Знакомство с цветными палочками Кюизенера
план-конспект занятия по математике (младшая, средняя, старшая, подготовительная группа)

Зебзеева Елена Павловна

Палочки Кюизенера можно использовать начиная с двухлетнего возраста и пользоваться ими вплоть до девяти лет. К достоинствам данной методики можно отнести полноценное интеллектуальное развитие ребенка, что положительно сказывается на всех его умениях и навыках.

Скачать:

ВложениеРазмер
Файл znakomstvo_i_zanyatiya_s_palochkami_kyuzera.docx1022.77 КБ

Предварительный просмотр:

Автор: Зебзеева Елена Павловна

Организация: КГБОУ ШИ1 (дошкольное отделение)

Населенный пункт: Хабаровский край, г. Хабаровск

Знакомство с цветными счетными палочками. Занятия с палочками Кюизенера

  Палочки Кюизенера, названы так по имени  бельгийского педагога  Джорджа Кюизенера Georges Cuisenaire (1891–1975), который  и придумал палочки, опираясь на   идеи педагогов Марии Монтессори и  Фридриха Фребеля , и успешно работал с ними ещё с 1931 года. Вдохновлённый опытом  Кюизенера, математик, философ и магистр искусств египетского происхождения Калеб Каттегно( Caleb Gattegno ) лично познакомился с изобретателем, впечатлился результатами и  подробно описал методику в своей книге " Числа и цвета" (1954) with Georges Cuisenaire, "Numbers in colour," Heinemann)

Мышление ребенка связано с абстрактными понятиями, возникающими в результате практической деятельности. Отличающиеся цветами и размерами палочки Кюизенера используются для повышения эффективности работы мозга.


Счетные палочки Кюизенера поставляются комплектом из 10 пластмассовых призм. Все они различаются оттенками и размерами. Самая маленькая призма обозначает элементарную единицу измерения - единицу. Она выполнена в форме 10-миллиметрового кубика. За другими закреплены значения от 2 до 10. Каждая деталь представляет собой количественную величину, имеющую свой цвет и размер.

В математической науке палочки были бы представлены в виде множества, символизирующего равенство и порядок. Такое множество является благоприятным полем для использования математических задач.

"Числа в цвете", или палочки Кюизенера, помогают детям получить наглядное представление о величинах на основе счетных операций и измерительных действий с ними. В результате малыш должен прийти к выводу о том, что число связано со счетом и измерениями. К этому располагает лишь практическая деятельность, представленная развивающими упражнениями. Стоит отметить, что именно подобное представление об измерениях наиболее полезно для дальнейшей мыслительной деятельности.

Счетные палочки, полагал Джордж Кюизенер, помогают подтолкнуть детей к самостоятельному освоению математических операций по принципу "больше/меньше на...". Работая с набором, ребенок:

  • знакомится с теорией множества,
  • учится разделять на части одно целое,
  • использует общепринятые мерки для обозначения объектов,
  • осваивает отдельные элементы функциональной зависимости,
  • тренируется в процессах запоминания чисел,
  • плавно подходит к освоению следующих математических действий: сложение, вычитание, умножение и деление.

Цветные игровые палочки Кюизенера дают практические навыки по освоению всем известных понятий: "слева/справа", "длинная", "между", "все", "конкретная из...", "иметь одинаковый цвет", "отсутствие голубого оттенка", "равные по длине" и т.д. Они являются развивающим дидактическим пособием. Палочки не выходят за грань детского мышления и идеально сочетаются с дошкольным представлением о математических явлениях.

https://www.ukazka.ru/img/g/uk697982.jpg



  О главном:
 Игра примечательна тем, что "через руки" ребенка формируется понятие числовой последовательности, состава числа, отношений «больше – меньше», «правая – левая», «между», «длиннее», «выше» и многое другое.
  Кроме того, после таких занятий дети уже осмысленно могут определить, какое число меньше, а какое больше, понимают суть умножения, деления, прибавления и вычитания.
  К выводу, что число появляется в результате счета и измерения, малыши приходят в процессе работы с палочками, манипулируя ими. По Пиаже, именно такое представление о числе является наиболее полноценным. 

