Консультация для воспитателей на тему: «Подготовка дошкольников к вычислительной деятельности и обучение решению задач»
консультация по математике (старшая группа)
Консультация для педагогов о подготовке дошкольников к вычислительной деятельности и обучению решения задач
Скачать:
Вложение | Размер |
---|---|
doklad_po_matematike.docx | 30.41 КБ |
Предварительный просмотр:
муниципальное автономное дошкольное образовательное учреждение
«Детский сад №8»
Энгельсского муниципального района Саратовской области
Доклад на тему: «Подготовка дошкольников к вычислительной деятельности и обучение решению задач»
Подготовила:
Воспитатель Свитайло А.С.
г. Энгельс
2019г.
Подготовка дошкольников к вычислительной деятельности
Овладевая числом и счетом, дети постепенно подготавливаются к основной деятельности — вычислительной. Главными образовательными задачами при этом являются:
§ усвоение взаимно-обратных отношений между смежными числами;
§ ознакомление с цифрами;
§ усвоение состава числа из единиц и двух меньших чисел;
§ деление целого множества на части (подмножества), а затем деление числа, составление его из двух меньших чисел.
Усвоение взаимно-обратных отношений между смежными числами осуществляется в группах пятого и шестого годов жизни, а в последующем эти знания будут использоваться как прием вычислительной деятельности. Воспитатель говорит детям: «Решая задачу, арифметический пример, когда надо будет прибавить (вычесть) единицу (число 1), не надо пересчитывать множества, т. к. мы знаем, что, добавив единицу, получим число, следующее за ним, а вычитая из числа единицу, получим число, которое предшествует ему».
Дети упражняются в этом на протяжении пятого-шестого годов жизни, а в старшей группе при решении арифметических задач и примеров они свои знания обобщают и применяют в другой — вычислительной — деятельности.
Вычислительная деятельность, в отличие от счетной, имеет дело не с конкретными множествами, а с числами и их изображениями на письме — цифрами. Поэтому значительным фактором подготовки к вычислительной деятельности является ознакомление с цифрами. Желательно начинать эту работу в группе пятого года жизни со второго квартала. К этому времени у детей уже сформированы знания о первых числах и счете в пределах трех. Педагог постепенно подводит их к пониманию необходимости изображать числа на письме особыми знаками — цифрами. Каждое число записывается по-своему. Дети называют разные числа, а воспитатель показывает им цифры, которыми они записываются.
На пятом году жизни методика ознакомления с цифрами простая и конкретная: демонстрация цифры и анализ ее начертания, последующее ее узнавание, обведение указательным пальцем по контуру, выкладывание из палочек (полосок бумаги), лепка из пластилина, разучивание стихов о каждой цифре и др.
В старшей группе дети продолжают знакомиться с цифрами 6—9 и 0. Причем ознакомление с цифрой осуществляется одновременно с формированием знаний об образовании числа и счетом в пределах заданного числа. Методика работы становится более разнообразной и детальной, поскольку сравниваются множества, числа и цифры между собой. Значительное внимание уделяется именно изображению (начертанию) цифры. Например, детям предлагается заштриховать контурное изображение цифры на листе бумаги (ширина цифры приблизительно равна 0,5 см). Дети выполняют задания, а воспитатель помогает им.
Дошкольников знакомят с каждой отдельной цифрой, соотнося ее с числом через действия с предметными множествами. Для этого воспитатель демонстрирует цифру, предлагая детям рассмотреть ее начертания; дети создают соответствующее множество, откладывая определенное количество предметов; обводят указательным пальцем правой руки по контуру цифры, усваивая ее начертания.
При ознакомлении с цифрами широко используются специально сделанные карточки (рис. 26). Карточка поделена на две неравные части: левая — меньшая, правая — большая. Внизу карточки по всей ее длине приклеена полоска бумаги так, чтобы получился кармашек. В левую часть вкладывается карточка с цифрой, а в правую — чистый лист бумаги, на котором ребенок должен нарисовать столько предметов, сколько показывает цифра.
