«Формирование элементарных математических представлений через сказку»
тест

Соломонова Людмила Николаевна

Реферат

Скачать:


Предварительный просмотр:

Тема по самообразованию.

 «Мир геометрических фигур. Использование дидактических игр».

Цель: Изучить влияние дидактических игр на формирование представлений о геометрических фигурах и форме предметов у детей старшего дошкольного возраста.

Задачи:

  1. Изучить психологические особенности восприятия геометрических фигур и формы предметов детьми дошкольного возраста.
  2. Рассмотреть методику формирования представлений о геометрических фигурах и форме предметов у дошкольников.
  3. Выявить значение дидактических игр как средства развития представлений о геометрических фигурах и форме предметов.
  4. Рассмотреть классификацию дидактических игр.
  5. Рассмотреть структуру дидактических игр.
  6. Выявить возможности дидактических игр в развитии представлений о геометрических фигурах и форме предметов.

Введение.

Невозможно переоценить развитие элементарных математических представлений в дошкольном возрасте. Ведь что они дают ребёнку? Во-первых, у него развивается мышление, что необходимо для дальнейшего познания окружающего мира. Во-вторых, он познаёт пространственные отношения между предметами, устанавливает соответствующие связи, знакомится с формой предметов, их величиной. Всё это позволяет ребёнку развивать в дальнейшем логическое мышление.

Потребность в игре и желание играть у дошкольников используется и направляется в целях решения определённых образовательных задач. Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребёнка: на чувства, на сознание, на волю и на поведение в целом.

Известно, что в игре ребёнок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом. Таким образом, считается необходимым использовать игру как важный инструмент воспитания и обучения детей. Все это делает данную проблему актуальной в наши дни.

Формирование представлений о геометрических фигурах и форме предметов у дошкольников

1.1. Психолого-педагогический аспект формирования математических представлений у детей дошкольного возраста

Проблема обучения детей математике в современной жизни приобретает все большее значение. Это объясняется, прежде всего, бурным развитием         математической науки и проникновением ее в различные области знаний. В         связи с этим систематически перестраивается содержание обучения математике  в детском саду.

Формирование начальных математических знаний и умений у детей дошкольного возраста должно осуществляться так, чтобы обучение давало не только непосредственный практический результат, но и широкий развивающий        эффект.        

Используемые в настоящее время методы обучения дошкольников реализуют  далеко не все возможности заложенные в математике. Разрешить это противоречие возможно путем внедрения новых, более эффективных методов и разнообразных форм обучения детей математике. Одной из таких форм является обучение детей с помощью дидактических игр.  

В этой области занимались такие ученные, как М. Монтессори, А. А Столяр, Е. ?. И. Тихеева, Ф. Фребель, Е. И. Щербакова. Они внесли много нового в разработку методов обучения детей. По их мнению, дети должны учиться в процессе игры и повседневной жизни. Были разработаны методики ознакомления детей с геометрическими фигурами с помощью различных дидактических игр.

Детей в игре привлекает не обучающая задача, которая в ней заложена, а возможность проявить активность, выполнить игровые действия, добиться         результата, выиграть. Однако если участник игры не овладеет знаниями,         умственными операциями, которые определены обучающей задачей, он не         сможет успешно выполнить игровые действия, добиться результата. Следовательно, активное участие, тем более выигрыш в дидактической игре  зависят от того, насколько ребёнок овладел знаниями и умениями, которые        -1

 диктуются её обучающей задачей. Это побуждает детей быть внимательными,  запоминать, сравнивать, классифицировать, уточнять свои знания. Значит, дидактическая игра поможет ему чему-то научиться в легкой, непринуждённой  форме.        

Такой подход существенно меняет методы и приемы обучения, и требует такого проведения занятий, где задачи развития геометрических представлений решались посредством использования дидактической игры. Также он в математическом воспитании и обучении является актуальным, новым и требует специальной разработки.

Анализ психолого-педагогической и методической литературы позволил выявить проблему обучения детей на занятиях по математике. Такой проблемой является формальный подход к обучению, и в данном исследовании была предпринята попытка преодолеть этот подход. На основании этого воспитателям ДОУ рекомендуется:

1.Планировать и проводить работу с учетом возрастных и индивидуальных особенностей детей.

