Методика формирования представлений о натуральном числе в подготовительной группе.
материал (подготовительная группа)
Методика формирования представлений о натуральном числе в подготовительной группе.
Скачать:
Вложение | Размер |
---|---|
metodika_formirovaniyad_predstavleniy_o_naturalnom_chisle_v_podgotovitelnoy_gruppe.docx | 29.82 КБ |
Предварительный просмотр:
Методика формирования представлений о натуральном числе в подготовительй группе.
Основным понятием элементарной математики в детском саду является понятие числа. Натуральные числа - это числа, возникшие в процессе счета отдельных предметов или измерения. Работа по формированию у детей этого понятия ведется на протяжении трех лет (в средней, старшей и подготовительной группах) и далее продолжается в начальных классах школы.
Л.А.Венгер, О.М.Дьяченко предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре. В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени. Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер). Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры. В каждой возрастной группе идет постепенное усложнение задач и дальнейшее развитие счетной деятельности. Дети учатся считать в пределах десяти в прямом и обратном порядке, количественными и порядковыми числительными, группами по два-три предмета, называя общее количество предметов.
Так, воспитатель предлагает детям рассмотреть таблицу, на которой изображены числовые ступеньки (числа от одного до десяти). «Вы хорошо научились считать, - говорит воспитатель, - знаете числа. А теперь посмотрите на таблицу, на ней в определенном порядке размещены числа. Эта таблица называется числовыми ступеньками. Скажите, какие числа больше, а какие меньше? Сколько ступенек на числовой лесенке? Посчитайте их по порядку. Я буду показывать ряд, а вы отвечайте, какой он по порядку. Какое наименьшее число на числовых ступеньках? Какие числа идут после этого? Какое наибольшее число на числовых ступеньках? Какое число в пятом ряду? Какое число опережает пять? А еще какие числа впереди пяти? Что больше: четыре или пять? Какое число стоит после пяти? Еще какие? Какое число больше: шесть или пять? Посмотрите, какое число перед числом «три», а какое после трех? Что больше: восемь или семь? Почему?» Дети разглядывают числовую лесенку, называют числа. Потом воспитатель закрывает лесенку и предлагает детям вспомнить, какое число больше (меньше), чем названное, на сколько шесть больше пяти и т. п. «Больше или меньше эти числа, чем восемь? Почему вы считаете, что числа "девять" и "десять" больше восьми?» Дети отвечают, что эта таблица называется числовой лесенкой. «Правильно, на ней видно, в каком порядке размещены числа, какие числа предшествуют каждому числу и какие идут после него, какие числа больше, а какие меньше.
Наряду со счетом отдельных предметов, упражнениями в счете их по порядку в старшей группе вводится обучение счету группами, т. е. обучение счету на основе смены основания. К этому дети уже подготовлены всей предшествующей работой. В частности, обучение детей измерению и делению целого на равные части является фундаментом, базой для понимания счета группами.
Начинать ознакомление детей со счетом группами можно с показа практической значимости деятельности, экономии времени, установившихся традиций. Так, взрослые считают парами рукавички, носки, обувь; десятками — яйца, иногда овощи, фрукты; набором — мебель (гарнитур), посуду (сервиз) и т. п. Педагог подчеркивает, что в таких случаях несколько предметов воспринимают как единое целое. Опираясь на это, можно предложить детям упражнения со счетом групп разных предметов. Дети создают и считают количество групп, количество предметов в каждой группе, общее количество предметов (сколько всего).
Значение этой работы в том, что вследствие обучения дети осознают связь между счетом и измерением, начинают понимать, что основой (мерой) счета может быть любое число.
Обучение счёту- центральная задача в работе с дошкольниками. Особое ее значение обусловлено тем, что именно в недрах счётной деятельности, в процессе постепенного ее освоения у ребёнка формируется и совершенствуется тот комплекс элементарных знаний (о равенстве и неравенстве количественных групп, о числе, об образовании чисел натурального ряда и т. д., который станет в дальнейшем первоосновой освоения вычислительной деятельности.