В детском саду не обучают писать цифры, но очень важно, чтобы дети усвоили правильное направление движения руки при написании разных цифр. Эффективным для этого является обведение контура цифры: дети указательным пальцем обводят цифру, сохраняя направление движения, тренируются в написании цифр в воздухе, выкладывают ее из счетных палочек, лепят из пластилина. Во время прогулки можно предложить детям написать цифру палочкой на песке, земле, снегу, выложить ее из природного материала и т. п.
Важным этапом в подготовке детей к вычислительной деятельности является ознакомление с количественным составом числа из единиц в пределах пяти. Дошкольники должны не только понимать то, что множество состоит из отдельных элементов, но и объяснять отношение числа к единице, т. е. выделять количество единиц в числе. Эта работа осуществляется в группах пятого и шестого годов жизни. При этом ребята осознают, что все числа составляются из единиц, количество единиц в разных числах различно, оно соответствует различному количеству элементов множества (совокупности).
Понимание состава числа — очень важный момент в подготовке детей к вычислительной деятельности. При обучении сложению и вычитанию чисел дети будут опираться на сочетательный закон сложения, т. е. приемы присчитывания и отсчитывания по единице: 4 + 2 = 4+1 + 1 = 6; 4 — 2 = 4-1-1=2.
Дошкольники могут быть также ознакомлены с количественным составом чисел из двух меньших, сначала в пределах первой пятерки, а потом в пределах десяти. Эта задача рассматривается как одна из наиболее важных в подготовке детей к вычислительной деятельности.
На протяжении всех лет обучения в детском саду в процессе выполнения упражнений с множествами постепенно детей подготавливают к усвоению состава числа из двух меньших чисел. Дети создают множества, объединяют небольшие группы вместе, делят множество на части, сравнивают их между собой. Все эти упражнения способствуют созданию существенной основы вычислительной деятельности. В дальнейшем это будет использоваться как один из приемов сложения (вычитания).
Следует подчеркнуть, что основной целью этих упражнений является не механическое запоминание таблиц, показывающих, из каких чисел составляется то или другое число, а понимание того, что число, так же как и множество, может быть образовано из частей, групп, других чисел, общее количество которых соответствует заданному множеству или числу. Оперируя конкретными множествами и числами, дети осознают отношения частей и целого. Части могут быть равными и неравными, большими или меньшими, однако всегда часть меньше целого. Приведем пример такого занятия.
Воспитатель ставит цель: ознакомить детей с количественным составом числа 4 (четыре).
«Дети, положите перед собой игрушки, — говорит воспитатель, — посчитайте их. Найдите карточку с соответствующей цифрой и положите ее под игрушками». Дети находят карточку, воспитатель проверяет, все ли дети правильно посчитали игрушки и взяли карточку с соответствующей цифрой. «Сколько у вас игрушек? Разложите игрушки на две цветные полоски бумаги». Дети выполняют задание. «Расскажи, Петя, как ты разложил четыре игрушки. Как Алена разложила их? А как разложил игрушки Саша? Как можно составить число "четыре"? Из каких меньших чисел складывается число "четыре"?»
Детям предлагается собрать игрушки и снова разложить их на две полоски, однако уже иначе, не так, как они были разложены раньше. Задание повторяют трижды. В процессе такого обучения дети усваивают, что число «четыре» составляется из: 3 и 1; 1 и 3; 2 и 2.
Особое значение имеют упражнения в практическом делении целого предмета на равные (а потом и неравные) части и на основе этого — осознание понятий «половина», «одна вторая», «четверть», «три четвертых» и т. д
Дети должны понимать, как части относятся к целому. Для этого воспитатель раздает детям два листа бумаги одинаковые по размеру и форме. Один лист дети делят, второй — остается целым. После того как дети разделят лист на четыре части, они показывают по просьбе воспитателя одну четвертую, две, три четвертых листа, а потом — целый лист. «Как можно сравнить целый лист бумаги с его частями, которые получили в результате деления?» — спрашивает воспитатель. Дети на целый лист накладывают часть и убеждаются, что целое больше, чем часть, а часть меньше целого.