 Счетные палочки Кюизенера выражают числа цветом и размером .  Так называемые"цветные числа" предоставляют замечательную возможность конструировать модель изучаемого математического понятия и решать следующие задачи:

1)познакомить с понятием цвета (различать цвет, классифицировать по цвету) 

Строим из палочек Кюизенера пирамидку и определяем, какая палочка в самом низу, какая на самом верху, какая между голубой и жёлтой, под синей, над розовой, какая палочка ниже: бордовая или синяя.
"Да. Нет". Ведущий выбирает любую палочку из набора. Задача остальных - угадать, какую палочку вы загадали. Отвечать можно "да" или "нет". Это очень важное упражнение в развитии мышления и речи ребенка. Умение задавать вопросы - основа познавательного мышления в целом. "Эта палочка короче оранжевой?"  - Да. "Эта палочка длиннее желтой?". Глядя на лесенку палочек, как на подсказку, можно догадаться, о каких палочках идет речь. И дальше методом исключения можно угадать задуманную палочку.

«Положи синюю палочку между красной и жёлтой, а оранжевую слева от красной, розовую слева от красной» 

«С закрытыми глазами возьми любую палочку из коробки, посмотри на неё и назови какого она цвета» (позже можно определять цвет палочек даже с закрытыми глазами). 

С закрытыми глазами найди в наборе 2 палочки одинаковой длины. Одна из палочек у тебя в руках синяя, а другая тогда какого цвета?»

 «С закрытыми глазами найди 2 палочки разной длины. Если одна из палочек жёлтая, то можешь определить цвет другой палочки?»

 «У меня в руках палочка чуть-чуть длиннее голубой, угадай её цвет». 

«Назови все палочки длиннее красной, короче синей»

" Поезд". Попросите малыша сделать поезд из коричневого, оранжевого и красного вагонов так, чтобы оранжевый был левее коричневого, но правее красного.
"Разноцветные квадраты":

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4Exw6qhK1EPjvicXtq1AD04hm7F5AGN9C1U6I6mXuSrqJ28LpxFb1PLEuJU71UldRL4TQMS4a6jGOA4zzLbNudjfpzBJPneE1-aS8H3ES4pMNX6sJIuLDSO_JOIdRfmObbmqniPZBF7qsNLBxLqgoXphezeyUfNZ3IOTbQ=s0-d

Можно выложить лабиринты по шаблонам "Лабиринты"- такие можно легко нарисовать самим:

2) познакомить детей с последовательностью чисел натурального ряда, чётными, нечётными числами, при построении горизонтальной, вертикальной и симметричной лесенок. Таким образом постигается основной закон натурального ряда чисел: каждое число больше на единицу предыдущего и меньше на единицу последующего. Для упражнений используется числовая лесенка и числовой луч, на котором дети выполняют вычислительные операции. 
Постройте поезд из вагонов разной длины начиная от самого короткого и заканчивая самым длинным. Спросите, какого цвета вагон стоит пятым, восьмым. Какой вагон справа от синего, слева от жёлтого. Какой вагон тут самый короткий, самый длинный? Какие вагоны длиннее жёлтого, короче синего.
Назовите число, а ребёнку нужно будет найти соответствующую палочку Кюизенера (1 — белая, 2 — розовая и т. д.). И наоборот, вы показываете палочку, а ребёнок называет нужное число. Тут же можно выкладывать карточки с изображёнными на них точками или цифрами
            "Сложи узор". Поэкспериментируйте  с симметричными и асимметричными узорами. Сначала диктуйте слова, а потом и  цифры:

жёлтый, светло-зелёный, красный, 5=3+2=2+3 и т.д.

https://lh5.googleusercontent.com/proxy/raCVjEzPIzRhk0jbUyc_mckpm8X7ZXW1c5Ug4ENoqyZkl1PkQ-gZ7FKV38q4375h4X8fOeaN10UZplEy7JMhWQniVp9RVl2QzSEdfCInl2U9G1dCmntyCHbXXukCr_e2b2pOYHfY1A

3) освоить прямой и обратный счёт , называть смежные числа(соседей числа)

"Между какими двумя ступеньками находится пятая ступенька?"В случае затруднения предлагается задание на сравнение двух чисел, например, 3 и 4, определить, какое из чисел меньше, какое больше, проверить ответ с помощью палочки "1". Ребенок поясняет, что если рядом с  палочкой 3  положить белую, то получится четыре. 