СЧЁТ- установление взаимооднозначного соответствия между элементами множеств и отрезком натурального числа.
ЦЕЛЬ СЧЁТА В ДОШКОЛЬНОМ ВОЗРАСТЕ:
1. различение большего и меньшего множества
2. определение количества
3. сравнение численности
4. определение итога счёта
5. определение порядкового значения элемента и результата измерения.
ИТОГОВОЕ ЧИСЛО- число названное последним при пересчёте и характеризующее количество элементов данного множества.
Число выступает как результат счёта, характеристика эквивалентных, равночисленных множеств, как результат измерения.
Научиться считать -значит уметь определять общее количество чего-то. При осуществлении счётной операции дети усваивают основные правила счёта: числительные называются по порядку; каждое названное числительное соотносится с одним объектом или одной группой, последнее числительное соотносится с одним предметом, но является показателем общего количества объектов счёта.
параллельно с показом образования числа детей знакомят с цифрами. Соотносят определенную цифру с числом, образованным тем или иным количеством предметов, воспитатель рассматривает изображение цифры, анализируя его, сопоставляет с уже знакомыми числами. дети производят образные сравнения.
В течении всего года дети упражняются в счёте в пределах десяти. они пересчитывают игрушки, отсчитывают из большего количества предметов меньшее, отсчитывают предметы по заданному числу, по цифре, по образцу.
Число выступает как результат счёта, характеристи эквивалентных, равночисленных множеств, как результат измерения.
Методика формирования количественных представлений в подготовительной к школе группе
В содержании работы по формированию количественных представлений в подготовительной к школе группе можно выделить следующие направления.
1. Развитие счетной, измерительной деятельности: точности и быстроты счета, воспроизведения количества предметов в большем и меньшем на один от заданного их числа; подготовка к усвоению чисел на базе измерения, использование цифр в разных видах игровой и бытовой деятельности.
2. Совершенствование умений сравнивать числа, понимание относительности числа: при сравнении чисел 4 и 5 получается, что число 5 больше, чем 4, а при сравнении чисел 5 и 6 — 5 меньше 6. Уточнение представлений о закономерностях образования чисел натурального ряда, количественном составе их из единиц, составление чисел до 5 из двух меньших.
3. Формирование представлений об отношениях «целое — часть» на совокупностях, состоящих из отдельных предметов, при делении предметов на равные части, в ходе измерения условной меркой.
4. Увеличение и уменьшение чисел в пределах 10 на единицу, подготовка к усвоению арифметических действий сложения и вычитания. Решение простых арифметических задач, используя при этом вычислительные приемы увеличения и уменьшения на единицу.
В подготовительной к школе группе совершенствуются умения, сформированные в процессе обучения детей в старшей группе. Дошкольники выполняют различные практические действия, сравнивают группы предметов, числа на наглядной основе и устно определяют равенство нескольких групп по числу (столько же, такое же число), делают вывод о неравенстве (если одних предметов меньше, то других больше) и т. д. Они упражняются в точном и кратком выражении мыслей, развернутом пояснении способов действий, обосновании полученного результата.
Для уточнения знаний о разностных отношениях между смежными числами проводятся упражнения на последовательное увеличение или уменьшение чисел на единицу, составление «числовой лесенки».
Воспитатель, начиная с одного предмета, последовательно добавляет к нему еще по одному, каждый раз спрашивая детей о количестве, сколько надо добавить, чтобы предметов стало пять, получить следующее число, число больше на единицу числа 6 и т. д.
Особое значение имеют аналогичные упражнения на последовательное уменьшение чисел.
После уточнения общего количества (десять) убирается один предмет и задается вопрос: «Сколько осталось?» Вопросы варьируются: «Сейчас восемь предметов. Сколько надо убрать, чтобы их осталось семь? Сколько предметов останется, если уберем еще один?»
Такие упражнения способствуют осмыслению детьми отношений между числами в обратном порядке, переходу к устному произнесению чисел, «обратному счету».
