Методические рекомендации для педагогов «Формирование элементарных математических представлений детей дошкольного возраста (количество и счёт)»
учебно-методический материал
Математика в детском саду начинается со второй младшей группы, где начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей.
Скачать:
Вложение | Размер |
---|---|
konsultatsiya_dlya_pedagogov.docx | 47.63 КБ |
Предварительный просмотр:
Муниципальное автономное дошкольное образовательное учреждение
детский сад комбинированного вида «Рябинушка»
«Формирование элементарных математических представлений детей дошкольного возраста (количество и счёт)»
(консультация для педагогов)
Выполнила воспитатель
МАДОУ ДСКВ «Рябинушка»
Морозова Е.А.
г. Покачи 2015 г.
Консультация для педагогов на тему: "Формирование элементарных математических представлений детей дошкольного возраста (количество и счёт)"
Математика в детском саду начинается со второй младшей группы, где начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей.
Современная математика при обосновании таких важнейших понятий, как «число», «геометрическая фигура» и т. д., опирается на теорию множеств.
Выполнение детьми в детском саду различных математических операций с предметными множествами позволяет в дальнейшем развить у малышей понимание количественных отношений и сформировать понятие о натуральном числе. Умение выделять качественные признаки предметов и объединять предметы в группу на основе одного общего для всех их признака — важное условие перехода от качественных наблюдений к количественным.
Работу с малышами начинают с заданий на подбор и объединение предметов в группы по общему признаку («Отбери все синие кубики» и т п.) Пользуясь приемами наложения или приложения, дети устанавливают наличие или отсутствие взаимно-однозначного соответствия между элементами групп предметов (множеств).
Понятие взаимно-однозначного соответствия для двух групп состоит в том, что каждому элементу первой группы соответствует только один элемент второй и, наоборот, каждому элементу второй группы соответствует только один элемент первой (чашек столько, сколько блюдец; кисточек столько, сколько детей, и т. п.). В современном обучении математике в детском садув основе формирования понятия о натуральном числе лежит установление взаимно-однозначного соответствия между элементами сравниваемых групп предметов.
Малышей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.
Методика математики в детском саду
Основная методика обучения математики в детском саду — обучение детей на занятиях. Занятия по математике в детском садупроводят с начала учебного года, т. е. с 1 сентября. В сентябре занятия целесообразно проводить с подгруппами (по 6-8 человек), но при этом охватить всех детей данной возрастной группы. С октября в определенный день недели занимаются сразу со всеми детьми.
Для того чтобы занятия дали ожидаемый эффект, их надо правильно организовать. Новые знания даются детям постепенно, с учетом того, что они уже знают и умеют делать. Определяя объем работы, важно не допустить недооценки или переоценки возможностей детей, так как и то и другое неизбежно привело бы к бездействию их на занятии.
Прочное усвоение знаний обеспечивается неоднократным повторением однотипных упражнений, при этом меняется наглядный материал, варьируются приемы работы, так как однообразные действия быстро утомляют детей.
Поддерживать активность и предупреждать утомление детей позволяет смена характера их деятельности: дети слушают педагога, следя за его действиями, сами совершают какие-либо действия, участвуют в общей игре. Им предлагают не более 2 — 3 однородных заданий. На одном занятии дают от 2 до 4 разных заданий. Каждое повторяется не более 2-3 раз.
Когда дети знакомятся с новым материалом, продолжительность занятия может быть 10-12 минут, так как усвоение нового требует от малыша значительного напряжения; занятия, посвященные повторным упражнениям, можно продлить до 15 мин. Педагог следит за поведением детей на занятии и при появлении у них признаков утомления (частое отвлечение, ошибки в ответах на вопросы, повышенная возбудимость и пр.) прекращает занятие. Следить за состоянием детей во время занятий очень важно, так как утомление может привести к потере интереса детей к занятиям.
Приемы обучения математике в детском саду
Обучение детей математике в детском саду в младшей группе носит наглядно-действенный характер. Новые знания ребенок усваивает на основе непосредственного восприятия, когда следит за действием педагога, слушает его пояснения и указания и сам действует с дидактическим материалом.
