Методика математического развития.
методическая разработка по математике на тему

Мевлютова Суварат Гамидовна

Методика математического развития Разные науки используют понятие метода в связи со своей спецификой. Так, философская наука трактует метод в самом общем значении как способ достижения цели, определённым образом упорядоченная деятельность. Метод есть способ воспроизведения, средство познания изучаемого предмета. По мнению учёных, сознательное применение научно обоснованных методов является существенным условием получения новых знаний. В основе методов лежат объективные законы действительности. Метод неразрывно связан с теорией. В педагогике метод характеризуется как целенаправленная система действий воспитателя и детей, соответствующих целям обучения, содержанию учебного материала, самой сущности предмета, уровню умственного развития ребёнка в теории и методике математического развития детей термин «метод» употребляется в двух смыслах - широком и узком. Метод может обозначать исторически сложившийся подход к предматематической подготовке в детском саду (монографический метод, вычислительный метод), а также способы и приёмы работы воспитателя с детьми, В педагогических системах И.Г. Песталоцци, Ф. Фребеля, М. Монтессори и др. обосновывается необходимость математического развития детей, а в связи с этим выдвигаются идеи о совершенствовании методов их обучения. Основоположником теории начального обучения считают И.Г. Песталоцци, резко критиковавшего существовавшие тогда догматические методы обучения. Он предлагал обучать детей счёту на основе понимания действий с числами, а не простого запоминания результатов вычислений. Суть разрабатываемой И.Г.Песталоцци методики заключалась в переходе от простых элементов счёта к более сложным. Особое значение придавалось наглядным методам, облегчающим усвоение детьми чисел. Ф. Фребель и М. Монтессори большое внимание уделяли наглядным и практическим методам. Разработанные специально пособия («дары» Ф.Фребеля и дидактические наборы М. Монтессори) обеспечивали усвоение достаточно осознанных знаний у детей. В методике Ф. Фребеля в качестве основного метода использовалась игра, в которой ребёнок получал достаточную свободу. По мнению Ф. Фребеля и М. Монтессори, свобода ребёнка должна быть активной и опираться на самостоятельность. Роль педагога в таком случае сводилась к созданию благоприятных условий. В настоящее время в педагогике имеет место несколько различных классификаций дидактических методов. Одной из первых была классификация, в которой доминировали словесные методы. Я.А.Коменский, наряду со словесными, стал распространять другой метод, основанный на приобретении информации не со слов, а «с земли, с дубов и с буков», т.е. через познание самих предметов. Главной в этой методике была опора на практическую деятельность детей. В начале ХХ в. классификация методов в основном осуществлялась по источнику получения знаний - это были словесные, наглядные, практические методы. Однако исследователи понимали, что классификацию методов обучения нельзя проводить по одному измерению, а следует осуществлять в соответствии с целями, средствами и приёмами (М.М. Шульман). Н. М. Верзилиным было предложено при классификации методов сочетать источниковый и логический подходы. Выделяя такие группы методов, авторы стремились подчеркнуть различные их проявления. К группе методов, основанных на слове, были отнесены беседа, рассказ, описание, дискуссия, а также работа с книгой. При этом большим недостатком было то, что слово строго отделялось от образа, т. е. наблюдался отрыв рационального познания от чувственного. М.А. Данилов предложил классификацию методов обучения по месту их применения в процессе обучения, характеру логического пути усвоения знаний, источнику их приобретения, степени активности обучающихся в усвоении знаний. Исходя из сущности самого понятия «метод обучения», Ю.К. Бабанский предложил свою классификацию. Методы обучения рассматриваются им как способы всех основных видов деятельности и как средство формирования этих видов деятельности. Автор выделил три группы методов: стимулирования и мотивации; организации и осуществления; контроля и самоконтроля эффективности учебно-познавательной деятельности. Кроме того, Ю.К. Бабанский выделяет методы, которые относятся к так называемым отдельным: игры, учебные дискуссии, методы поощрения и др. В педагогике существует концепция, которая базируется на использовании одного метода (монометода). К такой концепции относятся теория поэтапного формирования умственной деятельности (П.Я. Гальперин, Н.Ф. Талызина). Процесс формирования деятельности рассматривается авторами как процесс передачи социального опыта. Это происходит не исключительно путём взаимодействия учителя с учащимися, а скорее через интериоризацию соответствующей деятельности, формирование её сначала во внешней материальной форме, а затем преобразование во внутреннюю психическую деятельность. Однако форсирование какого-либо одного метода обучения не получило должного подтверждения на практике. Наиболее рациональным, как показывает опыт, является сочетание разнообразных методов. При выборе методов учитываются: цели, задачи обучения; содержание формируемых знаний на данном этапе; возрастные и индивидуальные особенности детей; наличие необходимых дидактических средств; личное отношение воспитателя к тем или иным методам; конкретные условия, в которых протекает процесс обучения и др. Теория и практика обучения накопила определённый опыт использования разных методов обучения в работе с детьми дошкольного возраста. При этом классификация методов используется с опорой на средства обучения. В период становления общественного дошкольного воспитания на развитие методики формирования элементарных математических представлений оказали влияние методы обучения математике в начальной школе. В практику работы детских садов проникли монографический метод А.В. Грубе и вычислительный метод (метод изучения действий). Работая с дошкольниками, Е.И. Тихеева внесла много нового в разработку методов обучения детей. Составленные ею игры-занятия сочетали в себе слово, действие и наглядность. По её мнению, дети до 7 лет должны учиться считать в процессе игры и повседневной жизни. Игру как метод обучения Е.И. Тихеева предлагала вводить по мере того, как то или другое числовое представление уже «извлечено детьми из самой жизни». В 30-е гг. идею использования игр в обучении дошкольников счёту обосновывала Ф.