"Найди пропущенную ступеньку"- игра  способствует усвоению знаний о величинах и запоминанию числового значения палочек разного цвета.

 Когда дети хорошо освоят цвета палочек и числа, которые они обозначают, (независимо от возраста) им можно предложить построить числовую лесенку от любого числа. Например, нашли палочку, обозначающую число 6, положили перед собой. Дети строят числовую лесенку относительно числа "6" (вверх и вниз). Можно строить лесенку иначе. Например, воспитатель называет число четыре, дети находят палочку и кладут ее выше числа "б", оставляя расстояние, так как между палочками, обозначающими число "4" и "6" должна быть еще одна палочка. Далее воспитатель называет, к примеру, 8,2,9, 5,3,1, 7,10. 

4) познакомить с составом числа (из единиц и двух меньших чисел);

"
Пассажиры и поезд" педагог предлагает детям построить небольшой поезд из цветных палочек. Например, из розовой, голубой, красной и желтой. Прежде чем посадить в вагоны пассажиров, детям предлагают узнать, сколько мест в каждом вагончике. Дети находят ответ практическим путем: берут белые палочки и накладывают их на вагончики каждого цвета. Белая палочка - это одно место. В ходе беседы детей подводят к пониманию того, что у каждой палочки есть свое число. Данное задание подводит детей к пониманию состава чисел из единиц. Далее можно разнообразить это задание: посадить в каждый вагончик столько пассажиров, какое число обозначает данная палочка, расставить вагоны по порядку, пронумеровать их.

5) помочь овладеть арифметическими действиями сложения, вычитания, умножения и деления, освоение понятия итогового числа. Задания на понимание детьми сущности арифметических действий тесно связаны с упражнениями и играми на составление чисел из двух меньших. Освоив состав чисел из двух меньших, дети легко переходят к решению арифметических задач.
Алгоритм знакомства с составом числа 3 : Подумайте и скажите, меньше трех на один какое будет число? (Если дети затрудняются, показываю три пальца, прячу один из них). Три без одного? Сколько останется? Найдите палочку "два", какого она цвета?. Положите ее под  палочку "три". Посмотрите и скажите, сколько палочек не хватает, чтобы получилось число "три"? (Одной палочки, числа "один"). Найдите в коробке палочку "один" и положите ее к  палочке "два". К двум прибавили один, и получилось три. А если возьмем палочку "1", положим ее под этими палочками, то какого цвета  палочку надо взять, чтобы снова получить число три?  К одному прибавить два получается три. Как мы составили число три? (Из двух и одного, из одного и двух). Подобные упражнения проводятся несколько" раз, после чего начинается изучение состава следующего числа

карточки для изучения состава числа

números-y-regletas-5:

Освоение состава чисел сопровождается упражнениями в вычитании. Например, составили число "пять" - это  4 и 1,1 и 4, 3 и 2, 2 и 3. Предлагается от пяти отнять один (отодвинуть палочку), определить, сколько останется. Освоив состав чисел, действия сложения и вычитания на цветных палочках, дети начинают осуществлять их в уме (в 5-6 лет). 
Игра с кубиком на состав числа "6". Для игры нужен кубик с окрашенными гранями( 1-белая, 2- розовая и т.д.) и  бумажные коврики размером 6 на 3 см.

https://1.bp.blogspot.com/-p4s_haBJOu0/WCWBO9eFUJI/AAAAAAAAQ3U/uogKgFkbG0IludDQvDQABrtjJbtlwnugwCLcB/s320/screenshot.jpg

Описание игры с кубиком и  полосками- заменой палочек


"
Что говорят числа" педагог предлагает определить, какая палочка показывает большее, а какая меньшее число? При этом дети запоминают числовое значение цветных палочек. Проверить свое предположение дети могут, наложив на цветные палочки белые кубики, которые обозначают число "один".

      

             "Построим домик" дети подбирают кирпичики нужного размера. На палочку определенной длины надо положить две меньшие палочки так, чтобы они совпали по длине. При этом педагог уточняет, из каких двух палочек состоит, например, число шесть. Как еще можно составить это число? В данной игре дети представляют разные варианты состава числа из двух меньших. По такому же принципу играют в игру "Ковёр" и без шаблонов.