«Числовая лесенка» как модель натурального ряда используется для закрепления последовательности, способа образования чисел, отношений между числами. Дети начинают определять место меньшего из двух сравниваемых чисел словом до, большего — после.
В подготовительной к школе группе изучается количественный! состав чисел из единиц в пределах 10 и состав чисел до 5 из двух меньших, что является непосредственной подготовкой к усвоению арифметических действий и приемов вычислений.
Состав чисел из единиц закрепляется на разнородных предметах. Детям предлагается взять определенное количество разных предметов и сообщить, из скольких единиц состоит это число. В ходе сравнения двух чисел подчеркивается состав чисел, чем и объясняется различие между ними, устно называется количество единиц в каждом числе.
Усложнением является ознакомление детей с составом чисел до 5 из двух, меньших данного числа. Дети, используя наглядный материал, учатся раскладывать группы в 3, 4, 5 предметов на две меньшие и, наоборот, из двух меньших групп предметов получать большую. От практических действий переходят к рассмотрению состава числа.
Воспитатель предлагает ребенку взять три квадрата двух цветов. Он спрашивает: «Сколько красных и синих квадратов ты взял?
(Два красных и один синий.) Сколько синих и красных квадратов ты возьмешь, чтобы их было три? (Один синий и два красных.) Сколько всего квадратов?»
Делается вывод о том, что число 3 можно составить так: 2 и 1, 1 и 2.
Дети упражняются в составе чисел из двух меньших и на однородном материале. При этом группы предметов отделяются одна от другой расстоянием.
Формирование у детей старшего дошкольного возраста представления об общих зависимостях между целым и частью на разном содержании (на совокупностях предметов, делении предметов на равные части, измерении) способствует совершенствованию количественных представлений, готовит к усвоению соответствующих математических понятий в школе.
Обучение детей счету групп предметов сопровождается делением совокупности на группы, выделением отношений «целое — часть», зависимости: чем больше по количеству целое (совокупность), тем больше предметов в группе (части). Выделяется и более сложная зависимость между количеством групп, на которое делится целое, и количеством предметов в группе.
Дети делят совокупность из шести предметов на две группы, например раскладывают шарики в две коробочки. Затем другую совокупность из восьми шариков раскладывают тоже в две коробочки. Выясняют, что количество предметов в группе зависит от их общего количества.
В другой раз берутся две равные совокупности: шесть синих и столько же красных шаров. Синие шары раскладываются в две коробки, а красные — в три коробки. Выясняется количество полученных групп в первом и втором случае, предметов в группе, выявляется зависимость количества предметов в группе от количества этих групп.
Такие же зависимости дети выделяют и при делении разных предметов, геометрических фигур на 2, 4, 8 равных частей путем складывания их с последующим разрезанием.
В подготовительной к школе группе закрепляются способы деления, знания о соотношениях целого и части, полученные в старшей группе. На основе показа и выделения каждой из частей воспитатель подводит детей к называнию долей предмета как 1/2 и 1/4. Используется и мерка, с помощью которой делится предмет (дощечка, лист картона) на равные части. Мерка дается в готовом виде или изготовляется детьми путем складывания. Теперь способ деления можно применять для изготовления мерки, равной 1/5 части делимого предмета.
В дальнейшем большее и меньшее по размеру целое делится на равное количество частей, выясняется зависимость размера части и целого. Затем целое, например два-три равных по размеру круга, делится на разное количество частей (2, 4 и 8), сопоставляются части по размеру и количеству, делается вывод.
Такие упражнения в непосредственном делении целого на равные части дают детям возможность выделить и осознать зависимости между количеством полученных в результате деления частей и их размером.
В ходе измерения условными мерками формируется также представление о части (величине, равной мерке) и целом (измеряемой величине), подчеркивается условное дробление целого на части с помощью мерки. Дети разливают воду по стаканам, делают отметки мелом на измеряемом краю стола и т. д., показывают часть измеряемого объекта, равную двум-трем меркам. Использование мерок разной величины (длины, объема) помогает осмыслить некоторые соотношения между объектом, средством и результатом измерения.