Н. Блехер. Существенный вклад в разработку дидактических игр и включения их в систему обучения дошкольников началам математики внесли Т.В. Васильева, Т.А. Мусейибова, А.И. Сорокина, Л.И. Сысуева, Е.И. Удальцова и др. Начиная с 50-х гг. в обучении детей всё чаще используют практические методы (А.М. Леушина). Она рассматривала практические методы в системе других (словесных и наглядных)методов. Именно с практических действий с предметными множествами начинается знакомство детей с элементарной математикой. Это было доказано в исследованиях как А.М. Леушиной, так и её учеников. Игра - как метод математического развития При формировании элементарных математических представлений игра выступает, как метод обучения и может быть отнесена к практическим методам. Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облечённой в игровую форму (игровой замысел), игровым действиям и правилам ребёнок непреднамеренно усваивает определённую «порцию» познавательного содержания. Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую. Все дидактические игры по формированию элементарных математических представлений разделены на несколько групп: 1. Игры с цифрами и числами 2. Игры путешествие во времени 3. Игры на ориентировки в пространстве 4. Игры с геометрическими фигурами 5. Игры на логическое мышление Знания в виде способов действий и соответствующих им представлений ребёнок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает что в принципе такое невозможно. В настоящее время разработана система так называемых обучающих игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщёнными представлениями, формируют логические структуры мышления. Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элементарных математических представлений. При подборе дидактических игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источникам, использует народные и авторские игры, с предметами и без них. Дидактические игры могут применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной познавательной деятельности детей. Игра как метод обучения и формирования элементарных математических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребёнка. Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен. Наглядные и словесные методы Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей. К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. 1. Демонстрация воспитателем способа действия в сочетании с объяснением. Это основной приём обучения, он носит наглядно-действенный характер, выполняется с помощью разнообразных дидактических средств, даёт возможность формировать навыки и умения у детей. 2. Инструкция по выполнению самостоятельных заданий (упражнений). Приём связан с показом воспитателем способов действия и вытекает из него. Инструкция сообщает, что, как и в какой последовательность надо делать, чтобы получился необходимый результат. В старших группах инструкция носит целостный характер, даётся полностью до выполнения задания, в младших - сочетается с ходом его выполнения, предваряя каждое новое действие. 3. Пояснения, разъяснения, указания. Эти словесные приёмы используются воспитателем при демонстрации способов действия или в ходе выполнения детьми задания, чтобы предупредить ошибки, преодолеть затруднения и т. д. Они должны быть краткими, конкретными, живыми и образными. 4. Вопросы к детям. Это одно из основных приёмов формирования элементарных математических представлений у детей во всех возрастных группах Вопросы активизируют восприятие, память, мышление, речь детей. При формировании элементарных математических представлений обычно используется серия вопросов, начиная от боле простых, направленных на описание конкретных признаков, свойств предметов, результатов практических действий, т. е. констатирующих факты, до более сложных, требующих установления связей, отношений, зависимостей, их обоснования и объяснения, использования простейших доказательств. Чаще всего такие вопросы задаются после демонстрации образца воспитателем или выполнения задания ребёнком. Разные по характеру вопросы вызывают различный тип познавательной деятельности: от репродуктивной, воспроизводящей изученный материал, до продуктивной, направленной на решение проблемных задач. Некоторые основные требования к вопросам воспитателя как методическому приёму: точность, конкретность и лаконизм; логическая последовательность; разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному; оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала; вопросы должны будить мысль ребёнка, развивать его мышление, заставлять задумываться, анализировать, сравнивать, сопоставлять, обобщать; количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель; следует избегать подсказывающих и альтернативных вопросов. Вопросы следует рассматривать как эффективное средство активизации познавательной деятельности детей. Они предлагаются обычно всей группе, а ответ даёт один ребёнок. В отдельных случаях возможны и групповые ответы, что характерно для младших дошкольников. Старших дошкольников необходимо учит формулировать вопросы самостоятельно. Педагог учит правильно формулировать вопросы по результатам непосредственного сравнения отдельных предметов, групп предметов и т. д., при этом дети успешнее овладевают умением задавать вопросы в тех случаях, когда они адресуются конкретному лицу - воспитателю, товарищу, родителям. Существуют также методические требования к ответам детей. Ответы должны быть: кратким или полным в зависимости от характера вопроса; самостоятельными и осознанными; точными, ясными, достаточно громкими; грамматически правильными В работе с дошкольниками воспитателю часто приходиться прибегать к приёму переформулировки ответов, придавая им правильную форму. Система вопросов и ответов детей в педагогике называется беседой. 5. Словесные отчёты детей. Этот методический приём складывается из вопроса воспитателя, требующего после выполнения детьми рассказать, что и как они делали и что получилось в итоге, и собственно детских ответов на вопрос. Слово помогает вычленить действие, осмыслить результат. На первых порах педагог помогает детям, даёт образец отчёта, постепенно они самостоятельно рассказывают о своих действиях, оперируя математическими представлениями. 