ДЕКАБРЬ 2016.Г. Оформление записей в тетрадях по математике
статья (1 класс) на тему
Порядок оформления записей в тетрадях по математике в начальной школе
Скачать:
Вложение | Размер |
---|---|
obr_of_matem.docx | 681.77 КБ |
Предварительный просмотр:
Образцы оформления заданий на уроках математики
В ходе работы на уроках математики возникают частные вопросы оформления отдельных заданий: решения задач, нахождения значения числовых выражений, уравнений, неравенств, выполнения геометрических заданий.
Рассмотрим примерные рекомендации по оформлению отдельных заданий младшими школьниками в тетрадях по математике.
Во-первых, необходимо научить младших школьников легко определять количество строк, которые следует пропускать.
Между работами — 4 клетки, внутри работы между заданиями — 2 клетки, внутри заданий между действиями — 1 клетку (образец 1).
Требования к написанию цифр как в однозначных числах, так и в многозначных предъявляются единые. Каждая цифра пишется с наклоном в отдельной клетке, прислоняясь к её правой стороне. Особенно это требование актуально при выполнении действий с многозначными числами. Образцы написания цифр представлены в учебном наглядном пособии «Демонстрационный набор письменных цифр и математических знаков».
Во II классе учащимся удобнее все буквы в тетрадях по математике писать высотой в целую клетку (аналогично письму на уроках языка). В III и IV классах высота букв при повышении скорости письма может уменьшаться до 2/3 высоты клетки.
После даты, слов Домашняя работа, Классная работа. Задача точка не ставится. Слова Примеры, Уравнения, Неравенств, Математический диктант, Контрольный устный счёт в начальных классах не пишутся.
Как ученику II класса (именно в этом возрасте они начинают записывать дату выполнения работы) научиться определять место начала записи Даты? Например, можно договориться отсчитывать от начала страницы (или от полей) 10 полных клеток, а в 11-й начинать запись даты, тогда будет достигнуто единство оформления письменных записей и ученику легко будет расположить дату посередине страницы.
Оформление математических диктантов может быть выполнено разными способами. Учащиеся I класса пишут под диктовку числа, учатся писать математические диктанты, записывая результаты в строку через запятую. Начиная со II класса результаты диктанта можно оформлять в строку или в столбики. Учащиеся должны быть научены фиксировать ответы по-разному. Перед математическим диктантом учитель оговаривает с учащимися способ записи ответов. При записи результатов математического диктанта в строку учащиеся пишут каждый последующий результат через запятую. В случае отсутствия ответа
на месте его ученик ставит прочерк. В противном случае проверка результатов выполненного диктанта вызовет затруднения, как у учителя, так и учащихся (при самопроверке и при взаимопроверке). (Образец 2.)
Запись результатов математического диктанта может быть выполнена в столбики. Для этого перед началом диктанта учитель сообщает классу количество заданий предстоящего диктанта (10 или 12). Учащиеся до диктанта записывают половину порядковых номеров ответов (5 или 6) в первый столбик, а вторую половину — во второй, отступив вправо от записанных номеров заданий первого столбика оговоренное количество клеток, например 10. Порядковые номера заданий записываются с круглой скобкой.
В ходе выполнения математического диктанта учащиеся записывают ответ рядом с порядковым номером. Ответы, в которых учащийся сомневается, могут быть им пропущены. Заполнение их возможно и при самопроверке. Перед тем как отдать работу на проверку учителю или однокласснику, ученик должен рядом с номерами невыполненных заданий поставить прочерк. (Образец 3.)
В IV классе при изучении нумерации многозначных чисел фиксация результатов математического диктанта может производиться в один столбик. (Образец 4.)
В оформление задачи входит слово Задача, запись решения и ответа.
Слово Задача записывается с большой буквы посередине строки. Ориентировочно необходимо отступить от левого края страницы 10 клеток. Если запись слова Задача располагается на той же странице, что и дата, то учащимся удобно провести по воздуху линию от первой цифры даты вниз, так как первая буква слова будет расположена под первой цифрой даты. (См. образец 1.)
