Рабочие программы

Чултумова  Ирина Норбоевна

Предварительный просмотр:

МО Иволгинский район

МОУ Сужинская средняя общеобразовательная школа

«Рассмотрено»

Руководитель ШМО

___________/____________/

Протокол № ___ от

«____»  ___________20___г.

«Согласовано»

Заместитель директора по УВР

МОУ Сужинская СОШ

____________/ЖамсарановаН.А./

«____»  ______________20___г.

«Утверждено»

Директор МОУ Сужинская СОШ

_____________/Жапова Т.Ц./

Приказ №___от «___»______20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

________________алгебра______________________________

Уровень образования (класс) ________7________

Количество часов _______102_____________

Фамилия, имя, отчество педагога (квалификационная категория)

Чултумова Ирина Норбоевна  (высшая)

_________________________________________________________________________

с. Сужа

2021

Пояснительная записка

Рабочая программа по математике составлена на основе государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 7 класса и реализуется на основе следующих документов:

  1. Федеральный закон Российской Федерации от 29.12.2012 г №279-ФЗ «Об образовании в Российской Федерации»
  2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
  3. Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно- методического объединения по общему образованию (протокол от 8 апреля 2015 г. №1/15)
  4. Приказ Министерства образования и науки Российской Федерации от 31 марта 2014г. №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, основного общего, среднего общего образования».
  5. Приказ Министерства образования и науки Российской Федерации от 30.08.2013 N 1015 (ред. от 01.03.2019) «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам основного общего и среднего общего образования».
  6. Базисный учебный план общеобразовательного учреждения (МОУ Сужинская СОШ)
  7. Положение о рабочей программе педагога МОУ Сужинская СОШ

Программа по математике составлена на основе программы Математика: 5 – 11 классы / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В.Буцко – М.: Вентана-граф, 2016. – 152 с.

Данная программа ориентирована на учебно-методический комплект «Алгебра. 7 класс» авторов А.Г. Мерзляка, В.Б. Полонского, М.С. Якира. Программа рассчитана на 3 часов в неделю, всего 102 часа (34 недели) и соответствует федеральному государственному образовательному стандарту основного общего образования.

Программа по алгебре составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном образовательном стандарте основного общего образования, с учётом преемственности с примерными программами для начального общего образования по математике. В ней также учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Курс алгебры 7-9 классов является базовым для математического образования и развития школьников. Алгебраические знания и умения необходимы для изучения геометрии в 7-9 классах, алгебры и математического анализа в 10-11 классах, а также изучения смежных дисциплин.

Практическая значимость школьного курса алгебры 7 - 9 классов состоит в том, что предметом его изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Цели: Одной из основных целей изучения алгебры является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение алгебре даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения алгебры школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития алгебры как науки формирует у учащихся представления об алгебре как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера, например решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Общая характеристика курса алгебры в 7 классе:

Содержание курса алгебры в 7 классе представлено в виде следующих содержательных разделов: «Алгебра» и «Функции».

Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения уравнений и их систем, текстовых задач с помощью уравнений и систем уравнений.

Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления — важной составляющей интеллектуального развития человека.

Содержание раздела «Числовые множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел.

Цель содержания раздела «Функции» — получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический).

Личностные, метапредметные и предметные результаты освоения содержания курса алгебры: Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  1. воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
  2. ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  3. осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
  4. умение контролировать процесс и результат учебной и математической деятельности;
  5. критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

  1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
  2. умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
  3. умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
  4. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  5. развитие компетентности в области использования ин- формационно-коммуникационных технологий;
  6. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  7. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  8. умение находить в различных источниках информацию, необходимую для решения математических задач, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
  9. умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  1. умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
  2. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  1. осознание значения математики для повседневной жизни человека;
  2. представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
  3. развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
  4. владение базовым понятийным аппаратом по основным разделам содержания;
  5. систематические знания о функциях и их свойствах;
  6. практически значимые математические умения и навыки, их применение к решению математических и нематематических задач предполагающее умения:
  • выполнять вычисления с действительными числами;
  • решать уравнения, неравенства, системы уравнений и неравенств;
  • решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;
  • использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;
  • проверить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик, выполнение приближённых вычислений;
  • выполнять тождественные преобразования рациональных выражений;
  • выполнять операции над множествами;
  • исследовать функции и строить их графики;
  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой);
  • решать простейшие комбинаторные задачи.

Планируемые результаты обучения алгебре в 7 классе

 Алгебраические выражения

Учащийся научится:

  • оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;
  • выполнять преобразование выражений, содержащих степени с натуральными показателями;
  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами;
  • выполнять разложение многочленов на множители.

Учащийся получит возможность:

  • выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
  • применять тождественные преобразования для решения задач из различных разделов курса.

 Уравнения

Учащийся научится:

  • решать линейные уравнения с одной переменной, системы двух уравнений с двумя переменными;
  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
  • применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Учащийся получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
  • применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Функции

Учащийся научится:

• понимать и использовать функциональные понятия, язык (термины, символические обозначения);

  • строить графики линейной функций, исследовать свойства числовых функций на основе изучения поведения их графиков;
  • понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

Учащийся получит возможность:

  • проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; н основе графиков изученных функций строить боле сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
  • использовать функциональные представления и свойства функций для решения математических задач из раз личных разделов курса.

Место курса алгебры в учебном плане

Базисный учебный (образовательный) план на изучение алгебры в 7 классе основной школы отводит 3 учебных часа в неделю в течение года обучения 35 недели, всего 105 часа.

Содержание курса алгебры 7 класса

Алгебраические выражения

Выражение с переменными. Значение выражения с переменными. Допустимые значения переменных. Тождества. Тождественные преобразования алгебраических выражений. Доказательство тождеств.

Степень с натуральным показателем и её свойства. Одночлены. Одночлен стандартного вида. Степень одночлена Многочлены. Многочлен стандартного вида. Степень многочлена. Сложение, вычитание и умножение многочленов Формулы сокращённого умножения: квадрат суммы и квадрат разности двух выражений, произведение разности суммы двух выражений. Разложение многочлена на множители. Вынесение общего множителя за скобки. Метод группировки. Разность квадратов двух выражений. Сумм и разность кубов двух выражений.

Уравнения

Уравнение с одной переменной. Корень уравнения. Равносильные уравнения. Свойства уравнений с одной переменной. Уравнение как математическая модель реальной ситуации.

Линейное уравнение. Рациональные уравнения. Решение рациональных уравнений, сводящихся к линейным. Решение текстовых задач с помощью рациональных уравнений.

Уравнение с двумя переменными. График уравнения с двумя переменными. Линейное уравнение с двумя переменными и его график.

Системы уравнений с двумя переменными. Графический метод решения системы уравнений с двумя переменными. Решение систем уравнений методом подстановки и сложения. Система двух уравнений с двумя переменными как модель реальной ситуации.

Функции

Числовые функции

Функциональные зависимости между величинами. Понятие функции. Функция как математическая модель реального процесса. Область определения и область значения функции. Способы задания функции. График функции.

Линейная функция, ее свойства и графики.