6. Контроль и оценка. Эти приёмы выступают в тесной взаимосвязи друг с другом. Контроль осуществляется при наблюдении за процессом выполнения детьми заданий, результатами их действий, ответами. Он сочетается с указаниями, пояснениями, разъяснениями, демонстрацией способов действий взрослым в качестве образца, непосредственной помощью, включает исправление ошибок. Исправление ошибок педагог осуществляет в ходе индивидуальной и коллективной работы с детьми. Исправлению подлежат практически-действенные и словесно-речевые ошибки. Воспитатель должен разъяснить причины ошибок, обращать внимание на образец своей речи или в качестве примера использовать лучшие действия и ответы других ребят. Постепенно педагог начинает сочетать контроль с само- и взаимоконтролем. Зная типичные ошибки, которые допускают дети при счёте, измерении, простейших вычислениях и т. д., воспитатель предупреждает их появление. Оценке подлежат способы и результаты действий, поведение ребят. Оценка взрослого, приучающего ориентироваться по образцу, сочетается с оценкой товарищей и самооценкой. Этот приём используется по ходу и в конце выполняемых упражнений, проводимых игр, занятий. Использование контроля и оценки имеет свою специфику в зависимости от возраста детей и степени овладения ими знаниями и способами действий. Контроль с процесса действий постепенно переносится на результат, оценка становится более дифференцированной и содержательной. Эти приёмы, кроме обучающей, выполняют и воспитательную функцию: воспитывают доброжелательное отношение к товарищу, желание и умение ему помочь, активность и т. д. 7. В ходе формирования элементарных математических представлений такие компоненты, как сравнение, анализ, синтез, обобщение, выступают не только как познавательные процессы, или операции, но как методические приёмы, определяющие тот путь, по которому движется мысль ребёнка при обучении, познании нового. В основе сравнения лежит установление сходства и различий между объектами. Дети сравнивают предметы по количеству, форме, величине, пространственному расположению, интервалы времени - по длительности и т. д. Вначале их учат сравнивать минимальное количество предметов, затем число таких предметов постепенно увеличивают одновременно с уменьшением степени контрастности сравниваемых признаков. Методический приём сравнения, к которому педагог часто прибегает в процессе формирования элементарных математических представлений у детей, связан с анализом и синтезом. Анализ- выделение свойств объекта, выделение объекта из группы или выделение группы объектов по определенному признаку, синтез - соединение различных элементов в единое целое. В психологии анализ и синтез рассматриваются как взаимодополняющие друг друга процессы (анализ осуществляется через синтез, а синтез - через анализ).[1, 286] Эти компоненты являются составной частью развития у детей задатков дедуктивного и индуктивного способов мышления. Примером использования анализа и синтеза как методических приёмов может служить формирование у детей представлений о понятиях «много» и «один», которые возникают под влиянием наблюдения и практических действий с предметами. Так, например, распределив среди малышей столько одинаковых игрушек, сколько детей, а затем, собрав игрушки вместе, педагог показывает ребятам, что группа предметов, т. е. «много», состоит из отдельных предметов, из отдельных предметов воссоздаётся вся группа. На основе анализа и синтеза детей подводят к обобщениям, в которых обычно суммируются результаты наблюдений и действий. Этот приём направлен на осознание количественных, пространственных и временных отношений, выделение главного и существенного. Обобщение проводится обычно в конце каждой части занятия, а также и в конце всего занятия с ведущей ролью воспитателя. Сравнение, анализ, синтез, обобщение осуществляется на наглядной основе с привлечением разнообразных дидактических средств. Наблюдение, практические действия с предметами, отражение их результатов в речи, вопросы к детям являются внешним выражением этих методических приёмов, которые тесно между собой связаны и используются комплексно. 8. В методике обучения приёмами называют также некоторые специальные практические или умственные действия, на основе которых у детей формируются элементарные математические представления. К таким приёмам традиционно относят: наложение и приложение предметов; обследование формы предмета; «взвешивание» предмета «на руках»; использование фишек-эквивалентов; присчитывание и отсчитывание по единице и т. д. По сравнению с другими данные приёмы имеют узкоспециальное назначение, применяются для решения строго определённых дидактических задач. Реализация каждого программного требования осуществляется с помощью таких приёмов, количество которых должно быть достаточно для достижения дидактической цели, а область применения ограничена. 9. Моделирование - наглядно-практический приём, включающий создание моделей и их использование для формирования элементарных математических представлений. Дидактические игры Дидактическая игра «Подбери фигуру» Цель: закрепить умение различать геометрические фигуры: прямоугольник, треугольник, квадрат, круг, овал. Материал: у каждого ребенка карточки, на которых нарисованы прямоугольник, квадрат и треугольник, цвет и форма варьируются. Содержание. Сначала воспитатель предлагает обвести пальчиком фигуры, нарисованные на карточках. Потом он предъявляет таблицу, на которой нарисованы эти же фигуры, но другого цвета и размера, чем у детей, и, указывая на одну из фигур, говорит: «У меня большой желтый треугольник, а у вас?» И т. д. Вызывает 2-3 детей, просит их назвать цвет и размер (большой, маленький своей фигуры данного вида). «У меня маленький синий квадрат». Дидактическая игра «Назови свой автобус» Цель: упражнять в различении круга, квадрата, прямоугольника, треугольника, находить одинаковые по форме фигуры, отличающиеся цветом и размером. Содержание. Воспитатель ставит на некотором расстоянии друг от друга 4 стула, к которым прикреплены модели треугольника, прямоугольника и т. д. (марки автобусов). Дети садятся в автобусы (становится в 3 колонны за стульями Педагог-кондуктор раздает им билеты. На каждом билете такая же фигура как на автобусе. На сигнал «Остановка!» дети идут гулять, а педагог меняет модели местами. На сигнал «В автобус» дети находят сбои автобус и становятся друг за другом. Игру повторяют 2-3 раза.