В подготовительной к школе группе возможно и целесообразно введение символики для обозначения отношений «больше», «меньше», «равно» (>, <, =).
В качестве подготовительных упражнений используется прием обозначения стрелкой отношений между числами. Раскладываются в ряд карточки с цифрами 1, 2, 3, стрелкой показывается, что число 1 меньше числа 2, а 2 меньше, чем 3: 1. Следовательно, 1 меньше 3. По такой записи выясняется, какое число больше, какое число меньше, на сколько. Знаки >, <, = используются для обозначения отношений между двумя сравниваемыми величинами (большой и маленький мяч, равные по высоте деревья и т. д.).
Воспитатель поясняет, что острие стрелки всегда направлено на маленький предмет.
Освоение детьми элементов символики способствует осмыслению ими количественных отношений в натуральном ряду чисел.
Дети обозначают знаками отношения между двумя числами (1<2, 2>1),. затем несколькими (5<6<7, 7>6>5), всеми числами ряда в пределах 10. В дальнейшем читают готовую запись, иллюстрируют предметную ситуацию; сравнивают с помощью знаков числа с различием в 2, 4 и более единиц (5<10, 9>4).
Переход от сравнения чисел, отличающихся на 1, к сравнению чисел с большей разностью может быть обоснован не только наглядно, но и с помощью рассуждений, основанных на свойстве транзитивности отношений (< или > ).
Например, как обосновать, что 6<10? Так как 6<7, а 7<8, то 6<8. Так как 6<с8, а 8<9, то 6<9 и т. д.
Дошкольники осознают отношения между числами натурального ряда, о чем свидетельствует называние ими большего или меньшего на единицу числа, нахождение пропущенного, «соседнего» числа.
Действия сложения и вычитания вводятся по аналогии с увеличением или уменьшением числа на 1. Воспитатель предлагает увеличить число 2 на единицу. Выясняется, что для этого надо назвать число, которое больше данного на 1, т. е. следующее число. Показывается запись такого увеличения с помощью знаков. Аналогично рассматривается уменьшение числа на единицу.
Знаковая модель арифметического действия помогает детям осмыслить его сущность.
Итак, в подготовительной к школе группе дети усваивают закономерности образования чисел натурального ряда, могут практически, а иногда и логически установить равенство и неравенство чисел, обосновать последовательность построения чисел; эти умения и навыки обеспечивают преемственную связь в подготовке детей к усвоению школьной математики.
В подготовительной к школе группе у детей развивается понимание того, что числа образуются не только с помощью прибавления или вычитания единицы. Число можно получить их двух меньших чисел, его можно разложить на два меньших числа. Большое значение занимает счет с участием разных анализаторов (зрительного, слухового, двигательного, тактильного). В подготовительной группе, подчеркивает Е.И. Щербакова [31], важно подвести детей к обобщению, что считать можно, начиная с любого предмета, в любом направлении, основное - не пропустить ни одного элемента и не посчитать один элемент дважды. В этом возрасте вводится обучение счету групп.
Дети седьмого года жизни учатся определять количественный состав из двух меньших сначала в пределах первой пятерки, а потом в пределах десяти. В процессе выполнения упражнений с множествами детей постепенно подготавливают к усвоению состава числа из двух меньших. Дети создают множества, объединяют небольшие группы вместе, делят множество на части, сравнивают их между собой. Все эти упражнения способствуют созданию существенной основы вычислительной деятельности.
Следует отметить, что основная цель этих упражнений не механическое запоминание таблиц, а понимание того, что число, так же как и множество, может быть образовано из частей, групп, других чисел, общее количество которых соответствует заданному множеству или числу.
Оперируя конкретными множествами и числами, дети осознают отношения частей и целого. Части могут быть равными и неравными, большими и меньшими, однако всегда часть меньше целого. Если воспитатель ставит цель ознакомить детей с количественным составом какого-либо числа, то он должен предложить детям положить сначала перед собой игрушки и посчитать их. Затем найти карточку с соответствующей цифрой и положить ее перед игрушками. Далее необходимо разложить игрушки на две цветные полоски бумаги. Спросить у детей, как можно составить это число, из каких меньших чисел оно складывается.