Учебно-тематический план

Название раздела

Количество часов

В том числе:

уроков

к/р

1

Повторение курса математики 6 класса

6

5

1

2

Линейное уравнение с одной переменной

12

11

1

3

Целые выражения

46

42

4

4

Функции

11

10

1

5

Системы линейных уравнений с двумя переменными

17

16

1

6

Повторение и систематизация учебного материала

10

9

1

Итого:

102

93

9

Требования к уровню подготовки обучающихся

Изучение алгебры в 7 классе направлено на достижение обучающимися личностных, метапредметных (регулятивных, познавательных и коммуникативных) и предметных результатов.

Личностные результаты:

У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики;
  • понимание роли математических действий в жизни человека;
  • интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;
  • ориентация на понимание предложений и оценок учителей и одноклассников;
  • понимание причин успеха в учебе;
  • понимание нравственного содержания поступков окружающих людей.

Обучающийся получит возможность для формирования:

  • интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;
  • ориентации на оценку результатов познавательной деятельности;
  • общих представлений о рациональной организации мыслительной деятельности;
  • самооценки на основе заданных  критериев успешности учебной деятельности;
  • первоначальной ориентации в поведении на принятые моральные нормы;
  • понимания чувств одноклассников, учителей;
  • представления о значении математики   для   познания окружающего мира.

Метапредметные результаты:

Регулятивные:

Ученик научится:

  • принимать учебную задачу и следовать инструкции учителя;
  • планировать свои действия в соответствии с учебными задачами и инструкцией учителя;
  • выполнять действия в устной форме;
  •  учитывать выделенные учителем   ориентиры   действия в учебном материале;
  • в сотрудничестве с учителем находить несколько вариантов решения учебной задачи,   представленной на наглядно-образном уровне;
  • вносить необходимые коррективы в действия на основе принятых правил;
  • выполнять учебные действия в устной и письменной речи;
  • принимать установленные правила  в  планировании  и контроле способа решения;
  • осуществлять  пошаговый контроль  под руководством учителя в доступных видах учебно-познавательной   деятельности.

Ученик получит возможность научиться:

  • понимать смысл инструкции учителя и заданий, предложенных в учебнике;
  • выполнять действия в опоре на заданный ориентир;
  • воспринимать мнение и предложения (о способе решения задачи) сверстников;
  • в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;
  • на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;
  • выполнять учебные действия в устной, письменной речи и во внутреннем плане;
  • самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.

Познавательные:

Ученик научится:

осуществлять поиск нужной информации, используя материал учебника и сведения, полученные от взрослых;

  • использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;
  • на основе кодирования строить несложные модели математических понятий, задачных ситуаций;
  • строить небольшие математические сообщения в устной форме;
  • проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;
  • выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;
  • проводить аналогию и на ее основе строить выводы;
  • в сотрудничестве с учителем проводить классификацию изучаемых объектов;
  • строить простые индуктивные и дедуктивные рассуждения.

Ученик получит возможность научиться:

  • под руководством учителя осуществлять поиск необходимой и дополнительной информации;
  • работать с дополнительными текстами и заданиями;
  • соотносить содержание схематических изображений с математической записью;
  • моделировать задачи на основе анализа жизненных сюжетов;
  • устанавливать  аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;
  • строить рассуждения о математических явлениях;
  • пользоваться эвристическими приемами для нахождения решения математических задач.

Коммуникативные:

Ученик научится:

  • принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;
  • допускать  существование различных точек зрения;
  • стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;
  • использовать в общении правила вежливости;
  • использовать простые речевые  средства для  передачи своего мнения;
  • контролировать свои действия в коллективной работе;
  • понимать содержание вопросов и воспроизводить вопросы;
  • следить за действиями других участников в процессе коллективной познавательной деятельности.

Ученик получит возможность научиться:

  • строить понятные для партнера высказывания и аргументировать свою позицию;
  • использовать средства устного общения для решения коммуникативных задач.
  • корректно формулировать свою точку зрения;
  • проявлять инициативу в учебно-познавательной деятельности;
  • контролировать свои действия в коллективной работе; осуществлять взаимный контроль.

Предметные результаты:

Натуральные числа. Дроби. Рациональные числа.

Ученик научится:

  • понимать особенности десятичной системы счисления;
  •  сравнивать и упорядочивать натуральные числа;
  •  выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  •  использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.

Ученик получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  •  углубить и развить представления о натуральных числах;
  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Измерения, приближения, оценки

Ученик научится:

  •   использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Уравнения

Ученик научится:

  • решать простейшие уравнения с одной переменной;
  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Ученик  получит возможность:

  • овладеть специальными приёмами решения уравнений;
  •  уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

Неравенства

Ученик научится:

  • понимать и применять терминологию и символику, связанные с отношением неравенства;
  • применять аппарат неравенств, для решения задач.

Ученик получит возможность научиться:

  • уверенно применять аппарат неравенств, для решения разнообразных математических задач и задач из смежных предметов, практики;

Описательная статистика.

Ученик научится использовать простейшие способы представления и анализа статистических данных.

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.

Комбинаторика

Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Ученик научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
  • распознавать развёртки куба, прямоугольного параллелепипеда;
  • строить развёртки куба и прямоугольного параллелепипеда;
  • вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах.

Геометрические фигуры

Ученик научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Ученик получит возможность:

  • научится пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Измерение геометрических величин

Ученик научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Ученик получит возможность научиться:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Координаты

Ученик научится:

  • находить координаты точки.

Ученик получит возможность:

  • овладеть координатным методом решения задач.

        Работа с информацией

Ученик научится:

  • заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;
  • выполнять действия по алгоритму;
  • читать простейшие круговые диаграммы.

Ученик получит возможность научиться:

  • устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;
  • понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;
  • выполнять задания в тестовой форме с выбором ответа;
  • выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;
  • строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;
  • составлять схему рассуждений в текстовой задаче от вопроса.

Список литературы:

Основная литература

1. Математика: 6 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2012-2013.

2. Математика: 6 класс: дидактические материалы: сборник задач и контрольных работ / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

3. Математика: 6 класс: рабочая тетрадь №1, №2 / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

4. Математика: 6 класс: методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

Дополнительная литература

Календарно-тематическое планирование

Наименование раздела и тем

Кол-во

часов

Дата

План

Факт

Повторение курса алгебры 6  класса

6

1

 Делимость натуральных чисел

1

2

 Обыкновенные дроби

1

3

 Отношения и пропорции

1

4

 Рациональные числа

1

5

 Действия с рациональными числами

1

6

 Входная контрольная работа

1

Глава 1. Линейное уравнение с одной переменной

12

7-9

Введение в алгебру

3

10-12

Линейное уравнение с одной переменной

3

13-16

Решение задач с помощью уравнений

4

17

Повторение и систематизация учебного материала

1

18

  Контрольная работа № 1

1

Глава 2. Целые выражения

46

19-20

Тождественно равные выражения. Тождества

2

21-22

Степень с натуральным показателем

2

23-25

Свойства степени с натуральным показателем

3

26-27

Одночлены

2

28

Многочлены

1

29-31

Сложение и вычитание многочленов

3

32

Контрольная работа № 2

1

33-36

Умножение одночлена на многочлен

4

37-40

Умножение многочлена на многочлен

4

41-43

Разложение многочленов на множители. Вынесение общего множителя за скобки

3

44-46

Разложение многочленов на множители. Метод группировки

3

47

Контрольная работа № 3

1

48-50

Произведение разности и суммы двух выражений

3

51-52

Разность квадратов двух выражений

2

53-55

Квадрат суммы и квадрат разности двух выражений

3

56-58

Преобразование многочлена в квадрат суммы или разности двух выражений

3

59

Контрольная работа № 4

1

60-61

Сумма и разность кубов двух выражений

2

62-63

Применение различных способов разложения многочлена на множители

2

64

Контрольная работа №5

1

 Глава 3. Функции

11

65-66

Связи между величинами. Функция

2

67-68

Способы задания функции

2

69-70

График функции

2

71-74

Линейная функция, её график и свойства

4

75

Контрольная работа № 6

1

Глава 4. Системы линейных уравнений с двумя переменными

17

76-77

Уравнения с двумя переменными

2

78-79

Линейное уравнение с двумя переменными и его график

2

80-82

Системы уравнений с двумя переменными. Графический метод решения системы двух линейных уравнений с двумя переменными