2.Внедрять дидактические игры в процесс обучения детей математике.

3.Привлекать детей к разработке и проведению дидактических игр.

Это большая ошибка думать, что ребёнок приобретает понятие числа и другие математические понятия непосредственно в обучении. Наоборот, в значительной степени он развивает их самостоятельно, независимо и спонтанно. Когда взрослые пытаются навязать ребёнку математические понятия преждевременно, он выучивает их только словесно; настоящие могут поставить себя на место своего слушателя. Они исходят из своих собственных позиций и непосредственно из того момента, в который происходят описываемые события. Ребёнок ещё не различает, что можно считать само собой разумеющимся, а что нет.

Таким образом, можно сказать, что ребёнок-дошкольник не обладает достаточными способностями для того, чтобы связывать друг с другом временные, пространственные и причинные последовательности и включать их в более широкую систему отношений. Он отражает действительность на уровне представлений, а эти связи усваиваются им в результате непосредственного восприятия вещей и деятельности с ними. При классификации объекты или явления объединяются на основе общих признаков в класс или группу, например: все люди, которые умеют водить машину и т.д.

Классификация вынуждает детей подумать о том, что лежит в основе сходства и различия разнообразных вещей, поскольку ему необходимо сделать заключение о них. Основные представления о постоянстве, операциях классификации и сериации образуют более общую схему у всех детей примерно между 4 и 7 годами жизни. Они создают фундамент для выработки логического последовательного мышления.

1.2. Психологические особенности восприятия геометрических Фигур и Формы предметов детьми дошкольного возраста.

Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие. Оно выполняет ряд функций: объединяет свойства предметов в целостный образ; объединяет все познавательные процессы в совместной согласованной работе по переработке и получению информации; объединяет весь полученный опыт от окружающего мира в форме представлений и образов предметов, и формирует целостную картину мира в соответствии с уровнем развития ребенка. Значительный вклад в понимание природы восприятия внесли психологи и педагоги - А.В. Запорожец, В.П. Зинченко, А.Н. Леонтьев, Л.А. Венгер, Л.С. Выготский, Б.Г. Ананьев и др. Восприятие помогает отличить один предмет от другого, выделить какие-то предметы или явления из других похожих на него. Таким образом, развитие восприятия создает предпосылки для возникновения всех других, более сложных познавательных процессов, в системе которых оно приобретает новые черты.

В психологии одним из свойств восприятия выделяют целостность: воспринимая предмет, мы осмысливаем его как единое целое, имеющее определенную структуру. Именно целостное восприятие обеспечивает накопление жизненного опыта, т.к. образы воспринимаемых предметов сохраняются в памяти и руководят дальнейшем восприятием окружающего мира. Образы предметов подготавливают руку, глаз и другие органы чувств воспринимать похожие предметы ускоренно, в соответствии с жизненными задачами. Дети не умеют управлять своим восприятием, не могут самостоятельно анализировать тот или иной предмет, не умеют разлагать целое на части и снова объединять части в целое. Им характерно смешивать части и целое. Восприятие вещей остается глобальным, без различения деталей. Дети воспринимают детали как самостоятельный объект, а не как части целого, и именно поэтому они оказываются чувствительны к ним. При восприятии предметов существенное значение играет то, какая часть рассматривается, какую роль она играет в целом предмете. Осмысленному восприятию ребенка учит взрослый на материале явлений природы, предметов обихода и искусства. Важно у детей развивать наблюдательность, умение смотреть и видеть, а это, как правило, происходит посредством игры. В играх для развития целостных представлений дошкольники выполняют различные действия с предметами: конструируют предмет и составные элементы; узнают предмет по нескольким элементам или его назначению и т.д. Основная цель таких игр - это научить ребенка узнавать предмет по его отдельным признакам или частям.

Дети четырёх лет активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.

Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно. Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх. Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.

Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: "Логические кубики" , "Уголки", "Составь куб" и другие; из серии: "Кубики и цвет", "Сложи узор", "Куб- хамелеон" и другие. Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.

Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:

  • оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;
  • сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
  • проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
  • рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.

1.3. Методика Формирования представлений о геометрических Фигурах и Форме предметов у дошкольников.

Основная задача воспитателя- наполнить повседневную жизнь группы интересными делами, проблемами, идеями , включить каждого ребёнка в содержательную деятельность, способствовать реализации детских интересов и жизненной активности. Организуя деятельность детей, воспитатель развивает у каждого ребёнка стремление к проявлению инициативы, поиски разумного и достойного выхода из различных жизненных ситуаций. Современное состояние математического развития дошкольников предусматривается в разных программах. Одна из них - программа "Детство" заключается в следующем:

  1. Цель - развитие познавательных и творческих способностей детей (личностное развитие).
  2. Содержание классическое: доматематические математические виды деятельности:

виды деятельности:

  • сравнение - счёт
  • уравнивание - измерение
  • комплектование - вычисление плюс элементы логики и математики.
  1. Методы и приёмы:
  • практические (игровые);
  • экспериментирование;
  • моделирование; т воссоздание;
  • преобразование;
  • конструирование.
  1. Дидактические средства:

Наглядный материал (книги, компьютер):

  • блоки Дьенеша,
  • палочки Кюизенера,
  • модели.

5. Форма организации детской деятельности:

  • индивидуально-творческая деятельность,
  • творческая деятельность в малой подгруппе(3-б детей),

учебно-игровая деятельность(познавательные игры, занятия),

  • игровой тренинг.

Всё это опирается на развивающую среду, которую можно построить следующим образом:

  1. Математические развлечения:
  • игры на плоскостное моделирование (Пифагор, Танграм и т.д.),
  • игры головоломки,
  • задачи-шутки,
  • кроссворды,
  • ребусы.
  1. Дидактические игры:
  • сенсорные,
  • моделирующего характера,
  • специально придуманные педагогами для обучения детей.
  1. Развивающие игры - это игры, способствующие решению умственных способностей. Игры основываются на моделировании, процессе поиска решений. Никитин, Минскин «От игры к знаниям». Л.А.Венгер, О.М.Дьяченко предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре. В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.

Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер). Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры. Должное внимание уделено развитию речи.

В ходе игры воспитатель не только задаёт заранее подготовленные вопросы, но и непринуждённо разговаривает с детьми по теме и сюжету игры, содействует вхождению ребёнка в игровую ситуацию. Педагог использует потешки, загадки, считалки, фрагменты сказок. Игровые познавательные задачи решаются с помощью наглядных пособий.

Необходимым условием, обеспечивающим успех в работе, является творческое отношение воспитателя к математическим играм: варьирование игровых действий и вопросов, индивидуализация требований к детям, повторение игр в том же виде или с усложнением. Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет. Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи. Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.

Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в математике- одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.

У детей дошкольного возраста следует формировать определенные понятия о геометрических фигурах, поэтому перед воспитателем ставятся следующие задачи:

  1. Геометрическая фигура как эталон восприятия формы предмета.

Особенности восприятия детьми формы предметов и геометрической фигуры.

  1. Исследовательский действия и их роль в познании формы. Роль ... в восприятии и формировании представлений о форме.
  2. Задачи ознакомления с формой предметов.
  3. Обучение умению отличать и называть геометрические фигуры. Групповка геометрических фигур по разным признакам. Сравнение геометрических фигур по количеству углов, сторон, формирование обобщенных понятий.
  4. Практикование детей разных возрастных групп в анализе предметов и их частей. Использование дидактических игр-упражнений в классификации предметов по форме.

б.        Знакомство с трансфигурацией. Выкладывание фигур из палочек.