В I классе решение задачи записывается в виде числового выражения. Значение числового выражения (ответ задачи) подчёркивается. Полный ответ задачи проговаривается устно. (Образец 5.)
Со II класса пишутся слова Задача и Ответ. Второклассники учатся оформлять запись решения составной задачи. При записи решения задачи по действиям каждое действие пишется с новой строки. В начале строки ставится порядковый номер действия с круглой скобкой, отступается одна клетка и записывается действие. (Образец 6.)
Запись решения задачи может быть оформлена выражением. В этом случае порядковый номер в начале строки не ставится. (Образец 7.)
В III и IV классах решение может быть оформлено по действиям без пояснений, с полными или краткими пояснениями, с вопросами, с планом, а также выражением. Если решение задачи записывается выражением, то нет необходимости делать пояснения после действия. Результат поясняется только в ответе.
Решение задачи по действиям с краткими пояснениями
оформляется следующим образом. Пояснения к каждому из действий формулируются кратко (словосочетанием). Сразу после наименования ставится тире, и с маленькой буквы записывается пояснение, в котором заключается основной смысл ответа на поставленный вопрос. (Образец 8.)
Решение задачи по действиям с полными пояснениями оформляется следующим образом. (Образец 9.)
Решение задачи с вопросами предполагает постановку" вопросов к каждому из действий. Вопрос записывается с большой буквы с начала строки. После него ставится вопросительный знак, а затем с новой строки записывается действие. Порядковый номер действия в этом случае ставится один раз перед вопросом. (Образец 10.)
Решение этой же задачи можно оформить с планом. (Образец 11.)
При необходимости выполнить письменные вычисления решение задачи записывается сразу в столбик. (Образец 12.)
Если решение задачи записывается выражением, при этом необходимо произвести письменные вычисления, они располагаются под выражением. (Образец 13.)
Наименование пишется после каждого действия задачи или после выражения в скобках с маленькой буквы. В записи наименования допускаются сокращения (обязательно должно заканчиваться на согласный). После сокращения ставится точка, в случаях, если это сокращение не является общепринятым. Точка не ставится в наименованиях, обозначающих единицы измерения длины: мм, см, дм, м, км, единицы измерения веса: г, кг, т, ц, единицы измерения времени: суг, ч, мин, с.
Слово Ответ записывается с начала строки, после него ставится двоеточие. После двоеточия на первом месте желательно записать число (результат решения задачи), а после него с_ маленькой буквы пояснение к нему. Ответ задачи может записываться как целыми словами, так и с использованием общепринятых сокращений (километров — км, метров — м, километров в час — км/ч и т. п.). Ответ записывается к каждой задаче.
В случае если задача решается несколькими способами, делается пометка «1 способ, 2 способ» и ответ записывается один раз. Если решение задачи записано по действиям, а затем выражением, то ответ тоже записывается один раз. Если решение задачи выполнялось с полным пояснением, с записью вопросов по действиям, ответ может быть записан кратко. При этом записывается числовое значение и наименование либо число и словосочетание, отражающие ответ задачи. (См. образцы 9, 10, 11.) Если решение задачи записано выражением, по действиям с краткими пояснениями или без них, то ответ задачи должен быть полным (в виде числа и предложения). (См. образцы 6, 7, 8, 12, 13.)
К задаче может быть выполнена краткая запись. Она записывается после слова Задача. Между строками пропускается одна клетка. Буквы и цифры пишутся в соответствии с рассмотренными выше требованиями.
Запись нахождения значения математического выражения также оформляется единообразно. Если математическое выражение состоит из одного действия, которое решается устно, ученик записывает его в строку и рядом — его ответ. При записи нескольких таких выражений между столбиками рекомендуется пропускать в сторону 3 клетки, а вниз между столбиками — 2. (Образец 14.)
Если математическое выражение состоит из одного действия, и для его решения требуются письменные вычисления, то оно сразу записывается в столбик и вычисляется. В строке можно разместить несколько математических выражений с письменными вычислениями при условии, что вправо между ними необходимо пропускать не менее 3 клеток. (Образец 15.)
При письменном умножении на трёхзначное число следует рекомендовать учащимся размещать на одной строке только 2 примера, так как при записи происходит значительный сдвиг влево. При необходимости на строке размешается математическое выражение, а рядом проверка вычислений. (Образец 16.)