На последующих занятиях знания детей уточняются и обобщаются. Так, дети осознают, что единицы времени можно условно поделить на части: части суток, времена года, дни недели и др. Дошкольники учатся делить на части не только разъединением, сгибанием, разрезанием, но и на основе измерения.
К измерению при делении целого на части, как правило, обращаемся тогда, когда нельзя сгибать предмет. Например, воспитатель рисует на доске продолговатый невысокий прямоугольник и предлагает детям подумать, как можно разделить его на четыре равные части. (На столе воспитателя лежит шнур, по длине равный одной стороне прямоугольника.)
С помощью наводящих вопросов (Чем можно измерить прямоугольник? Как можно разделить шнур? Какую следует выбрать меру?) дети должны прийти к рещению: необходимо шнуром измерить длину прямоугольника, убедившись, что он равен длине шнура, сложить шнур пополам и еще раз пополам. Сложенный шнур отложить четыре раза на прямоугольнике, сделать мелом отметки. Потом делают обобщение: «Мы разделили прямоугольник, изображенный на доске, на четыре равные части, каждая из этих частей называется одной четвертой».
Воспитатель постоянно побуждает детей словесно описывать способ и результат деления. Дети устанавливают связь между действием и его результатом: разделили предмет пополам (дважды пополам) — получили две (четыре) равные части, объединили их вместе — получили целый предмет.
На просьбу воспитателя дети находят одну из двух частей (половинок), одну, две, три из четырех частей. Воспитателю следует помнить, что знания и умения детей делить предмет на части целесообразно использовать для расширения представлений о размерах геометрических фигур, пространстве, времени. Так, дети делят квадрат, прямоугольник, ромб на равные части, получают при этом разные геометрические фигуры. Иногда детям дают конкретные задания: «Как следует сложить квадрат, чтобы получить два равных треугольника (прямоугольника)?»
Знания о делении целого на части и сложении целого из частей, полученные детьми на занятиях по математике, закрепляются в изобразительной деятельности, конструировании и т. д. Понимание детьми отношения части и целого в дальнейшем будет использоваться при обучении их решению арифметических задач с использованием схем, моделей.
Обучение детей решению арифметических задач и примеров
В обучении решению арифметических задач условно можно выделить два взаимосвязанных этапа: ознакомление со структурой задачи, способами решения ее и обучение приемам вычислений (А. М. Леушина). При этом дети в значительной степени осознают содержание арифметической задачи, учатся формулировать арифметические действия, аргументировать выбор действия, овладевают приемами сложения и вычитания.
Однако, несмотря на то, что вычислительная деятельность вызывает интерес у детей, а самой проблеме отводится значительное место в программе обучения в детском саду, многие старшие дошкольники и даже младшие школьники (учащиеся 1—3-х классов) испытывают значительные трудности именно в решении арифметических задач.
Очевидно, основная причина невысокого уровня знаний детей заключается в самой сути того, что отличает вычислительную деятельность от счетной. Во время счета ребенок имеет дело с конкретными множествами (предметы, звуки, движения). Он видит, слышит, чувствует эти множества, имеет возможность практически действовать с ним (накладывать, прикладывать, непосредственно сравнивать). Что же касается вычислительной деятельности, то она связана с числами. А числа — это абстрактные понятия. Вычислительная деятельность опирается на разные арифметические действия, которые также являются обобщенными, абстрагированными операциями с множествами.
Понимание самой простой арифметической задачи требует анализа ее содержания, выделения ее числовых данных, понимания отношений между ними и, конечно, самих действий, которые ребенок должен выполнить.