САМОАНАЛИЗ

Для реализации программных задач в качестве дидактического материала я использую модели простейших плоских геометрических фигур (круг, квадрат) разного цвета и размера. Еще до проведения систематических занятий я организую игры детей со строительным материалом, наборами геометрических фигур, геометрической мозаикой. В этот период важно обогатить восприятие детей, накопить у. них представления о разнообразных геометрических фигурах, дать их правильное название. На занятиях детей учу различать и правильно называть геометрические фигуры — круг и квадрат. Каждая фигура познается в сравнении с другой. На первом занятии первостепенная роль отводится обучению детей приемам обследования фигур осязательно-двигательным путем под контролем зрения и усвоению их названий.                                                                             Показываю фигуру, называет ее, прошу детей взять в руки такую же. Затем организую действия детей сданными фигурами: прокатить круг, поставить, положить квадрат, проверить, будет ли он катиться. Аналогичные действия дети выполняют с фигурами другого цвета и размера.                                                                                                                 В заключение провожу два-три упражнения на распознавание и обозначение словами фигур («Что я держу в правой руке, а что в левой?»; «Дай мишке круг, а петрушке квадрат»; «На верхнюю полоску положите один квадрат, а на нижнюю много кругов» и т. п.).                                                                                                                                                       На последующих занятиях организуется система упражнений с целью закрепления у детей умений различать и правильно называть геометрические фигуры: а) упражнения на выбор по образцу: «Дай (принеси, покажи, положи) такую же». Применение образца может быть вариативным: акцентируется только форма фигуры, не обращается внимание на ее цвет и размер; рассматриваются фигуры определенного цвета, определенного размера и фигура определенного цвета и размера; б) упражнения на выбор по словам: «Дай (принеси, покажи, положи, собери) круги» и т. п.; з вариантах упражнений могут содержаться указания на выбор фигуры определенного цвета и размера; в) упражнения в форме дидактических и подвижных игр: «Что это?», «Чудесный мешочек», «Чего не стало?», «Найди свой домик» и др.

У детей пятого года жизни нужно прежде всего закрепить умение различать и правильно называть круг и квадрат, а затем и треугольник. С этой целью я провожу игровые упражнения, в которых дети группируют фигуры разного цвета и размера. Меняется цвет, размер, а признаки формы остаются неизменными. Это способствует формированию обобщенных знаний о фигурах.                                                                                                        Чтобы уточнить представления детей о том, что геометрические фигуры бывают разного размера, им показываю (на таблице, фланелеграфе или наборном полотне) известные геометрические фигуры. К каждой из них дети подбирают аналогичную фигуру как большего, так и меньшего размера. Сравнив величину фигур (визуально или приемом наложения), дети устанавливают, что фигуры одинаковы по форме, но различны по размеру. В следующем упражнении дети раскладывают по три фигуры разного размера в возрастающем или убывающем порядке. Затем можно предложить детям рассмотреть фигуры, лежащие в индивидуальных конвертах, разложить одинаковой формы рядами и предложить рассказать, у кого каких сколько.                                                                            На следующем занятии дети получают уже неодинаковые наборы фигур. Они, разбирая свои комплекты, сообщают, у кого какие фигуры и сколько их. При этом целесообразно упражнять детей и в сравнении количества фигур: «Каких фигур у тебя больше, а каких меньше? Поровну ли у вас квадратов и треугольников?» и т. п. В зависимости от того, как скомплектованы геометрические фигуры в индивидуальных конвертах, между их количеством может быть установлено равенство или неравенство.                                  Выполняя это задание, ребенок сравнивает количество фигур, устанавливая между ними взаимно однозначное соответствие. Приемы при этом могут быть разные: фигуры в каждой группе располагаются рядами, точно одна под другой, или располагаются парами, или накладываются друг на друга. Так или иначе устанавливается соответствие между элементами фигур двух групп и на этой основе определяется их равенство или неравенство.                                                                                                                             Подобным же образом организуются упражнения на группировку и сравнение фигур по цвету, а затем по цвету и размеру одновременно. Таким образом, постоянно меняя наглядный материал, получаем возможность упражнять детей в выделении существенных и несущественных для данного объекта признаков. Аналогичные занятия можно повторить по мере того, как дети будут узнавать новые фигуры.                                                                        С новыми геометрическими фигурами детей знакомят путем сравнения с уже известными: прямоугольник с квадратом, шар с кругом, а затем с кубом, куб с квадратом, а затем с шаром, цилиндр с прямоугольником и кругом, а затем с шаром и кубом. Рассматривание и сравнение фигур проводят в определенной последовательности:

