Особенности восприятия арифметической задачи и ее решения дошкольниками
статья по математике по теме
Арифметическая задача – это простейшая, сугубо математическая форма отображения реальных ситуаций, которые одновременно близки и понятны детям и с которыми они ежедневно сталкиваются.
Скачать:
Предварительный просмотр:
Особенности восприятия арифметической задачи и ее решения дошкольниками
Арифметическая задача – это простейшая, сугубо математическая форма отображения реальных ситуаций, которые одновременно близки и понятны детям и с которыми они ежедневно сталкиваются. Есть все основания считать, что это до некоторой степени объясняет достаточно высокий интерес обучающихся к решению арифметических задач.
Однако, несмотря на то, что вычислительная деятельность вызывает интерес, а самой проблеме отводится значительное место в программе обучения в детском саду, многие старшие дошкольники и даже младшие школьники испытывают значительные трудности именно в решении арифметических задач. Около 20% детей подготовительной группы детского сада испытывают трудности в выборе арифметического действия, аргументации его. Эти дети, решая арифметические задачи, ориентируются в основном на внешние, несущественные связи и отношения между числовыми данными в условии задачи, а также между условием и вопросом задачи. Это проявляется, прежде всего, в непонимании обобщенного содержания понятий «условие», «вопрос», «действие», а также знаков: +, _, =, в неумении правильно выбирать необходимый знак, арифметическое действие в том случае, когда заданное в условии конкретное действие не соответствует арифметическому действию (прилетели, добавили, дороже – сложение; улетели, взяли, дешевле – вычитание). Более того, иногда воспитатели именно на эти псевдоматематические «связи» ориентируют детей. В таких ситуациях вычислительная деятельность формируется недостаточно осознанно.
Очевидно, основная причина низкого уровня знаний заключается в том, что отличает вычислительную деятельность от счетной. Во время счета ребенок имеет дело с конкретными множествами (предметов, звуков, движений). Он видит, слышит, чувствует эти множества, имеет возможность практически действовать с ними (накладывать, прикладывать, непосредственно сравнивать). Что же касается вычислительной деятельности, то она связана с числами. А числа – это абстрактные понятия. Вычислительная деятельность опирается на разные арифметические действия, которые также являются обобщенными, абстрагированными операциями с множествами.
Понимание самой простой арифметической задачи требует анализа ее содержания, выделения ее числовых данных, понимания отношений между ними и, конечно, самих действий, которые должен ребенок выполнить.
Дошкольникам особенно трудно понять вопрос задачи, отражающий математическую сущность действий. Именно вопрос задачи направляет внимание ребенка на отношения между числовыми данными.
Обучение дошкольников решению арифметических задач подводит их к пониманию содержания арифметических действий (добавили – сложили, уменьшили – вычли). А это возможно также на определенном уровне развития аналитико-синтетической деятельности ребенка. Для того чтобы они усвоили элементарные приемы вычислительной деятельности, необходима предварительная работа, направленная на овладение знаниями об отношениях между соседними числами натурального ряда, о составе числа, счете группами и т.д.
Особое значение в формировании вычислительной деятельности приобретают четкая системность и поэтапность в работе.
В практике работы дошкольных учреждений принято знакомить детей с арифметическими действиями и приемами вычисления на основе простых задач, в которых отражаются действия самих детей. Задача помогает детям понять, например, смысл нахождения суммы по двум слагаемым. Разнообразие же задач на сложение и вычитание способствует постепенному осознанию смысла постоянно употребляемых терминов: прибавить, отнять, получится, останется, т.е. осознанию смысла арифметических действий. Усвоение самой простой задачи требует анализа ее содержания, выделения числовых данных, осмысливания отношений между ними, а стало быть, и тех действий, которые должны быть совершены.
Решая задачу, ребенок должен подняться от простого различения численности окружающих предметов и явлений к осознанию сложных количественных отношений между ними.
Не сразу, как показали исследования, дети осознают и саму структуру задачи. Этому должно способствовать обучение. Вслед за пониманием структуры задачи, отличающейся от рассказа и загадки, дети должны осмыслить отношения между числовыми данными.