Дошкольникам особенно трудно понимать вопрос задачи, который отражает математическую сущность действий, хотя именно вопрос задачи направляет внимание ребенка на отношения между числовыми данными.
Обучение дошкольников решению арифметических задач подводит их к пониманию содержания арифметических действий (добавили — сложили, уменьшили — вычли). Это также возможно на определенном уровне развития аналитико-синтетической деятельности ребенка. Для того чтобы дети усвоили элементарные приемы вычислительной деятельности, необходима предварительная работа, направленная на овладение знаниями об отношениях между смежными числами натурального ряда, о составе числа, счете группами и т. д.
Особое значение в формировании вычислительной деятельности приобретают четкая системность и поэтапность в работе.
«В магазине было пять телевизоров, один из них продали. Сколько телевизоров осталось в магазине?» Решая эту задачу, воспитатель учит аргументировать свои действия так: было пять телевизоров, один продали, следовательно, их осталось на один меньше. Чтобы узнать, сколько телевизоров осталось, нужно от пяти отнять один и получится четыре.
Воспитатель формирует у детей представления о действиях сложения и вычитания, одновременно знакомит их со знаками «+» (прибавить, сложить), «-» (отнять, вычесть) и «=» (равно, получится).
Таким образом, ребенок постепенно от действий с конкретными множествами переходит к действиям с числами, т. е. решает арифметическую задачу.
Уже на втором-третьем занятии наряду с задачами-драматизапиями и задачами-иллюстрациями можно предлагать детям решать устные (текстовые) задачи. Этот этап работы тесно связан с использованием карточек с цифрами и знаками. Особенно полезны упражнения детей в самостоятельном составлении ими аналогичных задач. При этом воспитатель должен помнить, что основное заключается в нахождении не столько ответа (названия числа), сколько пути к нему. Так, дети решают задачу: «На участке детского сада в первый день посадили четыре дерева, а на следующий — еще одно дерево. Сколько деревьев посадили за два дня?» Воспитатель учит ребенка мыслить во время решения задачи. Он спрашивает детей: «О чем идет речь в задаче?» — «О том, что на площадке детского сада посадили деревья». — «Сколько деревьев посадили в первый день?» — «Четыре». — «Сколько деревьев посадили во второй день?» — «Одно дерево». — «А что спрашивается в задаче?» — «Сколько всего деревьев посадили на участке за два дня?» — «Как можно узнать, сколько деревьев посадили на участке?» — «К четырем прибавить один».
Воспитатель подводит детей к такому обобщению: чтобы к числу прибавить один (единицу), не надо пересчитывать все предметы, надо просто назвать следующее число. Когда к четырем прибавляем один, мы просто называем следующее за числом «четыре» число «пять». А когда надо вычесть, отнять один, следует назвать предыдущее число, стоящее перед ним. Таким образом, опираясь на имеющиеся у детей знания, воспитатель вооружает их приемами присчитывания (прибавления) к числу единицы и вычитания единицы.
Следующий этап в работе связан с ознакомлением детей с новыми задачами (задачами второго типа) на отношения «больше — меньше на несколько единиц». Например, «На станции стояли четыре пассажирских поезда, а товарных — на один меньше. Сколько товарных поездов было на станции?» В этих задачах арифметические действия подсказаны в самом условии задачи. Отношение «больше на единицу» требует от ребенка увеличения, присчитывания, сложения. Выражение «больше (меньше) на единицу» дети уже усвоили в группах пятого-шестого годов жизни, сравнивая смежные числа.
В начале обучения дошкольникам предлагаются только прямые задачи, в них и условие, и вопрос словно подсказывают, какое действие следует выполнить: сложение или вычитание.