Занятия часто начинают с элементов игры, сюрпризных моментов — неожиданного появления игрушек, вещей, прихода «гостей» и пр. Это заинтересовывает и активизирует малышей. Однако, когда впервые выделяют какое-то свойство и важно сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать. Выяснение математических свойств проводят на основе сравнения предметов, характеризующихся либо сходными, либо противоположными свойствами (длинный — короткий, круглый — некруглый и т. п.). Используются предметы, у которых познаваемое свойство ярко выражено, которые знакомы детям, без лишних деталей, различаются не более чем 1-2 признаками. Точности восприятия способствуют движения (жесты рукой), обведение рукой модели геометрической фигуры (по контуру) помогает детям точнее воспринять ее форму, а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) — установить соотношение предметов именно по данному признаку.
Детей приучают последовательно выделять и сравнивать однородные свойства вещей. («Что это? Какого цвета?, Какого размера?») Сравнение проводится на основе практических способов сопоставления: наложения или приложения.
Большое значение придается работе детей с дидактическим материалом. Малыши уже способны выполнять довольно сложные действия в определенной последовательности (накладывать предметы на картинки, карточки образца и пр.). Однако, если ребенок не справляется с заданием, работает непроизводительно, он быстро теряет к нему интерес, утомляется и отвлекается от работы. Учитывая это, педагог дает детям образец каждого нового способа действия. Стремясь предупредить возможные ошибки, он показывает все приемы работы и детально разъясняет последовательность действий. При этом объяснения должны быть предельно четкими, ясными, конкретными, даваться в темпе, доступном восприятию маленького ребенка. Если педагог говорит торопливо, то дети перестают его понимать и отвлекаются. Наиболее сложные способы действия педагог демонстрирует 2-3 раза, обращая внимание малышей каждый раз на новые детали. Только многократный показ и называние одних и тех же способов действий в разных ситуациях при смене наглядного материала позволяют детям их усвоить. В ходе работы педагог не только указывает детям на ошибки, но и выясняет их причины. Все ошибки исправляются непосредственно в действии с дидактическим материалом. Пояснения не должны быть назойливыми, многословными. В отдельных случаях ошибки малышей исправляются вообще без пояснений. («Возьми в правую руку, вот в эту! Положи эту полоску наверх, видишь, она длиннее этой!» и т. п.) Когда дети усвоят способ действия, то его показ становится ненужным. Теперь им можно предложить выполнить задание только по словесной инструкции. Начиная с января можно давать комбинированные задания, позволяющие детям усваивать новые знания, и тренировать их в том, что усвоено ранее. («Посмотрите, какая елочка ниже, и поставьте под нее много грибков!»)
Маленькие дети значительно лучше усваивают эмоционально воспринятый материал. Запоминание у них характеризуется непреднамеренностью. Поэтому на занятиях широко используются игровые приемы и дидактические игры. Они организуются так, чтобы по возможности в действии одновременно участвовали все дети, и им не приходилось ждать своей очереди. Проводятся игры, связанные с активными движениями: ходьбой и бегом. Однако, используя игровые приемы, педагог не допускает, чтобы они отвлекали детей от главного (пусть еще и элементарной, но математической работы).
Пространственные и количественные отношения могут быть отражены на этом этапе только при помощи слов. Каждый новый способ действия, усваиваемый детьми, каждое вновь выделенное свойство закрепляются в точном слове. Новое слово педагог проговаривает не спеша, выделяя его интонацией. Все дети вместе (хором) его повторяют.
Наиболее сложным для малышей является отражение в речи математических связей и отношений, так как здесь требуется умение строить не только простые, но и сложные предложения, употребляя противительный союз —А — и соединительный —И-. Вначале приходиться задавать детям вспомогательные вопросы, а затем просить их рассказать сразу обо всем. Например: «Сколько камешков на красной полоске? Сколько камешков на синей полоске? А теперь сразу скажи о камешках на синей и, красной полосках». Так ребенка подводят к отражению связей: «На красной полоске один камешек, а на синей много камешков».
Воспитатель дает образец такого ответа. Если ребенок затрудняется, педагог может начать фразу-ответ, а ребенок ее закончит. Для осознания детьми способа действия им предлагают в ходе работы сказать, что и как они делают, а когда действие уже освоено, перед началом работы высказать предположение, что и как надо сделать. («Что надо сделать, чтобы узнать, какая дощечка шире? Как узнать, хватит ли детям карандашей?») Устанавливаются связи между свойствами вещей и действиями, с помощью которых они выявляются. При этом педагог не допускает употребления слов, смысл которых не понятен детям.