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4EzGajJmHGydg2Ch-BSJE5dJuRAWtFyJTc-UkDhzBrtRy-8BdilQUnym3Da5kI0EiaIJ7qjXEvKf6g8OjNkHojvtL7pBJdlkx_htTz1KekFIQPdOwBaKpybX9g1EKIOFEicEdzHrcZ_gedXWWkBRIQQB=s0-d

Игра "Домик для поросёнка"

        "Узнай номера домиков" . Нарисуйте улицу  с домиками по обе стороны. К домикам проведите дорожки- уложите по  палочке разного цвета. Сделайте сразу чётные и нечётные ряды домов. Дети обозначают номера( кладут карточку с номером или рисуют цифры)  домиков по длине дорожек (палочек).

  Идеи   для  упражнений на сложение в пределах 10:
видео
Идеи для рабочих листов:

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4Ez0pbqQgrfvlDoP0TMzlD7DoGE8jP8pohoNU9f5ZxmvP00R24NIaRSRY6P9i3Y2RRvGe319L3bEb7j3HPLusizn4zkYedAzfmdgwKBMLAPwVQc1fLS3Kdie8N3hE8iX4VsNoCHxLRp5fg=s0-d

         рабочие листы:

https://1.bp.blogspot.com/-NuMwcG7Cy4s/VHZPvMmZSYI/AAAAAAAAAfk/ksMgJbbZynU/s320/DSC_0011.JPG

Использование палочек при освоении детьми деления целого на части (дробных чисел):

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4EwHtWeursQ9nzBolailecy83QZcVahn6mJLAqo5vCeRf_FWB675DTQBjL8GoHRPksH-17i3qdz2fbGhPYZPD8DdZRQcEzcC6bYWnbAyHZqpIe135AKHnf0daqHyYLcOsg2w0cE93PRww5SgfhNxolDW1iU7=s0-d

Какие палочки можно разделить пополам?

Алгоритм действий с числом "три": Возьмите палочку "3", разделите ее на три равные части. Сколько белых палочек в числе три? (Три палочки). Покажите 1/3 часть, 2/3 части; 3/3 части чему равны?  Если мы снова под палочку "3" положим 3 белых палочки, то получим опять число три. Чему же равны 3/3 части? Ответ:  трём или одному целому. А что больше: 1/3 часть или 2/3 части? После соответствующего практического действия сравнивается 1/3 часть с 3/3. Каждый раз проговаривается, на сколько одна часть больше (меньше) другой. Упражнения проводятся на всех числах, части целого дети показывают на листе в клетку или кладут их на ладонь руки. 

 Умножение при помощи палочек осваивается детьми 6-7 лет. 

Алгоритм действий: взять палочку "один" только один раз и положить перед собой на столе. Если мы палочку "1" взяли только один раз, сколько же получилось? А если взять не один раз, а два раза, один и еще один, так, сколько же получится, если один взять два раза? (Два). Какой палочкой проверим ответ?Возьмите "1" три раза. Сколько получилось? Проверьте ответ. 
Затем дети осваивают правила умножения числа два, замечают, что по мере увеличения числа, на которое умножается число два увеличивается ответ тоже на два. Ответ в случае перехода через десяток дети составляют из имеющихся в наличии палочек. Сложите число  12 и т.д. до 20
Варианты игр: очень удобно устроить "Г
онки на сто метров" на мерной ленте и использовать один или два игровых кубика. Например играют только палочки- пятёрки. На кубике 6- и пятёрка двигается на 6 ходов вперёд-  дети отмеряют 6 раз по пять палочек( 6х5=30) и т.д.
Для усвоения действия 
деления можно предложить детям игру. Взять палочку "8" и разделить ее так, чтобы у каждого получилось по два; по четыре. Играют трое детей и делят палочку "9", чтобы каждый получил по "три".