3

83-84

Решение систем линейных уравнений методом подстановки

2

85-87

Решение систем линейных уравнений методом сложения

3

88-91

Решение задач с помощью систем линейных уравнений

4

92

Контрольная работа № 7

1

Повторение и систематизация учебного материала

10

93

Линейное уравнения с одной переменной

1

94

Решение задач с помощью уравнений

1

95

Выражения. Степени

1

96

Одночлены. Многочлены.

1

97

Формулы сокращенного умножения

1

98

Преобразование выражений

1

99

Преобразование выражений

1

100

Функции

1

101

Системы линейных уравнений

1

102

Итоговая контрольная работа

1

Итого

102



Предварительный просмотр:

МО Иволгинский район

МОУ Сужинская средняя общеобразовательная школа

«Рассмотрено»

Руководитель ШМО

________/Бадмаева ДБ/

Протокол № ___ от

«____»  ____________20___г.

«Согласовано»

Заместитель директора по УВР

МОУ Сужинская СОШ

___/Жамсаранова Н.А./

«____»  ______________20___г.

«Утверждено»

Директор МОУ Сужинская СОШ

_____________/Жапова Т.Ц./

Приказ №___от «___»______20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

______геометрия______

Уровень образования (класс)

__________________7________

Количество часов ___68________________

Фамилия, имя, отчество педагога (квалификационная категория)

_Чултумова Ирина Норбоевна  (высшая)

с. Сужа

2021

Пояснительная записка.

Рабочая программа разработана в соответствии со следующими нормативными документами:

  1. Федеральный закон Российской Федерации от 29.12.2012 г №279-ФЗ «Об образовании в Российской Федерации»
  2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
  3. Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно- методического объединения по общему образованию (протокол от 8 апреля 2015 г. №1/15)
  4. Приказ Министерства образования и науки Российской Федерации от 31 марта 2014г. №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, основного общего, среднего общего образования».
  5. Приказ Министерства образования и науки Российской Федераци от 30.08.2013 N 1015 (ред. от 01.03.2019) «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам начального общего, основного общего и среднего общего образования».
  6. Базисный учебный план общеобразовательного учреждения (МОУ Сужинская СОШ)
  7. Положение о рабочей программе педагога МОУ Сужинская СОШ
  8. Программа для общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу  для 7-9 классов (авторы А. Г. Мерзляк, В. Б. Полонский, М. С. Якир– М: Вентана – Граф, 2013 – с. 76)

       Цели изучения курса:

  • развивать пространственное мышление и математическую культуру;
  • учить ясно и точно излагать свои мысли;
  • формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца;
  • помочь приобрести опыт исследовательской работы.

        Задачи обучения:

  • формирование практических навыков выполнения устных, письменных, инструментальных вычислений, развитие вычислительной культуры;
  • овладение символическим языком геометрии, выработка формально-оперативных математических умений и навыков применения их к решению математических и нематематических задач;
  • развитие логического мышления и речи, умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • формирование представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;
  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Место учебного предмета в учебном плане

Базисный учебный (образовательный план) на изучение геометрии в 7 классе основной школе отводит 2 учебных часа в неделю в течение 34 недель обучения, всего 68 уроков (учебных занятий).

Плановых контрольных работ: 5

Учебник: Мерзляк А.Г., Полонский В. Б., Якир М. С. Геометрия: 7 класс. Учебник. М.: Вентана – Граф, 2014

Содержание курса.

Простейшие геометрические фигуры и их свойства. (15 час.)

Точки и прямые. Отрезок и его длина Луч. Угол. Измерение углов.  Смежные и  вертикальные углы. Перпендикулярные прямые. Аксиомы.

Треугольники. (18 час.)

Равные треугольники. Высота, медиана, биссектриса треугольника. Первый и второй признаки равенства треугольников Равнобедренный треугольник и его свойства. Признаки равнобедренного треугольника. Третий признак равенства треугольников. Теоремы.

Параллельные прямые. Сумма углов треугольника. (16 час.)

Параллельные прямые. Признаки параллельных прямых. Свойства параллельных прямых. Сумма углов треугольника. Прямоугольный треугольник. Свойства прямоугольного треугольника.

 Окружность и круг. Геометрические  построения. (16 час.)

Геометрическое место точек. Окружность и круг. Некоторые свойства окружности. Касательная к окружности. Описанная и вписанная окружности треугольника.  Задачи на построение. Метод геометрических мест точек в задачах на построение.

 Повторение (3 час.)

Учебно-тематический план

Название раздела

Количество часов

В том числе:

уроков

к/р

1

Простейшие геометрические фигуры и их свойства

15

14

1

2

Треугольники

18

17

1

3

Параллельные прямые. Сумма углов треугольника

16

15

1

4

Окружность и круг. Геометрические построения.

16

15

1

5

Повторение

3

2

1

Итого:

68

63

5

Требования к уровню подготовки учащихся 

Изучение курса геометрии по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного стандарта основного общего образования.

 В направлении личностного развития:

       1)  развитие логического и критического мышления, культуры речи, способности к  умственному эксперименту;

       2)формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

       3) формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

      4) развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

      1) формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

      2) развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

      3) формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

В предметном направлении:

  1. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  2. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
  3. умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
  4. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Ученик научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, пирамида и др.);
  • распознавать виды углов, виды треугольников;
  • определять по чертежу фигуры её параметры (длина отрезка, градусная мера угла, элементы треугольника, периметр треугольника и т.д.);
  • распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 00 до 1800, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, сравнение);
  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
  • решать простейшие задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
  • решать простейшие планиметрические задачи в пространстве.

Ученик получит возможность  использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • углубления и развития представлений о плоских и пространственных геометрических фигурах (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, призма и др.);
  • применения понятия развертки для выполнения практических расчетов;
  • овладения методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов;
  • приобретения опыта применения алгебраического аппарата при решении геометрических задач;
  • овладения традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

Список литературы

Основная литература

  1. Геометрия: 9 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.

2.  А. Г. Мерзляк, В.Б. Полонский, М.С. Якир , Е.М.Рабинович       Геометрия-9 . Дидактические материал.

3. Е.В. Буцко, А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.     Геометрия-9 . Методическое пособие для учителя.

4. А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.   Рабочая тетрадь №1

5. А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.   Рабочая тетрадь №2



Предварительный просмотр:

МО Иволгинский район

МОУ Сужинская средняя общеобразовательная школа

«Рассмотрено»

Руководитель ШМО

______/Чултумова И.Н/

Протокол № ___ от

«____»  ____________20___г.