Детям предлагается собрать игрушки и снова разложить их на две полоски, но уже иначе, не так, как они были разложены раньше. Задание повторяют трижды. В процессе такого обучения дети усваивают, что число можно составить несколькими способами из двух меньших.
Итак, целенаправленное обучение помогает формировать у детей способность одновременно оценивать все количественные изменения в предметной ситуации. При формировании представлений о количестве особое значение следует придавать самостоятельным действиям ребенка, главное внимание обращать на развитие его сенсорики через организацию определенных предметных действий, подчеркивает В.В. Данилова [21]. Умственное воспитание ребенка связано с его чувственным опытом, с развитием сенсорных процессов ощущения, восприятия, представления.
Применение счета в разных видах детской деятельности.
Обучая счету, не следует ограничиваться проведением формальных упражнений на занятиях. Воспитатель должен стремиться к тому, чтобы счет использовался детьми повсеместно, и число наряду с количественными и пространственными признаками предметов помогало бы детям лучше ориентироваться в окружающей действительности.
Воспитатель постоянно использует и создает различные жизненные и игровые ситуации, требующие от детей применения навыков счета. В играх с куклами, например, дети выясняют, хватит ли посуды для приема гостей, одежды для того, чтобы собрать кукол на прогулку, и пр. В игре в "магазин" пользуются чеками-карточками, на которых нарисовано определенное количество предметов или кружков. Воспитатель своевременно вносит соответствующие атрибуты и подсказывает игровые действия, включающие счет и отсчет предметов. В быту часто возникают ситуации, требующие выполнения счета: по заданию педагога дети выясняют, хватит ли тех или иных пособий или вещей детям, сидящим за одним столом (коробок с карандашами, подставок, тарелок и пр.). Дети считают игрушки, которые взяли на прогулку. Собираясь домой, проверяют, все ли игрушки собраны. Любят ребята и просто пересчитывать предметы, которые встречаются по пути.
Обучение счету сопровождается беседами с детьми о назначении, применении счета в разных видах деятельности. Стремясь углубить представления детей о значении счета, педагог разъясняет им, для чего люди считают, что они хотят узнать, когда считают предметы. Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи.
По теме: методические разработки, презентации и конспекты
Методика формирования представлений о времени у детей дошкольного возраста.
«Что такое время? Покажите его!», - но его нельзя потрогать, посмотреть. Как же ребенку показать время? Большей точностью отличаются представления детей о таких промежутках времени, навык различ...
Перспективный план работы по формированию представлений о родном крае в подготовительной группе.
Материал для работы по формированию представлений о родном крае в подготовительной группе....
Методика формирования представлений о геометрических фигурах детей дошкольного возраста.
формирование и развитие у дошкольников представлений о геометрических фигурах является одной из задач математической подготовки дошкольников....
Методика формирования представлений о множестве у детей младшего дошкольного возраста
Для осуществления грамотного обучения дошкольников, их математического развития воспитатель сам должен знать предмет науки математики, особенности развития математических представлений детей и м...
Перспективный план работы по формированию представлений о ЗОЖ у детей подготовительной группы
Перспективный план работы по формированию представлений о ЗОЖ в подготовительной группе направлен на решение вопросов по созданию условий для сохранения здоровья воспитанников, формирования основ здор...
Мастер-класс "МЕТОДИКА ФОРМИРОВАНИЯ ПРЕДСТАВЛЕНИЙ И ПОНЯТИЙ О ФОРМЕ"
Формирование готовности к обучению в школе является важной задачей всей воспитательной работы с дошкольниками, направленной на их всестороннее развитие - физическое, ...
Перспективный план работы по формированию представлений о ЗОЖ у детей подготовительной группы
Воспитать ребёнка здоровым – это значит, с самого раннего детства учить вести здоровый образ жизни, т.е.учить питаться правильно, соблюдать режим дня, закаливаться, заниматься физической культур...