Еще более важным и ответственным этапом в обучении детей решению арифметических задач является ознакомление их с третьим типом задач — на разностное сравнение чисел. Задачи этого типа решаются только вычитанием. При ознакомлении детей с этим типом задач их внимание обращается на основное — вопрос в задаче. Вопрос начинается со слов «на сколько?», т. е. всегда необходимо определить разницу, разностные отношения между числовыми данными. Воспитатель учит детей понимать отношения зависимости между числовыми данными. Анализ задачи должен быть более детальным. Во время анализа дети должны идти от вопроса к условию задачи. Следует объяснить, что в выборе арифметического действия основным всегда является вопрос задачи, от его содержания и формулировки зависит решение. Поэтому следует начинать с анализа вопроса. Сначала детям предлагают задачу без вопроса. Например: «На прогулку дети взяли четыре больших мяча и один маленький. Что это такое? Можно ли это назвать арифметической задачей?» — обращается воспитатель к детям. «Нет, это только условие задачи», — отвечают дети. «А теперь поставьте сами вопрос к этой задаче».
Следует подвести детей к тому, что к этому условию задачи можно поставить два вопроса:
1. Сколько всего мячей взяли на прогулку ?
2. На сколько больше взяли больших мячей, чем маленьких?
В соответствии с первым вопросом следует выполнить сложение, а в соответствии со вторым — вычитание. Это убеждает детей в том, что анализ задачи следует начинать с вопроса. Ход рассуждений может быть таким: чтобы узнать, сколько всего мячей взяли дети на прогулку, надо знать, сколько взяли больших и маленьких отдельно и найти их общее количество. Во втором случае надо найти, на сколько больше одних мячей, чем других, т. е. определить разницу. Разницу всегда находят вычитанием: от большего числа вычитают меньшее.
Итак, задачи третьего типа помогают воспитателю закрепить знания о структуре задачи и способствуют развитию у детей умения различать и находить соответствующее арифметическое действие.
Особое внимание в этот период следует уделить обучению детей составлению и решению задач по иллюстрациям и числовым примерам.
Так, воспитатель обращается к детям: «Сейчас мы с вами будем составлять и решать задачи по картине». Предлагается рассмотреть картину и ответить на вопрос: «Что нарисовано на картине? О чем хотел рассказать художник? Где играют дети? Сколько детей на берегу? Что делают эти дети? (Показывает на детей в лодке.) Сколько их? Когда они выйдут на берег, их станет больше или меньше на берегу? Составьте задачу по этой картинке».
Воспитатель вызывает двух-трех детей и выслушивает составленные ими задачи. Потом выбирает наиболее удачную задачу, и все вместе решают ее. «О чем идет речь в задаче? Сколько детей играло на берегу? Сколько детей приплыло в лодке? Что надо сделать, чтобы решить задачу? Как к числу "пять" можно прибавить число "два"?» — 5+1 + 1=7.
Воспитатель следит за тем, чтобы дети правильно формулировали арифметическое действие и объясняли прием присчитывания по единице.
Примерно так же дети составляют и решают задачи по числовому примеру. Составление и решение арифметических задач по числовому примеру требует еще более сложной умственной деятельности, поскольку содержание задачи не может быть произвольным, а опирается на числовой пример как на схему. В начале обращается внимание детей на само действие. В соответствии с действием (сложение или вычитание) составляется условие и вопрос в задаче. Можно усложнить цель — не по каждому числовому примеру составляется новая задача, а иногда по одному и тому же примеру составляется несколько задач разных типов. Это, естественно, значительно сложнее, зато наиболее эффективно для умственного развития ребенка.
Так, по числовому примеру 4 + 2 дети составляют и решают две задачи: первую — на нахождение суммы (сколько всего), вторую — на отношение «больше на несколько единиц» (на 2). При этом ребенок должен осознавать отношения и зависимости между числовыми данными.