Учащийся вправе сам принять решение о рациональном размещении на странице выполненных заданий. К примеру, если необходимо выполнить несколько примеров на деление многозначных чисел и сделать к ним проверку, на одной строке можно разместить примеры на деление, а под ними проверку. В таких случаях рекомендуется отступать вниз 2 клетки. (Образец 17.)
Если математическое выражение состоит из нескольких действий, решение которых предполагает устные вычисления, то учащийся сначала определяет порядок действий (его можно надписать над выражением), затем производит устные вычисления и записывает ответ. Выполнять запись устных действий не нужно. (Образец 18.)
Если математическое выражение состоит из нескольких действий, решение которых предполагает письменные вычисления, то сначала оно записывается в строку. Определяется порядок выполнения действий. Затем каждое действие записывается под выражением и выполняется. Полученный конечный результат записывается в первоначальную запись после знака «равно». (Образец 19.)
Решение простейшего уравнения записывается в столбик: само уравнение, способ нахождения неизвестного, результат вычисления (значение неизвестного), проверка решения уравнения. Можно расположить решение двух уравнений в 2 столбика. При этом между уравнениями в сторону необходимо отступить 3 клетки. Слова Решение
и Проверка, которые используются в
образце оформления уравнения на страницах учебника, в тетрадях учащимися не записываются. (Образец 20.)
Решение уравнений в два действия также записывается в столбик. Расположение двух таких уравнений также допустимо на одной строке при условии, что их решение не требует письменных вычислений. (Образец 21.)
Если при решении уравнения необходимо выполнять письменные действия с многозначными числами, их следует располагать справа от записи решения уравнения. (Образец 22.)
Сравнение чисел, выражений, величин. При сравнении двух чисел они записываются на строке с интервалом в одну клетку. В ней учащийся ставит знак. (Образец 23.)
При сравнении многозначных чисел учащийся производит сравнение поразрядно. Достаточно обратить внимание на различающиеся цифры в разрядах, начиная с высшего, подчеркнуть их. Во второй строке можно записать только те цифры, которыми различаются числа. Это будет основанием для сравнения чисел. (Образец 24.)
Если число необходимо сравнить с выражением, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значения выражения и сопоставления его с числом. (Образец 25.)
Если необходимо сравнить два выражения, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значений обоих выражений. Найденные значения выражений целесообразно записать на следующей строке и после их сопоставления поставить знак сравнения между ними, а затем и на верхней строке в исходном выражении. (Образец 26.)
При сравнении величин обращается внимание на единицы их измерения. Если величины выражены в одинаковых единицах измерения, то сравнение производится так же, как и сравнение чисел. Знак ставится между величинами после установления их равенства или неравенства. (Образец 27.)
Если сравниваются величины, выраженные в разных единицах измерения, необходимо оценить возможность их сравнения без приведения их к единым единицам измерения; если это возможно, поставить требующийся знак. (Образец 28.)
При сравнении величин, выраженных в разных единицах измерения, чаще всего обязательным условием является приведение их к одинаковым единицам (меньшим или большим). Запись лучше зафиксировать на следующей строке. После сопоставления преобразованных величин можно поставить знак равенства или неравенства и затем перенести его в исходное выражение. (Образец 29.)
Задания геометрического характера могут включать только вычерчивание геометрических фигур, только нахождение параметров геометрических фигур, либо задание на нахождение параметров и вычерчивание фигур.
Если задание предполагает только вычерчивание фигуры (фигур), от предыдущего задания отступают две клетки и чертят заданную геометрическую фигуру.
Если задание предполагает только нахождение параметров геометрической фигуры, то ученик должен оформить выполнение задания как решение задачи: слово Задача, решение (нахождение параметров геометрической фигуры), ответ. Если в задаче не требуется вычерчивание фигуры, этого и не нужно делать. (Образец 30.)
Если задание предполагает нахождение параметров и вычерчивание фигуры, то оформляется это тоже как задача. Ученик должен привыкнуть к тому, что любые вычисления (даже устные) при нахождении параметров должны быть зафиксированы письменно. Сначала проводятся вычисления, затем вычерчивается фигура с полученными данными. (Образец 31.)