а)        взаимное наложение или приложение фигур; этот прием позволяет четче воспринять особенности фигур, сходство и различие, выделить их элементы;

б)        организация обследования фигур осязательно-двигательным путем и выделение некоторых элементов и признаков фигуры; эффект обследования фигуры в значительной мере зависит от того, направляет ли воспитатель своим словом наблюдения детей, указывает ли, на что следует смотреть, что узнать (направление линий, их связь, пропорции отдельных частей, наличие углов, вершин, их количество, цвет, размер фигуры одной и той же формы и др.); дети должны научиться словесно описывать ту или иную фигуру.

в)        организация разнообразных действий с фигурами (катать, класть, ставить в разные положения); действуя с моделями, дети выявляют их устойчивость или неустойчивость, характерные свойства. Например, дети пробуют по-разному ставить шар и цилиндр и обнаруживают, что цилиндр может стоять, может лежать, может и катиться, а шар «всегда катится». Таким образом обнаруживают характерные свойства геометрических тел и фигур;

г)        организация упражнений по группировке фигур в порядке увеличения и уменьшения размера («Подбери по форме», «Подбери по цвету», «Разложи по порядку» и др.);

д)        организация дидактических игр и игровых упражнений для закрепления умений детей различать и называть фигуры («Чего не стало?», «Что изменилось?», «Чудесный мешочек», «Домино форм», «Магазин», «Найди пару» и др.).

Как уже отмечалось, основной задачей обучения детей 5—6 лет является формирование системы знаний о геометрических фигурах. Первоначальным звеном этой системы являются представления о некоторых признаках геометрических фигур, умение обобщать их на основе общих признаков. Детям даются известные им фигуры и предлагается руками обследовать границы квадрата и круга, прямоугольника и овала и подумать, чем эти фигуры отличаются друг от друга и что в них одинаковое. Они устанавливают, что у квадрата и прямоугольника есть «уголки», а у круга и овала их нет. Я, обводя фигуру пальцем, объясняю и показываю на прямоугольнике и квадрате углы, вершины, стороны фигуры. Вершина — это та точка, в которой соединяются стороны фигуры. Стороны и вершины образуют границу фигуры, а граница вместе с ее внутренней областью — саму фигуру. На разных фигурах дети показывают ее внутреннюю область и ее границу — стороны, вершины и углы как часть внутренней области фигуры. Можно предложить детям заштриховать красным карандашом внутреннюю область фигуры, а синим карандашом обвести ее границу, стороны. Дети не только показывают отдельные элементы фигуры, но и считают вершины, стороны, углы у разных фигур. Сравнивая квадрат с кругом, они выясняют, что у круга нет вершин и углов, есть лишь граница круга — окружность.                                                                                                   В дальнейшем дети приучаются различать внутреннюю область любой фигуры и ее границу, считать число сторон, вершин, углов. Обследуя треугольник, они приходят к выводу, что у него три вершины, три угла и три стороны. Очень часто дети сами говорят, почему эта фигура в отличие от прямоугольника и квадрата называется треугольником.                        Чтобы убедить детей, что выделенные ими признаки являются характерными свойствами проанализированных фигур, я предлагаю те же фигуры, но больших размеров. Обследуя их, дети подсчитывают вершины, углы и стороны у квадратов, прямоугольников, трапеций, ромбов и приходят к общему выводу, что все эти фигуры независимо от размера имеют по четыре вершины, четыре угла и четыре стороны, а у всех треугольников ровно три вершины, три угла и три стороны.