           "Целое и части":

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4EzN1QgQY-Y9MfDENxBJlNBZ53LBFDEIFULX3Qj24cxLzxhV3vU6YxHylqJStu17Tdg9C-ieIavFmJEowXpTpwXKAvVzZdQaqztYvXtn1DR4FDqoQJ0XQBRAp1RSVTKfhmNfvTaivG5oBQHL745fYrlikZCcjVr9Fx6Hm21oij4=s0-d

            "Сложи квадрат":

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4Ex7Zib402GM5NLpTEVUGJ5hCa0xDQX-R1hdKFpbrSLGAvwaSQIFeMziljogWnaqhfKce5tU2aBvetwcn7cISgSZOVmxf4Dm3KFnePPaOqH3Rt3zg8BDLkABMq7SdHT6-HgBPF1OHgrCMlbXnW_2qSsK3pU=s0-d

1x1, 2x2, 3x3, 4x4, 5x5, 6x6

"Какой длины и сколько?"
Игра с двумя кубиками: один кубик показывает точками , какого цвета  палочки нужно взять( от 1 до 6), а  второй-сколько палочек( от 1 до 6):

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4ExfJV2I51ag3MwVhW9l_XAHWmNStobKQ5sN7D_AyAKxciQe1R6BumrGWmRvurxdf8NXlbMuzF0qnknapOhVRM-9oracAJxa92V2cHNffvt5ZaiH9sA9H8Lx7-GvNVBc-Q-uOItrl3Hh8F55QL1lMqhdTS2X41uk=s0-d

 4  шестёрки(тёмно-зелёный), 2 пятёрки (жёлтый), 5 троек (светло-зелёный), 4 четвёрки (фиолетовый), 3 двойки(красный)

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4EwZmgr2imeX4d-5QaGkKQwEaCAgqFb7D_L58pzFYdwGR0PoC2G86hiZoUrBhwLjzdPLSS2uogLOM-_imzQWVTSzD1MgF6sEfJmkkNPmOxPHfNSX72c-Mps4nBP_EJ89FpPBnQex_Rd-Dlp9_cMQBnExOHM76oQwRX0=s0-d

На втором листе запишите свои действия

6)освоить соотношения по длине, высоте, массе, объёму;

На этом этапе используются различные игровые задачи: "Я спрятала палочку длиннее (легче, больше) желтой. Найдите ее! (Скажите какую)'. 

Измерьте всё, что захочется, любой палочкой. Например, найдите в комнате для занятий, что-то такой же длины, как белая и т.д.
Интересны задания из статьи 
Игры по использованию палочек Кюизенера на ознакомление с транзитивностью как свойством величины с детьми 6-7 лет , например:
 В лесу выросли три подснежника. Второй цветок выше первого, а третий подснежник вырос выше второго. Сложи из палочек подснежники. Какой подснежник выше (ниже) первый, третий?

https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4ExK5-0lwDE83W_Zdzw69OUFe0j4FEXa-txFzOhNxpeNeQLSow21Rh942nV-FYOwzd7hGDoqTGXGS8TntqRnV2Ep7NMfhNxG9RGD9cdU_JnWOdLfOjVPkykEWTiQkzH1Avq4e0EVAf-PXqd8eg=s0-d



          7) развивать логическое мышление;
    "Загадки":  Поезд состоит из трех вагонов. Желтый вагончик стоит внутри, а розовый - не является первым. В какой последовательности стоят вагоны? Сколько пассажиров в каждом вагоне? Сколько пассажиров в поезде? При этом упражнении закрепляются знания детей о порядковом счете. На заключительном этапе работы предлагают детям составить из цветных палочек двухзначные числа.
  У меня три  вагона- все разного цвета. Весь поезд из них такой же длинный, как тёмно-зелёная палочка. Какого цвета мои вагончики? Ответ: светло-зелёный, красный, белый.
  У меня 4 одинаковых вагона. Весь поезд из них  равен оранжевой и тёмно-зелёной палочкам вместе. Какого цвета мои вагоны? Ответ: 4 фиолетовых вагона.
  У меня 4 палочки. Все неодинаковые. Весь поезд длиной в три жёлтых , если отнять фиолетовую:
https://lh3.googleusercontent.com/blogger_img_proxy/ABLy4Ez9lglZWGuAcqYtMsKiDwdI2B3zKHlZa9oweSJkss97WSUM8C76m80Qe1dJHxkmh3SNjGvNpMl54ggG3amrQ5JPPQt6HJOhORyaUPoDOYCtNNxTQfmeUMWQm2SmX36IsSho8wRXBRyyrRdYdIIq-kiSXq72sRuyTrKoZSfwo4HG688rYw=s0-d