«Согласовано»

Заместитель директора по УВР

МОУ Сужинская СОШ

_______/ЖамсарановаН.А./

«____»  ______________20___г.

«Утверждено»

Директор МОУ Сужинская СОШ

___________/Жапова Т.Ц./

Приказ №___от «___»______20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

________________математика______________________________

Уровень образования (класс) ________6_________

Количество часов _______170_____________

Фамилия, имя, отчество педагога (квалификационная категория)

Чултумова Ирина Норбоевна  (высшая)

_________________________________________________________________________

с. Сужа

2021

Пояснительная записка

Рабочая программа по математике составлена на основе государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 6 класса и реализуется на основе следующих документов:

  1. Федеральный закон Российской Федерации от 29.12.2012 г №279-ФЗ «Об образовании в Российской Федерации»
  2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
  3. Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно- методического объединения по общему образованию (протокол от 8 апреля 2015 г. №1/15)
  4. Приказ Министерства образования и науки Российской Федерации от 31 марта 2014г. №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, основного общего, среднего общего образования».
  5. Приказ Министерства образования и науки Российской Федерации от 30.08.2013 N 1015 (ред. от 01.03.2019) «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам основного общего и среднего общего образования».
  6. Базисный учебный план общеобразовательного учреждения (МОУ Сужинская СОШ)
  7. Положение о рабочей программе педагога МОУ Сужинская СОШ

Используемые УМК: 

1. Математика: 6 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2013-2014.

2. Математика: 6 класс: дидактические материалы: пособие для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2014.

3. Математика: 6 класс: рабочая тетрадь №1, №2, №3 / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

4. Математика: 6 класс: методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

        В программе  учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

         Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом его изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7-9 классах, а также для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, например решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений.

Общая характеристика учебного предмета

Содержание математического образования в 6 классе представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерения геометрических величин, «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической речи, развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Личностные, метапредметные  и предметные результаты

освоения содержания курса математики

Изучение математики способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  1. воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
  2. ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3)   осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

4) умение контролировать процесс и результат учебной и математической деятельности;

5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

6) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

7)умение распознавать логически некорректные высказывания, критически мыслить, отличать гипотезу от факта.

Метапредметные результаты:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

  1. умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
  2. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  3. развитие компетентности в области использования информационно-коммуникационных технологий;
  4. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  5. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  6. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
  7. умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  1. умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
  2. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  1. осознание значения математики для повседневной жизни человека;
  2. представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
  1. развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
  2. владение базовым понятийным аппаратом по основным разделам содержания;
  3. практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:
  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
  • решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
  • изображать фигуры на плоскости;
  • использовать геометрический язык для описания предметов окружающего мира;
  • измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
  • распознавать и изображать равные и симметричные фигуры;
  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
  • строить на координатной плоскости точки по заданным координатам, определять координаты точек;
  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;
  • решать простейшие комбинаторные задачи перебором возможных вариантов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ МАТЕМАТИКЕ В 6 КЛАССЕ

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  • использовать понятия, связанные с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  • анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Учащийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  • углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

выполнять операции с числовыми выражениями; выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых); решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

развить представления о буквенных выражениях и их преобразованиях; овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы; строить углы, определять их градусную меру; распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот; вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах;
  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • использовать простейшие способы представления и анализа статистических данных;
  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
  • научиться некоторым специальным приёмам решения комбинаторных задач.

Место предмета в базисном учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит  170  часов для обязательного изучения учебного предмета «математика» в 6 классе из расчета 5 учебных часа в неделю.

Содержание рабочей программы

Делимость натуральных чисел (17 часов). Делители и кратные. Признаки делимости на 10, на 5 и на 2. Признаки делимости на 9 и 3. Простые и составные числа. Наибольший общий делитель. Наименьшее общее кратное.

Обыкновенные дроби (38 часов). Основное свойство дроби. Сокращение дробей. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение дробей. Сложение и вычитание дробей. Умножение дробей. Нахождение дроби от числа. Взаимно обратные числа. Деление дробей. Нахождение числа по значению его дроби. Преобразование обыкновенных дробей. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.

Отношения и пропорции (28 часов). Отношения. Пропорции. Процентное отношение двух чисел. Прямая и обратная пропорциональные зависимости. Деление числа в данном отношении. Окружность и круг. Длина окружности. Площадь круга. Цилиндр, конус, шар. Диаграммы. Случайные события. Вероятность случайного события.

Рациональные числа (70 часов). Положительные и отрицательные числа. Координатная прямая. Целые числа. Модуль числа. Сравнение чисел. Сложение рациональных чисел. Свойства сложения рациональных чисел. Вычитание рациональных чисел. Умножение рациональных чисел. Свойства умножения рациональных чисел. Коэффициент. Распределительное свойство умножения. Деление рациональных чисел. Решение уравнений. Решение задач с помощью уравнений. Перпендикулярные прямые. Осевая и центральная симметрии. Параллельные прямые. Координатная плоскость. Графики.

Повторение (9 часов).  Итоговое повторения всего материала за курс 6 класса.

Учебно-тематический план

№ п/п

Изучаемый материал

Кол-во часов

В том числе

уроков

К.р

1

Повторение курса 5 класса

8

7

1

2

 Делимость натуральных чисел

17

16

1

3

 Обыкновенные дроби

38

35

3

4

Отношения и пропорции

28

26

2

5

Рациональные числа

70

65

5

6

Повторение и систематизация учебного материала

9

8

1

Итого:

170

157

13


 

Требования к уровню подготовки обучающихся

Изучение математики в 6 классе направлено на достижение обучающимися личностных, метапредметных (регулятивных, познавательных и коммуникативных) и предметных результатов.

Личностные результаты:

У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики;
  • понимание роли математических действий в жизни человека;
  • интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;
  • ориентация на понимание предложений и оценок учителей и одноклассников;
  • понимание причин успеха в учебе;
  • понимание нравственного содержания поступков окружающих людей.

Обучающийся получит возможность для формирования:

  • интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;
  • ориентации на оценку результатов познавательной деятельности;
  • общих представлений о рациональной организации мыслительной деятельности;
  • самооценки на основе заданных  критериев успешности учебной деятельности;
  • первоначальной ориентации в поведении на принятые моральные нормы;
  • понимания чувств одноклассников, учителей;
  • представления о значении математики   для   познания окружающего мира.

Метапредметные результаты:

Регулятивные:

Ученик научится:

  • принимать учебную задачу и следовать инструкции учителя;
  • планировать свои действия в соответствии с учебными задачами и инструкцией учителя;
  • выполнять действия в устной форме;
  •  учитывать выделенные учителем   ориентиры   действия в учебном материале;
  • в сотрудничестве с учителем находить несколько вариантов решения учебной задачи,   представленной на наглядно-образном уровне;
  • вносить необходимые коррективы в действия на основе принятых правил;
  • выполнять учебные действия в устной и письменной речи;
  • принимать установленные правила  в  планировании  и контроле способа решения;
  • осуществлять  пошаговый контроль  под руководством учителя в доступных видах учебно-познавательной   деятельности.