В подобных занятиях важно ставить самих детей в положение ищущих ответа, а не ограничиваться сообщением готовых знаний.                                                                                   Угол (плоский) — геометрическая фигура, образованная двумя лучами (сторонами), выходящими из одной точки (вершины). Необходимо приучать ребят делать свои заключения, уточнять и обобщать их ответы.                                                                               Такая подача знаний ставит детей перед вопросами, на которые им, может быть, не всегда легко найти нужный ответ, но вопросы заставляют ребят думать и более внимательно слушать воспитателя. Итак, не следует спешить давать детям готовые задания: надо прежде всего возбудить интерес к ним, обеспечить возможность действия. Задача воспитателя — педагогически правильно показывать пути и приемы нахождения ответа.                         Программой воспитания и обучения в детском саду предусматривается познакомить старших дошкольников с четырехугольниками. Для этого детям показывают множество фигур с четырьмя углами и предлагают самостоятельно придумать название данной группе. Предложения детей «четырехсторонние», «четырехугольные» нужно одобрить и уточнить, что эти фигуры называются четырехугольниками. Такой путь знакомства детей с четырехугольником способствует формированию обобщения. Группировка фигур по признаку количества углов, вершин, сторон абстрагирует мысль детей от других, несущественных признаков. Дети подводятся к выводу, что одно понятие включается в другое, более общее. Такой путь усвоения наиболее целесообразен для умственного развития дошкольников.

В дальнейшем закрепление представлений детей о четырехугольниках может идти путем организации упражнений по классификации фигур разного размера и цвета, зарисовке четырехугольников разного вида на бумаге, разлинованной в клетку, и др.

Можно использовать следующие варианты упражнений на группировку четырехугольников:

  • отобрать все красные четырехугольники, назвать фигуры данной группы;
  • отобрать четырехугольники с равными сторонами, назвать их;
  • отобрать все большие четырехугольники, назвать их форму, цвет;
  • слева от карточки положить все четырехугольники, а справа не четырехугольники; назвать их форму, цвет, величину.

Полезно применять и такой прием: детям раздаются карточки с контурным изображением фигур разного размера, и формулируется задание подобрать соответствующие фигуры по форме и размеру и наложить их на контурное изображение. Равными фигурами будут те, у которых все точки совпадут по контуру.

Важной задачей является обучение детей сравнению формы предметов с геометрическими фигурами как эталонами предметной формы. У ребенка необходимо развивать умение видеть, какой геометрической фигуры или какому их сочетанию соответствует форма того или иного предмета. Это способствует более полному, целенаправленному распознаванию предметов окружающего мира и воспроизведению их в рисунке, лепке, аппликации. Хорошо усвоив геометрические фигуры, ребенок всегда успешно справляется с обследованием предметов, выделяя в каждом из них общую, основную форму и форму деталей.

Работа по сопоставлению формы предметов с геометрическими эталонами проходит в два этапа. На первом этапе нужно научить детей на основе непосредственного сопоставления предметов с геометрической фигурой давать словесное определение формы предметов.

Таким, образом удается отделить модели геометрических фигур от реальных предметов и придать им значение образцов. Для игр и упражнений подбираются предметы с четко выраженной основной формой без каких-либо деталей (блюдце, обруч, тарелка — круглые; платок, лист бумаги, коробка — квадратные и т. п.). На последующих занятиях могут быть использованы картинки, изображающие предметы определенной формы. Занятия следует проводить в форме дидактических игр или игровых упражнений: «Подбери по форме», «На что похоже?», «Найди предмет такой же формы», «Магазин» и т. п. Далее выбирают предметы указанной формы (из 4—5 штук), группируют их и обобщают по единому признаку формы (все круглые, все квадратные и т. д.). Постепенно детей учу более точному различению: круглые и шаровидные, похожие на квадрат и куб и т. п. Позднее им предлагаю найти предметы указанной формы в групповой комнате. При этом дается лишь название формы предметов: «Посмотрите, есть ли на полке предметы, похожие на круг» и т. п. Хорошо провести игры «Путешествие по групповой комнате», «Найди, где спрятано».                      При сопоставлении предметов с геометрическими фигурами нужно использовать приемы осязательно-двигательного обследования предметов. Можно проверить знания детьми особенностей геометрических фигур, задать с этой целью такие вопросы: «Почему вы думаете, что тарелка круглая, а платок квадратный?», «Почему вы положили эти предметы на полку, где стоит цилиндр?» (игра «Магазин») и т. п. Дети описывают форму предметов, выделяя основные признаки геометрической фигуры. В этих упражнениях можно подвести детей к логической операции — классификации предметов.