На основе примера 4 — 2 дети должны составить три задачи: первого, второго и третьего типа. Сначала воспитатель помогает детям вопросами, предложениями: «Сейчас мы составим задачу, где будут слова "на 2 меньше", а потом по этому самому примеру составим задачу, где не будет таких слов, и нужно будет определить разницу в количестве (сколько осталось)». А потом воспитатель спрашивает: «А можно ли на основе этого примера составить новую, совсем другую задачу?» Если дети сами не могут сориентироваться, то воспитатель подсказывает им: «Составьте задачу, где вопрос начинался бы со слов "на сколько больше (меньше)"».
Такие занятия с детьми помогают им понять основное: арифметические задачи по своему содержанию могут быть разными, а математическое выражение (решение) — одинаковым.
В группе седьмого года жизни детей можно будет ознакомить с новыми приемами вычислений — на основе счета группами. Дети, научившись считать парами, тройками, могут сразу прибавлять число 2, а потом и 3. Однако спешить с этим не следует. Важно, чтобы у детей сформировались прочные, достаточно осознанные умения и навыки присчитывания и отсчитывания по единице.
Наряду с решением арифметических задач детям предлагаются арифметические примеры, которые способствуют закреплению навыков вычислительной деятельности. При этом детей знакомят с некоторыми законами сложения.
Известно, что всегда легче выполнить сложение, если второе слагаемое меньше первого. Однако не всегда именно так предлагается в примере, может быть и наоборот — первое слагаемое меньше, а второе больше (например, 2 + 1 = 1). В таком случае есть необходимость познакомить детей с переместительным законом сложения: 2 + 7 = 7 + 2. Сначала воспитатель показывает это на конкретных примерах, например на брусках. При этом он актуализирует знания детей о составе числа из двух меньших. Дети хорошо усвоили, что число 9 можно образовать (составить) из двух меньших чисел: 2 и 7 или, что тоже самое, 7 и 2. На основе многочисленных примеров с наглядным материалом дети делают вывод-обобщение: действие сложения выполнять легче, если к большему числу прибавить меньшее, а результат не изменится, если переставить эти числа, поменять их местами.
Итак, программа воспитания в детском саду и методика математического развития большое внимание уделяют проблеме обучения вычислительной деятельности. Однако только в результате целенаправленной систематической работы у детей формируются достаточно прочные и осознанные знания и навыки в вычислительной деятельности, а это является важной предпосылкой в овладении математикой в школе.
По теме: методические разработки, презентации и конспекты
Опыт работы воспитателя по теме: «Подготовка дошкольника к овладению письменным навыком»
предложенные материалы помогут педагогам организовать работу по подготовке руки дошкольников к овладению письменным навыком. Опыт работы включает задачи, мониторинг, тесты , планирование по возрастам,...
Консультация для воспитателей на тему: «Ознакомление дошкольников с народным декоративно-прикладным искусством».
Консультация для воспитателей...
Консультация для воспитателей на тему: "Современные методы диагностики готовности детей к обучению в школе"
Данная консультация была разработана для воспитателей, для поверхностного ознакомления с методиками определения готовности к школьному обучению"...
Консультация для воспитателей: "Развитие познавательной активности дошкольников через экспериментальную деятельность"
Всем нам хочется видеть детей любознательными, активными в познании мира, общительными, творческими, умеющими ориентироваться в окружающей обстановке, решать возникающие проблемы.Как же нам, педагогам...
Консультация для воспитателей на тему: "Использование экспериментальной и исследовательской деятельности в экологическом развитии старших дошкольников"
Консультация на тему:«Использование экспериментальной и исследовательской деятельности в экологическом развитии старших дошкольников» То, что я услышал, я забыл.То, что я увидел, я по...
Консультация для родителей на тему "Подготовка дошкольников 6-7 лет к овладению грамотой"
Информация для родителей подготовительной к школе группы...
Консультация для родителей по теме «Подготовка детей с нарушением речи к обучению грамоте»
Школа предъявляет к своим первоклассникам очень высокие требования. Без сформированности определенных навыков и умений ребенку очень трудно будет войти в ритм школьной жизни и не отстать от одноклассн...