Ученик получит возможность научиться:

  • понимать смысл инструкции учителя и заданий, предложенных в учебнике;
  • выполнять действия в опоре на заданный ориентир;
  • воспринимать мнение и предложения (о способе решения задачи) сверстников;
  • в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;
  • на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;
  • выполнять учебные действия в устной, письменной речи и во внутреннем плане;
  • самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.

Познавательные:

Ученик научится:

осуществлять поиск нужной информации, используя материал учебника и сведения, полученные от взрослых;

  • использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;
  • на основе кодирования строить несложные модели математических понятий, задачных ситуаций;
  • строить небольшие математические сообщения в устной форме;
  • проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;
  • выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;
  • проводить аналогию и на ее основе строить выводы;
  • в сотрудничестве с учителем проводить классификацию изучаемых объектов;
  • строить простые индуктивные и дедуктивные рассуждения.

Ученик получит возможность научиться:

  • под руководством учителя осуществлять поиск необходимой и дополнительной информации;
  • работать с дополнительными текстами и заданиями;
  • соотносить содержание схематических изображений с математической записью;
  • моделировать задачи на основе анализа жизненных сюжетов;
  • устанавливать  аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;
  • строить рассуждения о математических явлениях;
  • пользоваться эвристическими приемами для нахождения решения математических задач.

Коммуникативные:

Ученик научится:

  • принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;
  • допускать  существование различных точек зрения;
  • стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;
  • использовать в общении правила вежливости;
  • использовать простые речевые  средства для  передачи своего мнения;
  • контролировать свои действия в коллективной работе;
  • понимать содержание вопросов и воспроизводить вопросы;
  • следить за действиями других участников в процессе коллективной познавательной деятельности.

Ученик получит возможность научиться:

  • строить понятные для партнера высказывания и аргументировать свою позицию;
  • использовать средства устного общения для решения коммуникативных задач.
  • корректно формулировать свою точку зрения;
  • проявлять инициативу в учебно-познавательной деятельности;
  • контролировать свои действия в коллективной работе; осуществлять взаимный контроль.

Предметные результаты:

Натуральные числа. Дроби. Рациональные числа.

Ученик научится:

  • понимать особенности десятичной системы счисления;
  •  сравнивать и упорядочивать натуральные числа;
  •  выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  •  использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.

Ученик получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  •  углубить и развить представления о натуральных числах;
  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Измерения, приближения, оценки

Ученик научится:

  •   использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Уравнения

Ученик научится:

  • решать простейшие уравнения с одной переменной;
  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Ученик  получит возможность:

  • овладеть специальными приёмами решения уравнений;
  •  уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

Неравенства

Ученик научится:

  • понимать и применять терминологию и символику, связанные с отношением неравенства;
  • применять аппарат неравенств, для решения задач.

Ученик получит возможность научиться:

  • уверенно применять аппарат неравенств, для решения разнообразных математических задач и задач из смежных предметов, практики;

Описательная статистика.

Ученик научится использовать простейшие способы представления и анализа статистических данных.

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.

Комбинаторика

Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Ученик научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
  • распознавать развёртки куба, прямоугольного параллелепипеда;
  • строить развёртки куба и прямоугольного параллелепипеда;
  • вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах.

Геометрические фигуры

Ученик научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Ученик получит возможность:

  • научится пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Измерение геометрических величин

Ученик научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Ученик получит возможность научиться:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Координаты

Ученик научится:

  • находить координаты точки.

Ученик получит возможность:

  • овладеть координатным методом решения задач.

        Работа с информацией

Ученик научится:

  • заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;
  • выполнять действия по алгоритму;
  • читать простейшие круговые диаграммы.

Ученик получит возможность научиться:

  • устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;
  • понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;
  • выполнять задания в тестовой форме с выбором ответа;
  • выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;
  • строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;
  • составлять схему рассуждений в текстовой задаче от вопроса.

Список литературы:

Основная литература

1. Математика: 6 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2012-2013.

2. Математика: 6 класс: дидактические материалы: сборник задач и контрольных работ / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

3. Математика: 6 класс: рабочая тетрадь №1, №2 / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

4. Математика: 6 класс: методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.

Дополнительная литература

  1. Математика. 6 класс. Теория, методика, практика преподавания по новым стандартам. Издательство "Учитель", CD, 2015
  2. Уроки математики 5-6 классы, 5-10 классы с применением ИКТ, Издательство "Планета", 2012
  3. Приложения к рабочей программе по математике для 6 класса к учебнику Виленкина Н.Я. и др., СD
  4. Математика. Интерактивные дидактические материалы. 6 класс CD/ Издательство ООО «КОМПЭДУ», 2014
  5. Интернет-ресурсы: http://metodsovet.moy.su/http://zavuch.info/http://nsportal.ru,  www.festival. 1september.ru и др.



Предварительный просмотр:

МО Иволгинский район

МОУ Сужинская средняя общеобразовательная школа

«Рассмотрено»

Руководитель ШМО

___________/Чултумова И.Н._/

Протокол № ___ от

«____»  ____________20___г.

«Согласовано»

Заместитель директора по УВР

МОУ Сужинская СОШ

____________/ЖамсарановаН.А./

«____»  ______________20___г.

«Утверждено»

Директор МОУ Сужинская СОШ

_____________/Жапова Т.Ц./

Приказ №___от «___»______20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

________________алгебра______________________________

Уровень образования (класс)

____________________________9______________________________________________

Количество часов _______102____________

Фамилия, имя, отчество педагога (квалификационная категория)

Чултумова Ирина Норбоевна  (высшая)

_____________________________________________________________________________

с. Сужа

2021

Пояснительная записка

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 9 класса и реализуется на основе следующих документов:

  • Федеральный закон Российской Федерации от 29.12.2012 г №279-ФЗ «Об образовании в Российской Федерации»
  • Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
  • Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. №1/15)
  • Приказ Министерства образования и науки Российской Федерации от 31 марта 2014г. №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, основного общего, среднего общего образования».
  • Приказ Министерства образования и науки Российской Федерации от 30.08.2013 N 1015 (ред. от 01.03.2019) «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам основного общего и среднего общего образования».
  • Базисный учебный план общеобразовательного учреждения (МОУ Сужинская СОШ)
  • Положение о рабочей программе педагога МОУ Сужинская СОШ
  • Программа  предметной линии системы УМК «Алгоритм успеха» по алгебре  7-9 классов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир.

 Используемый УМК включает: учебник для общеобразовательных классов  Алгебра. 9 класс. А.Г. Мерзляк, В.Б. Полонский, М.С. Якир . – М.: Вентана-Граф, 2014, дидактические материалы, А.Г. Мерзляк, В.Б. Полонский, Е.М.Рабинович, М.С. Якир .

          Изучение алгебры в 9-ом классе основной  школы дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

  1. воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;         
  2. ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  3. осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
  4.  умение контролировать процесс и результат учебной и математической деятельности;
  5. критичность мышления, инициатива, находчивость, активность при решении     математических задач.

в метапредметном направлении:

  1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи
  1. умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
  2. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  3. развитие компетентности в области использования информационно-коммуникационных технологий;
  4. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  5. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
  1. умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  1. умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
  2.  понимание сущности алгоритмических предписаний и умение  действовать в соответствии с предложенным алгоритмом.