На втором этапе детей учу определять не только основную форму предметов, но и форму деталей (домик, машина, снеговик, петрушка и т. д.). Игровые упражнения провожу с целью обучения детей зрительно расчленять предметы на части определенной формы и воссоздавать предмет из частей. Такие упражнения с разрезными картинками, кубиками, мозаикой лучше проводить вне занятия.                                                                               Упражнения на распознавание геометрических фигур, а также на определение формы разных предметов можно проводить вне занятий как небольшими группами, так и индивидуально, используя игры «Домино», «Геометрическое лото» и др.                    Следующая задача — научить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников — прямоугольник. Затем из двух трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).                                     Эти задания целесообразно связывать с упражнениями по делению фигур на части. Например, детям даются большие круг, квадрат, прямоугольник, которые делятся на две и четыре части. Все фигуры с одной стороны окрашены в одинаковый цвет, а с другой — каждая фигура имеет свой цвет. Такой набор дается каждому ребенку. Вначале дети смешивают части всех трех фигур, каждая из которых разделена пополам, сортируют их по цвету и в соответствии с образцом составляют целое. Далее вновь смешивают части и дополняют их элементами тех же фигур, разделенных на четыре части, снова сортируют и снова составляют целые фигуры. Затем все фигуры и их части поворачивают другой стороной, имеющей одинаковый цвет, и из смешанного множества разных частей выбирают те, что нужны для составления круга, квадрата, прямоугольника. Последняя задача является более сложной для детей, так как все части одноцветны и приходится делать выбор только по форме и размеру.                                                                               Можно и дальше усложнять задание, разделив по-разному на две и четыре части квадрат и прямоугольник, например, квадрат — на два прямоугольника и два треугольника или на четыре прямоугольника и четыре треугольника (по диагонали), а прямоугольник — на два прямоугольника и два треугольника или на четыре прямоугольника, а из них два маленьких прямоугольника — на четыре треугольника. Количество частей увеличивается, и это усложняет задание.                                                                                                             Очень важно упражнять детей в комбинировании геометрических фигур, в составлении разных композиций из одних и тех же фигур. Это приучает их всматриваться в форму различных частей любого предмета, читать технический рисунок при конструировании. Из геометрических фигур могут составляться изображения предметов.

Вариантами конструктивных заданий будет построение фигур из палочек и преобразование одной фигуры в другую путем удаления нескольких палочек:

  1. сложить два квадрата из семи палочек;
  2. сложить три треугольника из семи палочек;
  3. сложить прямоугольник из шести палочек;
  4. из пяти палочек сложить два разных треугольника;
  5. из девяти палочек составить четыре равных треугольника;
  6. из десяти палочек составить три равных квадрата;
  7. можно ли из одной палочки на столе построить треугольник?
  8. можно ли из двух палочек построить на столе квадрат?

Эти упражнения способствуют развитию сообразительности, памяти, мышления детей. Наиболее сложные задания могут быть использованы в работе с детьми подготовительной группы.

Знания о геометрических фигурах в подготовительной группе расширяются, углубляются и систематизируются. Одна из задач подготовительной к школе группы — познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению: все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников. Детям показывают модель круга и новую фигуру — пятиугольник (рис. 37). Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Затем демонстрируется плакат, на котором изображены различные многоугольники. У отдельных фигур определяются характерные для них признаки. У всех фигур много сторон, вершин, углов. Как можно назвать все эти фигуры одним словом? И если дети не догадываются, воспитатель помогает им. Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур: обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.