Особую сложность для детей представляет постановка вопроса к задаче. Чем обусловлена эта трудность? Вопрос определяет сущность задачи, направляет мысль на осознание отношений между числовыми данными, помогает осмыслить характер эмпирического действия и найти соответствующее арифметическое действие, которое должно быть произведено. Но вопрос содержит две стороны: социально – бытовую и арифметическую. Ребенок их не дифференцирует и воспринимает вопрос к задаче как личное обращение к себе. Он привык, что, когда его спрашивают, надо отвечать на вопрос, а не повторять его. Поэтому, повторяя задачу, дети, как правило, не воспроизводят вопрос, а сразу включают ответ в задачу; они спешат дать ответ на вопрос. Иной функции вопроса они еще не знают. Чтобы раскрыть новую для детей сторону вопроса – арифметическую, надо опереться сначала на то, что уже известно детям, поставить каждого из них в положение придумывающего задачу, решить которую должны его слушатели. В такой ситуации необходимость вопроса для задающего задачу станет очевидной. Осмыслить значение вопроса в арифметической задаче помогает также и разный характер вопросов. Постепенно дети должны уяснить, что вопрос направляет внимание на отношения между числовыми данными и понимание того, что требуется узнать в задаче.
Решение разнообразных задач должно подвести детей к пониманию сущности арифметических действий, к пониманию того, что в этих действиях над числами обобщается многообразная практическая деятельность людей с множествами. Она получает отражение в таких обобщенных понятиях, как прибавить, вычесть, получится, равняется и др., при этом сами числа являются показателями мощности множеств. Усвоение всех этих математических терминов поднимает мысль детей до обобщения эмпирических практических действий.
В своих исследованиях Е.А.Тарханова показала необходимость понимания детьми конкретного смысла арифметического действия сложения (вычитания) и связи между компонентами и результатом этих действий. Умение выделять в задаче известное и неизвестное, а в связи с этим выбирать то или иное арифметическое действие; понимание связей между действиями сложения и вычитания. Ее установлено, что дошкольники, обучавшиеся по общепринятой методике решению простых арифметических задач, не владеют необходимым объемом знаний об арифметических действиях сложения и вычитания, так как они понимают связь между практическими действиями в основном на основе ассоциации арифметического действия с жизненным действием. Они не осознают еще математических связей между компонентами и результатом того или иного действия, так как не научились анализировать задачу, выделяя в ней известные и неизвестное.
Даже в тех случаях, когда дети формулировали арифметическое действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т.е. не осознали отношений между компонентами арифметического действия как единства отношений целого и его частей. Поэтому и решали задачу привычным способом счета, не прибегая к рассуждению о связях и отношениях между компонентами. По-другому относятся к решению задач те дети, которые предварительно упражнялись в выполнении различных операций над множествами (объединение, выделение правильной части множества, дополнение, пересечение). Они понимают отношения между частью и целым, а поэтому осмысленно подходят к выбору арифметического действия при решении задач.
Специально организованная работа по обучению старших дошкольников умению решать и составлять арифметические задачи необходима для общего и математического развития детей и подготовит их к успешному изучению математики в школе.
Литература
2. Леушина А. М. Формирование элементарных математических представлений у детей дошкольного возраста: Учеб. пособие для студентов для студентов пединститутов. М.: Просвещение, 1974.
3. Математическая подготовка детей в дошкольных учреждениях: Учебное пособие для педагогических институтов / Сост. В. В. Данилова. М.: Просвещение, 1987.
5. Щербакова Е. И. Методика обучения математики в детском саду: Учеб. пособие для студентов средних педагогических учебных заведений. М.: Академия, 1998.
По теме: методические разработки, презентации и конспекты
Значение обучения дошкольников решению арифметических задач
В процессе математического и общего развития детей дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач....
Моделирование как способ обучения дошкольников решению арифметических задач
Моделирование как способ обучения дошкольников решению арифметических задач...
Значение обучения дошкольников решению арифметических задач
В процессе математического и общего развития детей дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач....
Развитие речи – рассуждения у старших дошкольников в процессе решения арифметических задач.
«Очевидно, что содержание обучения детей решению арифметических задач вполне можно интегрировать с содержанием развития связной речи».Данное методическое пособие будет интересно воспитателям ДОУ, роди...
Доклад на тему: "Обучение дошкольников решению арифметических задач"
В процессе математического и общего развития детей дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач....
Обучение старших дошкольников решению арифметических задач
laquo;…За арифметикой, в особенности за арифметическими задачами, всегда признавалась и другая исключительная роль в обучении, а именно развитие сообразительности, смекалки» А.И.Ма...
Тема: «Логическая задача. Решение арифметической задачи, решение примеров, величина»
Тема: «Логическая задача. Решение арифметической задачи, решение примеров, величина»Возрастная группа: подготовительнаяКлассификация занятия: закрепление ранее полученных знанийФорма орган...