в предметном направлении:

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

•        Оперировать на базовом уровне  понятиями: множество, элемент множества, подмножество, принадлежность;

•        задавать множества перечислением их элементов;

•        находить пересечение, объединение, подмножество в простейших ситуациях;

•        приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

•        использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

•        рациональное число, арифметический квадратный корень;

•        оценивать значение квадратного корня из положительного целого числа;

•        распознавать рациональные и иррациональные числа;

•        сравнивать числа.

В повседневной жизни и при изучении других предметов:

•        оценивать результаты вычислений при решении практических задач;

•        выполнять сравнение чисел в реальных ситуациях;

•        составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

•        использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

•        выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

•        понимать смысл записи числа в стандартном виде;

•        оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

•        Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения;

•        проверять справедливость числовых равенств;

•        решать квадратные уравнения по формуле корней квадратного уравнения;

В повседневной жизни и при изучении других предметов:

•        составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

•        Находить значение функции по заданному значению аргумента;

•        находить значение аргумента по заданному значению функции в несложных ситуациях;

•        определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

•        по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

•        строить график линейной функции;

•        проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

•        определять приближенные значения координат точки пересечения графиков функций;

В повседневной жизни и при изучении других предметов:

•        использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

•        использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Текстовые задачи

•        Решать несложные сюжетные задачи разных типов на все арифметические действия;

•        строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

•        осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

•        составлять план решения задачи;

•        выделять этапы решения задачи;

•        интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

•        решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

•        выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Выпускник получит возможность научиться в 7-9 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)

Элементы теории множеств и математической логики

•        множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

•        изображать множества и отношение множеств с помощью кругов Эйлера;

•        определять принадлежность элемента множеству, объединению и пересечению множеств;

•        задавать множество с помощью перечисления элементов, словесного описания;

•        оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

•        строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

•        строить цепочки умозаключений на основе использования правил логики;

•        использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

•        Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел;

•        выполнять округление рациональных чисел с заданной точностью;

•        сравнивать рациональные и иррациональные числа;

•        представлять рациональное число в виде десятичной дроби

В повседневной жизни и при изучении других предметов:

•        применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

•        выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

•        составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

•        записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

•        раскладывать на множители квадратный   трехчлен;

•        выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и отрицательную степень;

•        выполнять преобразования выражений, содержащих квадратные корни;

•        выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

•        выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

•        выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения

•        Оперировать понятиями: уравнение, корень уравнения, равносильные уравнения, область определения уравнения;

•        решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

•        решать дробно-линейные уравнения;

•        решать простейшие иррациональные уравнения;

•        решать уравнения способом разложения на множители и замены переменной;

•        решать несложные квадратные уравнения с параметром;

•        решать несложные системы линейных уравнений с параметрами.

В повседневной жизни и при изучении других предметов:

•        составлять и решать квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, при решении задач других учебных предметов;

•        выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений при решении задач других учебных предметов;

•        выбирать соответствующие уравнения, или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;

•        уметь интерпретировать полученный при решении уравнения, или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

•        Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства;

•        строить графики квадратичной функций, обратной пропорциональности, функции вида: https://www.google.com/chart?cht=tx&chf=bg,s,FFFFFF00&chco=000000&chl=%D1%83%3D%5Csqrt%7B%D1%85%7D ;

•        исследовать функцию по ее графику;

•        находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

В повседневной жизни и при изучении других предметов:

•        иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

•        использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Место предмета в базисном учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит  102  часа для обязательного изучения учебного предмета «алгебра» в 9 классе из расчета 3 учебных часа в неделю.

Содержание рабочей программы

Повторение курса алгебры 8 класса (5 часов)

Неравенства (20 часов)

Числовые неравенства. Основные свойства числовых неравенств. Сложение и умножение числовых неравенств. Оценивание значения выражения. Неравенства с одной переменной. Решение неравенств с одной переменной. Числовые промежутки. Системы линейных неравенств с одной переменной. Системы рациональных неравенств с модулями. Иррациональные неравенства. Рассуждения от противного. Метод использования очевидны неравенств. Метод применения ранее доказанного неравенства. Метод геометрической интерпретации.

Квадратичная функция (33 часов)

Повторение и расширение сведений о функции. Свойства функции. Как построить график функции y = kf(x), если известен график функции y = f(x). Как построить графики функций y = f(x) + b и y = f(x + a), если известен график функции y = f(x). Квадратичная функция, её график и свойства. Решение квадратных неравенств. Решение рациональных неравенств. Метод интервалов. Системы уравнений с двумя переменными. Решение задач с помощью систем уравнений второй степени. Как построить график функции , если известен график функции .

Элементы прикладной математики (20 часов)

Математическое моделирование. Процентные расчёты. Абсолютная и относительная погрешности. Приближённые вычисления. Основные правила комбинаторики. Частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.

Числовые последовательности (17 часа)

Числовые последовательности. Арифметическая прогрессия. Сумма n первых членов арифметической прогрессии. Геометрическая прогрессия. Сумма n первых членов геометрической прогрессии. Сумма бесконечной геометрической прогрессии, у которой | q |

Повторение и систематизация учебного материала (7 часов)

Упражнения для повторения курса 9 класса. Итоговая контрольная работа.

Учебно-тематический план

Название раздела

Количество часов

В том числе:

уроков

к/р

1

Повторение курса алгебры 8 класса

5

4

1

2

Неравенства

20

19

1

3

Квадратичная функция

33

31

2

4

Элементы прикладной математики

20

19

1

5

Числовые последовательности

17

16

1

6

Повторение и систематизация учебного материала

7

6

1

Итого:

102

95

7

Требования к уровню подготовки обучающихся (выпускников)

Изучение алгебры  в 9 классе направлено на достижение обучающимися личностных, метапредметных (регулятивных, познавательных и коммуникативных) и предметных результатов.

Личностные результаты:

У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики;
  • понимание роли математических действий в жизни человека;
  • интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;
  • ориентация на понимание предложений и оценок учителей и одноклассников;
  • понимание причин успеха в учебе;
  • понимание нравственного содержания поступков окружающих людей.

Обучающийся получит возможность для формирования:

  • интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;
  • ориентации на оценку результатов познавательной деятельности;
  • общих представлений о рациональной организации мыслительной деятельности;
  • самооценки на основе заданных  критериев успешности учебной деятельности;
  • первоначальной ориентации в поведении на принятые моральные нормы;
  • понимания чувств одноклассников, учителей;
  • представления о значении математики   для   познания окружающего мира.

Метапредметные результаты:

Регулятивные:

Ученик научится:

  • принимать учебную задачу и следовать инструкции учителя;
  • планировать свои действия в соответствии с учебными задачами и инструкцией учителя;
  • выполнять действия в устной форме;
  •  учитывать выделенные учителем   ориентиры   действия в учебном материале;
  • в сотрудничестве с учителем находить несколько вариантов решения учебной задачи,   представленной на наглядно-образном уровне;
  • вносить необходимые коррективы в действия на основе принятых правил;
  • выполнять учебные действия в устной и письменной речи;
  • принимать установленные правила  в  планировании  и контроле способа решения;
  • осуществлять  пошаговый контроль  под руководством учителя в доступных видах учебно-познавательной   деятельности.