Упражнения детей с геометрическими фигурами состоят в опознавании их по цвету, размерам в разном пространственном положении. Дети считают вершины, углы и стороны, упорядочивают фигуры по их размерам, группируют по форме, цвету и размеру. Они должны не только различать, но и изображать эти фигуры, зная их свойства и особенности. Например, я предлагает детям нарисовать на бумаге в клетку два квадрата: у одного квадрата длина сторон должна быть равна четырем клеткам, а у другого — на две клетки больше. После зарисовки этих фигур детям предлагается разделить квадраты пополам, причем в одном квадрате соединить отрезком две противолежащие стороны, а в другом квадрате соединить две противолежащие вершины; рассказать, на сколько частей разделили квадрат и какие фигуры получились, назвать каждую из них. В таком задании одновременно сочетаются счет и измерение условными мерками (длиной стороны клеточки), воспроизводятся фигуры разных размеров на основе знания их свойств, опознаются и называются фигуры после деления квадрата на части (целое и части).

Заключение

По моему мнению, элементарные знания о геометрических фигурах, определённые современными требованиями, в основном усваиваются детьми, но необходимо углубление и дифференциация индивидуальной работы с каждым ребенком. Обновление и качественное улучшение системы знаний о геометрических фигурах позволяет искать наиболее интересные формы, что способствует развитию элементарных представлений о геометрических фигурах. Также я считаю, что дидактические игры дают большой заряд положительных эмоций, помогают детям закрепить и расширить знания о геометрических фигурах. Познание свойств детьми происходит наиболее успешно в активных действиях по сравнению, группировке, видоизменению и воссозданию геометрических фигур, силуэтов, предметов разной формы, что способствует развитию элементарных представлений о геометрических фигурах. Я считаю, что уместны игры типа « Цвет и форма», « Форма и размер» и другие, в которые непосредственно включены разнообразные обследовательские действия. Использование набора логических геометрических фигур даёт возможность приобщить детей к выполнению простых игровых действий на классификацию по совместным свойствам, причём как по наличию, так и по отсутствию свойства .Игры и упражнения с цветными счетными палочками наиболее успешно способствуют познанию и числовых отношений. Мне кажется, что практическая деятельность взрослых совместно с детьми, сопровождаемая познавательными разговорами успешно способствует освоению элементарных математических отношений. Игры на освоение счёта очень разнообразны: подвижные, конструктивные, настольно-печатные и другие. Для освоения сравнения, обобщения групп предметов по числу следует специально, с учётом уровня развития детей, подбирать игры и варьировать их.

Я считаю, что для закрепления представлений детей о сохранении количества, его независимости от формы расположения, хорошо использовать игру "Точечки". Дети любят общаться, их радует одобрение старших, это поощряет их к освоению новых действий. Разработав серию занятий, я пришла к выводу о том, что для эффективного повышения уровня математических знаний, а также знаний о геометрических фигурах и форме предметов необходимо использовать методику, в которой рассматриваются различные виды детской деятельности преимущественно игрового характера. А также считаю, что целенаправленное развитие элементарных математических представлений и представления о геометрических фигурах и форме предметов должно осуществляться на протяжении всего дошкольного периода.


По теме: методические разработки, презентации и конспекты

формирование элементарных математических представлений через сказку

формирование элементарных математических представлений через сказку...

«Формирование элементарных математических представлений через сказку в соответствии с ФГОС ДО» Выступление на РМО

     Сказка учит жить, а иначе, зачем же наши предки тратили драгоценное время на них. Сказка может в увлекательной форме и доступными для понимания словами показать окружающую ж...

Доклад «Формирование элементарных математических представлений через сказку»

Сказки - наиболее любимый детьми литературный жанр. Язык сказки прост и поэтому доступен. Сюжет прозрачен, но загадочен. Стоит только начать: «В некотором царстве, в некотором государстве»...

"Формирование элементарных математических представлений через сказку". Воспитатели МБДОУ "Детский сад №14" Юдина Алевтина Геннадьевна , Бушмакина Елена Николаевна

Свою работу начали с пополнения предметно-развивающей среды.В группе были созданы соответствующие условия дляформирования элементарных математических представленийчерез сказку.Имеющийся материал распо...

Проект «Формирование элементарных математических представлений через сказку»

Детско-родительский образовательный проект  «Формирование элементарных математических  представлений через сказку»...

Проект на тему: «Формирование элементарных математических представлений через сказку «Маша и медведь»»

laquo;Формирование элементарных математических представлений через сказку «Маша и медведь»»...