По теме: методические разработки, презентации и конспекты

ПОРТФОЛИО По методике математического развития По теме: «Формирование количественных представлений у детей дошкольного возраста с ОНР 3-го уровня»

Представляю вам портфолио ПО МЕТОДИКЕ МАТЕМАТИЧЕСКОГО  РАЗВИТИЯ »ПО РАЗДЕЛУ «КОЛИЧЕСТВО И СЧЕТ»   (дети с ОНР III уровня).    Содержание1. Портфолио теоретического м...

Презентация к портфолио по методике математического развития ПО РАЗДЕЛУ «КОЛИЧЕСТВО И СЧЕТ» (дети с ОНР III уровня)

Презентация —Портфолио теоретического материала——Портфолио дидактических игр —Портфолио индивидуальной работы——Портфолио планирования занятий——Портфолио наглядного материала...

Конспект по методике математического развития для детей старшей группы ДОУ

     Закреплять представление о порядковом значении чисел первого десятка и составе числа из единиц в пределах 5.Совершенствовать умение ориентироваться в окружающем прост¬...

Презентация Теория и методика математического развития

Разработанная А. М. Леушиной концепция является основой для формирования количественных представлений у детей на различных возрастных этапах дошкольного детства. Согласно разработанной Анной Мих...

"ТЕОРИЯ И МЕТОДИКА МАТЕМАТИЧЕСКОГО РАЗВИТИЯ"

Развитие интеллектуально-творческих способностей детей через освоение ими логико-математических представлений и способов познания....

Теория и методика математического развития у детей дошкольного возраста «Путешествие в математическое царство»

1.  Цель занятия –  формирование навыков выполнения счетных операций у детей старшего дошкольного возраста. 2.    Задачи:1. Закрепление счета от 0 до 10 и от ...