Ученик получит возможность научиться:

  • понимать смысл инструкции учителя и заданий, предложенных в учебнике;
  • выполнять действия в опоре на заданный ориентир;
  • воспринимать мнение и предложения (о способе решения задачи) сверстников;
  • в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;
  • на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;
  • выполнять учебные действия в устной, письменной речи и во внутреннем плане;
  • самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.

Познавательные:

Ученик научится:

осуществлять поиск нужной информации, используя материал учебника и сведения, полученные от взрослых;

  • использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;
  • на основе кодирования строить несложные модели математических понятий, задачных ситуаций;
  • строить небольшие математические сообщения в устной форме;
  • проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;
  • выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;
  • проводить аналогию и на ее основе строить выводы;
  • в сотрудничестве с учителем проводить классификацию изучаемых объектов;
  • строить простые индуктивные и дедуктивные рассуждения.

Ученик получит возможность научиться:

  • под руководством учителя осуществлять поиск необходимой и дополнительной информации;
  • работать с дополнительными текстами и заданиями;
  • соотносить содержание схематических изображений с математической записью;
  • моделировать задачи на основе анализа жизненных сюжетов;
  • устанавливать  аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;
  • строить рассуждения о математических явлениях;
  • пользоваться эвристическими приемами для нахождения решения математических задач.

Коммуникативные:

Ученик научится:

  • принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;
  • допускать  существование различных точек зрения;
  • стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;
  • использовать в общении правила вежливости;
  • использовать простые речевые  средства для  передачи своего мнения;
  • контролировать свои действия в коллективной работе;
  • понимать содержание вопросов и воспроизводить вопросы;
  • следить за действиями других участников в процессе коллективной познавательной деятельности.

Ученик получит возможность научиться:

  • строить понятные для партнера высказывания и аргументировать свою позицию;
  • использовать средства устного общения для решения коммуникативных задач.
  • корректно формулировать свою точку зрения;
  • проявлять инициативу в учебно-познавательной деятельности;
  • контролировать свои действия в коллективной работе; осуществлять взаимный контроль.

Предметные результаты:

Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного образования.

Личностные результаты:  

  1. Воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;  
  2. Ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  3. Осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
  4. Умение контролировать процесс и результат учебной и математической деятельности;
  5. Критичность мышления, инициатива, находчивость, активность при решении математических задач.

 Метапредметные результаты:

  1. Умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;  
  2. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;  
  3. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;  
  4. Развитие компетентности в области использования информационно-коммуникационных технологий;
  5. Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;  
  6. Умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной , точной или вероятностной информации  
  7. Умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки.

 Предметные результаты:

  1. Осознание значения математики для повседневной жизни человека;
  2. Представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
  3. Развитие умений работать с учебным математическим текстом, точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
  4. Владение базовым понятийным аппаратом по основным разделам содержания;
  5. систематические знания о функциях и их свойствах;
  6. Математические умения и навыки: выполнять вычисления с действительными числами: решать уравнения, неравенства, системы уравнений и неравенств: решать текстовые задачи арифметическим способом, способом составления и решения уравнений; проводить практические расчёты; выполнять тождественные преобразования рациональных выражений; выполнять операции над множествами; исследовать функции и строить их графики; решать простейшие комбинаторные задачи.

Алгебраические выражения

Выпускники научатся:

- оперировать понятиями "тождество", "тождественное преобразование", решать задачи, содержащие буквенные данные, работать с формулами;

- оперировать понятиями "квадратный корень", применять его в вычислениях;

- выполнять преобразование выражений, содержащих степени с целыми показателями и квадратные корни;

- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

- выполнять разложение многочленов на множители.

Выпускник получит возможность:

- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

- применять тождественные преобразования для решения задач из различных разделов курса.

Уравнения

Выпускник научиться:

- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научиться:

- понимать терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

- решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

- применять аппарат неравенства для решения задач их различных разделов курса.

Выпускник получит возможность:

- освоить разнообразные приёмы доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач, задач из смежных предметов и практики;

- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Числовые множества

Выпускник научится:

- понимать терминологию и символику, связанные с понятием множества, выполнять операции на множествами;

- использовать начальные представления о множестве действительных чисел.

Выпускник получит возможность:

- развивать представление о множествах;

- развивать представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

- развивать и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Функции

Выпускник научится:

- понимать и использовать функциональные понятия, язык (термины, символические обозначения);

- строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков;

- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

- понимать и использовать язык последовательностей (термины, символические обозначения);

- применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций стоить более сложные графики (кусочно-заданные, с "выколотыми" точками и т. п.);

- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса;

- решать комбинированные задачи с применением формул n-го члена и суммы n первых членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

- понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.

Элементы прикладной математики

Выпускник научится:

- использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин;

- использовать простейшие способы представления и анализа статистических данных;

- находить относительную частоту и вероятность случайного события;

- решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность:

- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения

- понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных;

- приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

- приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов;

- научиться некоторым специальным приёмам решения комбинаторных задач.

Натуральные числа. Дроби. Рациональные числа.

Ученик научится:

  • понимать особенности десятичной системы счисления;
  •  сравнивать и упорядочивать натуральные числа;
  •  выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  •  использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.

Ученик получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  •  углубить и развить представления о натуральных числах;
  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Измерения, приближения, оценки

Ученик научится:

  •   использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Уравнения

Ученик научится:

  • решать простейшие уравнения с одной переменной;
  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Ученик  получит возможность:

  • овладеть специальными приёмами решения уравнений;
  •  уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

Неравенства

Ученик научится:

  • понимать и применять терминологию и символику, связанные с отношением неравенства;
  • применять аппарат неравенств, для решения задач.

Ученик получит возможность научиться:

  • уверенно применять аппарат неравенств, для решения разнообразных математических задач и задач из смежных предметов, практики;

Описательная статистика.

Ученик научится использовать простейшие способы представления и анализа статистических данных.

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.

Комбинаторика

Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Ученик научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
  • распознавать развёртки куба, прямоугольного параллелепипеда;
  • строить развёртки куба и прямоугольного параллелепипеда;
  • вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах.

Геометрические фигуры

Ученик научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Ученик получит возможность:

  • научится пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных  фигур, градусную меру углов от 0 до 180°;
  • решать несложные задачи на построение.

Измерение геометрических величин

Ученик научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Ученик получит возможность научиться:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • вычислять площади прямоугольника, квадрата;
  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
  • решать задачи на применение  формулы площади прямоугольника, квадрата.

Координаты

Ученик научится:

  • находить координаты точки.

Ученик получит возможность:

  • овладеть координатным методом решения задач.

        Работа с информацией

Ученик научится:

  • заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;
  • выполнять действия по алгоритму;
  • читать простейшие круговые диаграммы.

Ученик получит возможность научиться:

  • устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;
  • понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;
  • выполнять задания в тестовой форме с выбором ответа;
  • выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;
  • строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;
  • составлять схему рассуждений в текстовой задаче от вопроса.

Список литературы:

Основная литература

  1. Алгебра: 9 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.
  2. Алгебра: 9 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2017.
  3. Алгебра: 9 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.



Предварительный просмотр:

МО Иволгинский район

МОУ Сужинская средняя общеобразовательная школа

«Рассмотрено»

Руководитель ШМО

___________/Чултумова И.Н._/

Протокол № ___ от

«____»  ____________20___г.