            8) развивать творческие способности, воображение, фантазию, способности к моделированию и конструированию, умение создавать различные конфигурации, воссоздавать модели по образцу;

Сказка про Стикию
 В одной маленькой-маленькой стране, которая вся состояла из палочек и назвалась Стикией( от английского слова , что означает "палочка"), все жители были из палочек и, хотите- верьте, хотите -нет, но и сам правитель этой страны мудрый Стик тоже состоял из одних только палочек.
  Вот этот-то правитель  Стик, и изобрел однажды волшебные «Кростики» ( см.альбом для игры с цветными счетными палочками Кюизенера от 3 до 9 лет- cсылка ниже). А из них жители Стикии стали получать в изобилии всевозможные фрукты и овощи, разных животных, посуду, машины и множество других нужных вещей. И все это было из палочек.
  Ну, конечно же, все  жители этой палочной страны были очень благодарны своему  правителю и называли его  не иначе как Великий  Мастер Стик.
  Сегодня Великий Мастер Стик и его приближенные собрались на «Золотом крыльце» ...
  См. классный альбом для игры с цветными счетными палочками Кюизенера от 3 до 9 лет-ссылка и описание  ниже:

https://1.bp.blogspot.com/-2Sx19AVms2k/WCWLgT2i8fI/AAAAAAAAQ3k/xgXUdeWQMxQjUe-UERghf5HKPNV8iKVQwCLcB/s320/img064.jpg

https://3.bp.blogspot.com/-M8EZwV92F4o/WCWNldqKg7I/AAAAAAAAQ3s/hJLM5KG8QvUMscXS7Uo-PAmAAsQ4fxupQCLcB/s320/img119.jpg

https://1.bp.blogspot.com/-M5B3PzPqtro/WCWNnvLcUrI/AAAAAAAAQ3w/la0vTk-UMDA3P2WQkrmV-589MM36CaeYgCLcB/s320/img120.jpg

Интересные короткие дидактические сказки


Для палочек от российских производителей подходят  печатные альбомы с играми, сказками и шаблонами:
Альбом-игра: "Волшебные дорожки"

Альбом-игра: "Дом с колокольчиком"

Альбом-игра: "На златом крыльце"


    Счетные палочки Кюизенера интересны тем, что с ними можно работать в горизонтальной и в вертикальной плоскости. Это дает возможность упражнять детей в перенесении изображаемой модели из одной плоскости в другую. В процессе моделирования ребенок замещает конструкцией из палочек реальный предмет (дом, дерево, человека), с помощью творческого воображения, на основе которого формируется творческое мышление.



По теме: методические разработки, презентации и конспекты

Технология «Цветные палочки» Кюизенера как средство реализации программных задач в образовательной области "Познание".

Дидактическое пособие «Цветные палочки» Кюизенера универсально и может использоваться в различных видах деятельности. Оно соответствует современным требованиям дидактики и позволяет успешно решать про...

Учебно-методическое пособие: технология «Цветные палочки» Кюизенера как средство реализации программных задач в образовательной области «Познание»

Дидактическое пособие «Цветные палочки» Кюизенера универсально и может использоваться в различных видах деятельности. Оно соответствует современным требованиям дидактики и позволяет успешно решать про...

Мастер-класс "Развитие логического мышления на основе учебно-игровых пособий “Логические блоки Дьенеша” и цветных палочек Кюизенера"

Развитие логического мышления на основе учебно-игровых пособий “Логические блоки Дьенеша” и цветных палочек Кюизенера...

Обучение дошкольников основам математики с помощью цветных палочек Кюизенера (развивающие игры и задания)

Cистема работы по развитию математических представлений у старших дошкольников с использованием современной педагогической технологии - цветных палочек Кюизенера...

Занятие в средней группе с ребёнком с ЗПР «Знакомство с цветными палочками (Кюизенера)»

Занятие в средней группе с ребёнком с ЗПР «Знакомство с цветными палочками (Кюизенера)»...

Занятие в средней группе «Знакомство с цветными палочками (Кюизенера)»

Занятие в средней группе «Знакомство с цветными палочками (Кюизенера)» ...