действие над многозначными числами с той лишь разницей, что при числах должны быть записаны наименование единиц измерения.

Сначала рассмотреть те случаи сложения и вычитания чисел, выражающих длину, массу, стоимость, в которых не требуется производить замену однихединиц измерения другими.

Затем, рассматриваются действия над числами с разными единицами измерения. Выполнять действия над ними можно разными способами:

а) заменить крупные меры мелкими, т.е. выразить компоненты действия в одних и тех же единицах;

б) показать, что при сложении, например двух полосок длиной соответственно 5 дм и 4 см в сумме получится полоска длиной 5 дм 4 см: если взять 50 копеек и 2 рубля, то вместе будет 2 руб. 50 коп.

4. УМНОЖЕНИЕ И ДЕЛЕНИЕ.

Дети изучают только умножение и деление чисел, полученных от измерения величин, на отвлеченное число. Умножение и деление этих чисел необходимо сопоставлять соответствующими действиями с отвлеченными числами. Последовательность и приемы выполнения действий следующее:

1. Умножение и деление числа с одной единицей измерения без замены единиц измерения и произведения в частном.

2. Умножение числа с одной единицей измерения с заменой единиц измерения в произведении.

3. Деление числа с одной единицей измерения на однозначное число. При решении таких примеров делимое надо выразить в более мелких мерах.

4. Умножение и деление чисел с двумя единицами измерения на однозначное число:

Когда учащиеся овладевают приемами умножения и деления, тогда и можно показать, что в отдельных случаях находить результат быстрее (можно даже устно), если умножать или делить число, выраженное только на крупных мерах или только в мелких.

5. Умножение и деление чисел, получить от измерения на двухзначное число.

6. Умножение и деление чисел с двумя наименованиями мер проводится путем предварительного выражения их числом с одним наименованием мер.

Учащиеся для лучшего запоминания последовательности (алгоритма) выполнения действий можно предположить заметку приблизительно такого содержания:

1. Прочитай пример;

2. Определи одно или два наименования в числе, которое нужно умножать.

3. Если множимое (делимое) - число с двумя наименованиями мер, то надо установить единица каких разрядов равна 0.

4. Выразим множимое делимое число с одним наименованием мер.

5. Выполни умножение (делимое).

Выполни преобразования в ответе.

При выполнении действий с числами, полученными от измерений не надо забывать о решении примеров с неизвестными компонентами действий.  

 

ТЕМА 10: МЕТОДИКА ОЗНАКОМЛЕНИЯ С ДРОБЯМИ

 

План:

1. Общие вопросы методики ознакомления младших школьников с дробями.

2. Методика ознакомления с долями величины

3. Сравнение дробей

4. Решение задач на нахождение доли числа и числа по его доле

Вопросы для самоконтроля.

1. Что означает понятие «доля», что такое дробь ?

2. Как сравнивают дроби с одинаковыми знаменателями, а с разными знаменателями?

3. Как найти долю числа, а числа по доле?

4. Наглядность, используемая при обучении понятия дроби

Литература - (1), (2), (3), (4), (5), (6),(7), (8), (9), (10)

Ключевые понятия.

– Доля – это одна часть от целого -  1/5,  1/123

– Дробь – 2 и более частей от целого числа – 2/5, 4/18, 12/100

– Сравнить дробь, это значит найти какой значение надо поставить между двумя дробями < , > , = ,

Ознакомить учащихся с понятием доли, значит сформировать у них конкретное представление о долях, т. е. научить детей образовать доли практически.

Для формирования правильных представлений о долях надо использовать достаточное количество разнообразных наглядных пособий. Нам более удобными пособиями являются геометрические фигуры, из бумаги, в форме прямоугольника, круга, треугольника, отрезка и т.д.

Правильное представление о долях, а позднее о дробях будут сформированы тогда, когда ученики своими руками получать, например, половину квадрата, круга, четверть отрезка и т.д.

Доли записываются с помощью двух чисел. Одна вторая доля квадрата обозначается 1/2. Число 2 показывает, что квадрат разделен на 2 равные части, а число 1 показывает, что взяли одну такую часть.

Аналогично получает ¼, 1/6, 1/12. Решение задач на нахождение доли числа и числа по его доле также способствует формированию представлений о долях величины. Потому решение задач на нахождение доли числа и числа по его доле выполняется на наглядной основе.

Образование дробей, как и образование долей рассматривается с помощью наглядных пособий. Для сравнения дробей обычно используются иллюстрации е разными прямоугольниками.

Предлагаются специальные упражнения на сравнение дробей:

1. Вставьте пропущенный знак

2. Конкретный смысл дроби ярко раскрывается при решении задач на нахождение дроби числа. Решение этих задач, как и задач на нахождение доли числа, выполняется с помощью соответствующих наглядных пособий.

Например, у закройщика было 12 метров ткани. 3:2 всей ткани из расходовал. Сколько метров ткани израсходовал закройщик?

Различные упражнения с дробями следует чаще включать для устных и письменных работ на протяжении всего учебного года.


По теме: методические разработки, презентации и конспекты

Теоретические основы методики интеллектуального развития младших школьников в процессе преподавания русского языка. Теоретические основы методики интеллектуального развития младших школьников в процессе преподавания русского языка.

В условиях частных школ с присущей  им системой работы с ограничением времени на самоподготовку и отсутствием домашних заданий – развитие интеллектуальных навыков становится очень актуально...

Методика работы над речевыми и неречевыми ошибками учащихся. Виды и типы речевых ошибок, методика их исправления. Обучение младших школьников самопроверке творческих работ.

Методика работы над речевыми и неречевыми ошибками учащихся. Виды и типы речевых ошибок, методика их исправления. Обучение младших школьников самопроверке творческих работ....

Методика «Кто прав?» (модифицированная методика Цукерман Г.А.)

Методика для диагностики сформированности коммуникативных УУД...

Методика «Изучение отношения к учению и к учебным предметам» Методика разработана Г. Н. Казанцевой и предназначена для качественного анализа причин предпочтения тех или иных предметов и мотивов учения.

Методика «Изучение отношения к учению и к учебным предметам»Методика разработана Г. Н. Казанцевой и предназначена для качественного анализа причин предпочтения тех или иных предметов и мот...

Оптимизированный вариант известных методик по развитию устойчивых каллиграфических навыков.Методики Потаповой Е.Н, Безруких М.М.и Илюхиной И.А.

Обучение письму и систематическая работа по формированию почерка одна из главных задач школы.Каллиграфически правильное письмо содействует нравственному, эстетическому воспитанию школьников, воспитани...