В задании может быть задана длина первого отрезка. Второй и третий отрезки необходимо найти, а затем начертить. В таком случае ребёнку удобно начертить данный отрезок, вычислить размер второго отрезка (с записью действия), начертить полученный отрезок, затем найти длину третьего отрезка (с записью действия) и тогда его начертить. (Образец 32.)
Это же задание учащийся может оформить иначе. (Образец 33.)
Если к заданию было записано слово Задача, значит, к нему предполагается и Ответ.
Если необходимо произвести сравнение отрезков, значит, за писывается слово Задача, после вычерчивания отрезков записывается математическое действие, с помощью которого производилось сравнение (вычитание, деление). Завершается выполнение задания записью ответа.
Отметим некоторые особенности вычерчивания отрезков.
- Чертим отрезки, отступая от левого края страницы 1 полную клетку.
- Все отрезки необходимо чертить друг под другом, при этом их начальные точки должны находиться на одном расстоянии от левого края страницы.
- Пропуски между отрезками вниз составляют 1 клетку.
- Края отрезков отмечаются небольшими штрихами.
Нахождение значения выражения с переменной записывается следующим образом. (Образец 34.)
Требования к оформлению контрольных работ. Оформление их производится так же, как и классных работ. Исправления делаются в случае необходимости аккуратно. Краткая запись к задаче, вопросы, пояснения, которые помогают при обучении решению задач, в контрольной работе не требуются, так как их использование часто влечёт множество орфографических ошибок, не отражающих реальные математические знания детей. Формулировки заданий контрольной работы учащимися не переписываются в тетрадь. Ставится лишь порядковый номер выполняемого задания.
Порядок выполнения заданий контрольной работы учащийся может выбрать сам. Записывая решения заданий, он должен ставить тот порядковый номер задания, под которым оно стоит в контрольной работе. (Образец 36.)
Хочется отметить, что далеко не все частные случаи оформления записей по математике удалось осветить в статье. Кроме того, прописанные в данной статье рекомендации являются примерными. Если учителем, методическим объединением учителей наработаны более рациональные приёмы обучения учащихся оформлению записей в тетрадях по математике без нарушения общепринятых норм, они имеют право внедрять их в свою деятельность. Важным остаётся требование единообразия оформления записей всеми учащимися.
Работа по формированию у младших школьников культуры оформления записей в тетрадях по математике кропотливая, требует терпения. Однако необходимо помнить, что эти условности, используемые школьниками, не отражают математической подготовки учащихся, поэтому не следует строго наказывать учащихся за то, что кто-то из них пропустил не 10, а 11 клеток при записи даты или допустил и прочие отклонения. Важно, чтобы записи были рациональными, единообразными, экономичными, лаконичными и при этом эстетично оформленными.
Литература:
- Н. Л. Ковалевская, учитель высшей категории, методист высшей категории,
г. Минск//Пачатковае навучанне: сям’я, дзіцячы сад, школа, 2012 г., № 10, стр. 5-12
По теме: методические разработки, презентации и конспекты
Правила оформления записей в тетрадях.
Правила оформления записей в тетрадях....
Правила оформления записей в тетради
Здесь ученики и родители смогут вспомнить, как правильно оформлять записи в терадях....
Памятка по оформлению записей в тетрадях по математике
Памятка помогает ученикам грамотно оформлять записи в тетрадях по математике....
ДЕКАБРЬ 2016 г. Оформление записей в тетрадях по русскому языку
Порядок оформления записей в тетрадях по русскому языку в начальной школе...
Оформление записей в тетрадях по русскому языку в начальных классах.
Единые требования по оформлению записей в тетрадях по русскому языку начальных классах....
Родительское собрание "Первые отметки и правила оформления записей в тетрадях»
Первое родителькое собрание во 2 классе на тему: "Первые отметки и правила оформления записей в тетрадях". Второй класс первые уроки начинаются первые отметки, родителей начинает мучать вопр...
Оформление записей в тетради по математике
На конкретной работе указано количество клеточек отступа при записи примеров и задач....