«Согласовано»

Заместитель директора по УВР

МОУ Сужинская СОШ

____________/ЖамсарановаН.А./

«____»  ______________20___г.

«Утверждено»

Директор МОУ Сужинская СОШ

_____________/Жапова Т.Ц./

Приказ №___от «___»______20__г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

________________геометрия______________________________

Уровень образования (класс)

____________________________9______________________________________________

Количество часов _______68____________

Фамилия, имя, отчество педагога (квалификационная категория)

Чултумова Ирина Норбоевна  (высшая)

_____________________________________________________________________________

с. Сужа

2021

Пояснительная записка

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 9 класса и реализуется на основе следующих документов:

  1. Федеральный закон Российской Федерации от 29.12.2012 г №279-ФЗ «Об образовании в Российской Федерации»
  2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
  3. Примерная основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. №1/15)
  4. Приказ Министерства образования и науки Российской Федерации от 31 марта 2014г. №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, основного общего, среднего общего образования».
  5. Приказ Министерства образования и науки Российской Федерации от 30.08.2013 N 1015 (ред. от 01.03.2019) «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам основного общего и среднего общего образования».
  6. Базисный учебный план общеобразовательного учреждения (МОУ Сужинская СОШ)
  7. Положение о рабочей программе педагога МОУ Сужинская СОШ
  8. Программа для общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу  для 7-9 классов (авторы А. Г. Мерзляк, В. Б. Полонский, М. С. Якир– М: Вентана – Граф, 2013 – с. 76)

Место предмета в базисном учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит  68  часов для обязательного изучения учебного предмета «геометрия» в 9 классе из расчета 2 учебных часа в неделю.

Содержание рабочей программы

Повторение курса за 7-8 класс  (3часа).

Решение треугольников   (14 часов)

Тригонометрические функции от 0 до 180. Теорема синусов. Теорема косинусов. Решение треугольников. Формулы для вычисления площади треугольника.

Правильные многоугольники (10 часов)

Правильные многоугольники и их свойства. Длина окружности. Площадь круга. Контрольная работа №2

Декартовы координаты на плоскости  (12 часов)

Расстояние между точками с заданными координатами. Координаты середины отрезка. Уравнение фигуры. Уравнение окружности. Уравнение прямой. Угловой коэффициент прямой.

Векторы (13 часов)

Понятие вектора. Координаты вектора. Сложение и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов.

Геометрические преобразования  (6 часов)

Движение (перемещение) фигуры.  Параллельный перенос. Осевая симметрия. Центральная симметрия.  Поворот. Гомотетия. Подобие фигур.

Повторение и систематизация учебного материала.  10 часов.

Учебно-тематический план

Название раздела

Количество часов

В том числе:

уроков

к/р

1

Повторение курса геометрии 7-8

3

3

2

Решение треугольников  

14

13

1

3

Правильные многоугольники

10

9

1

4

Декартовы координаты на плоскости  

12

11

1

5

Векторы

13

12

1

6

Геометрические преобразования  

6

5

1

7

Повторение

10

9

1

Итого:

68

62

6

Требования к уровню подготовки обучающихся (выпускников)

Изучение геометрии  в 9 классе направлено на достижение обучающимися личностных, метапредметных (регулятивных, познавательных и коммуникативных) и предметных результатов.

Личностные результаты:

У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики;
  • понимание роли математических действий в жизни человека;
  • интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;
  • ориентация на понимание предложений и оценок учителей и одноклассников;
  • понимание причин успеха в учебе;
  • понимание нравственного содержания поступков окружающих людей.

Обучающийся получит возможность для формирования:

  • интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;
  • ориентации на оценку результатов познавательной деятельности;
  • общих представлений о рациональной организации мыслительной деятельности;
  • самооценки на основе заданных  критериев успешности учебной деятельности;
  • первоначальной ориентации в поведении на принятые моральные нормы;
  • понимания чувств одноклассников, учителей;
  • представления о значении математики   для   познания окружающего мира.

Метапредметные результаты:

Регулятивные:

Ученик научится:

  • принимать учебную задачу и следовать инструкции учителя;
  • планировать свои действия в соответствии с учебными задачами и инструкцией учителя;
  • выполнять действия в устной форме;
  •  учитывать выделенные учителем   ориентиры   действия в учебном материале;
  • в сотрудничестве с учителем находить несколько вариантов решения учебной задачи,   представленной на наглядно-образном уровне;
  • вносить необходимые коррективы в действия на основе принятых правил;
  • выполнять учебные действия в устной и письменной речи;
  • принимать установленные правила  в  планировании  и контроле способа решения;
  • осуществлять  пошаговый контроль  под руководством учителя в доступных видах учебно-познавательной   деятельности.

Ученик получит возможность научиться:

  • понимать смысл инструкции учителя и заданий, предложенных в учебнике;
  • выполнять действия в опоре на заданный ориентир;
  • воспринимать мнение и предложения (о способе решения задачи) сверстников;
  • в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;
  • на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;
  • выполнять учебные действия в устной, письменной речи и во внутреннем плане;
  • самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.

Познавательные:

Ученик научится:

осуществлять поиск нужной информации, используя материал учебника и сведения, полученные от взрослых;

  • использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;
  • на основе кодирования строить несложные модели математических понятий, задачных ситуаций;
  • строить небольшие математические сообщения в устной форме;
  • проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;
  • выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;
  • проводить аналогию и на ее основе строить выводы;
  • в сотрудничестве с учителем проводить классификацию изучаемых объектов;
  • строить простые индуктивные и дедуктивные рассуждения.

Ученик получит возможность научиться:

  • под руководством учителя осуществлять поиск необходимой и дополнительной информации;
  • работать с дополнительными текстами и заданиями;
  • соотносить содержание схематических изображений с математической записью;
  • моделировать задачи на основе анализа жизненных сюжетов;
  • устанавливать  аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;
  • строить рассуждения о математических явлениях;
  • пользоваться эвристическими приемами для нахождения решения математических задач.

Коммуникативные:

Ученик научится:

  • принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;
  • допускать  существование различных точек зрения;
  • стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;
  • использовать в общении правила вежливости;
  • использовать простые речевые  средства для  передачи своего мнения;
  • контролировать свои действия в коллективной работе;
  • понимать содержание вопросов и воспроизводить вопросы;
  • следить за действиями других участников в процессе коллективной познавательной деятельности.

Ученик получит возможность научиться:

  • строить понятные для партнера высказывания и аргументировать свою позицию;
  • использовать средства устного общения для решения коммуникативных задач.
  • корректно формулировать свою точку зрения;
  • проявлять инициативу в учебно-познавательной деятельности;
  • контролировать свои действия в коллективной работе; осуществлять взаимный контроль.

Предметные результаты:

В процессе изучения курса обучающийся научится:

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  • в простейших случаях строить сечения и развертки пространственных тел;
  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Список литературы

Основная литература

  1. Геометрия: 9 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.

2.  А. Г. Мерзляк, В.Б. Полонский, М.С. Якир , Е.М.Рабинович       Геометрия-9 . Дидактические материал.

3. Е.В. Буцко, А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.     Геометрия-9 . Методическое пособие для учителя.

4. А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.   Рабочая тетрадь №1

5. А. Г. Мерзляк, В.Б. Полонский, М.С. Якир.   Рабочая тетрадь №2