Методика формирования количественных представлений
Очень рано в речи детей появляются первые числительные. Конечно, это ещё стихийно используемый приём. В 2-3 года дети переходят к усвоению последовательности чисел в ограниченном отрезке натурального ряда. Это числа 1,2,3.
Как правило, счёт начинается со слова «раз». Заученная ребёнком цепочка слов-числительных нарушается, если вдруг взрослый исправляет ошибку и предлагает начать счёт со слова «один».
Иногда ребёнок воспринимает первые 2-3 числительные как единое целое и относит к одному предмету: раздватри.
Под влиянием обучения дети запоминают всё большее количество чисел. Усвоив числа первого десятка, дети легко переходят ко второму десятку, а дальше считают так: «Двадцать десять, двадцать одиннадцать…». Но если ребёнка поправить и назвать после 29 — тридцать, то стереотип восстанавливается и ребёнок правильно считает до очередной остановки.
Однако, сформированный у детей слуховой образ натурального ряда чисел не свидетельствует об усвоении ими навыков счёта.
Формирование представлений о количестве во второй младшей группе ограничено дочисловым периодом.
Выделение отдельных предметов из групп
и объединение предметов в группы
Дети должны понять, что каждая группа состоит из отдельных предметов, научиться выделять из группы один.
Воспитатель вносит поднос с уточками, радостно восклицает: «Вот сколько уточек! Много вот, вот, вот. А теперь все дети возьмут по уточке, и Серёжа, и Оля. Все дети взяли по уточке, не осталось ни одной»
Основные условия:
- Количество игрушек должно соответствовать количеству детей.
- Воспитатель побуждает употреблять слова — много, один, по
одному, ни одного.
Обучение счёту в средней группе
«Программа воспитания и обучения в детском саду» предусматривает счёт в пределах 5
Обучение количественному счёту ведётся в два этапа:
- на основе сравнения численностей 2 групп предметов детям раскрывается цель счётной деятельности (найти итоговое число). Их учат развивать группы предметов в 1, 2, и 3 предмета и называть итоговое число на основе счёта воспитателя.
- обучение счётным операциям. Сравнивая две группы предметов, равных или неравных по количеству, воспитатель показывает образование каждого следующего числа
Счётные операции
- Называние числительных по порядку;
- Соотнесение каждого числительного с помощью жеста рукой;
- Называние итогового числа в сочетании с круговым жестом;
- «Именование» итогового числа (всего 3 матрёшки).
Навыки счёта
— считать правой рукой;
— направление счёта слева направо.
Ошибки детей в процессе счёта:
— счёт со слова «раз», а не «один»;
— называние числительных вместе с существительным в процессе счёта;
-неверно согласуется числительное «один» с существительным;
— итоговое число не именуется (1,2,3 — всего 3);
— не называется итоговое число (1,2,3 — всего вместе грибки) 4
— не соблюдается направление счёта.
Последовательность усложнения счётных действий в дошкольном возрасте:
-счёт вслух, дотрагиваясь до предмета рукой;
— счёт вслух с помощью указки;
— счёт вслух на расстоянии;
— счёт шёпотом;
— счёт «про себя», мысленно.
Обучение счёту предметов
Отсчёт предполагает отбор указанного количества предметов из большего.
Алгоритм счёта.
— запомнить число предметов, которые нужно отсчитать;
— предметы брать молча и только тогда, когда предметы поставлены, называть число;
-для проверки выполнения задания пересчитать предмет.
Ошибки детей при отсчёте:
— считают не предметы, а свои действия (взял игрушку — один, поставил — два),
— работают и правой и левой рукой.
Варианты заданий
— отсчёт по образцу. Воспитатель предлагает посчитать игрушки на столе и отложить у себя столько же кружочков;
— отсчёт по названному числу: найди двух уточек, отложи три грибка;
— отсчёт предметов в сочетании с заданиями на пространственную ориентировку: отложи 4 круга и положи их на нижнюю полоску, 4 уточки на стол.
Используются следующие игры:
«Угости мишек чаем»
В гости к детям приходят медвежата, заранее готовится угощение, чашки, блюдца. После того, как гости усядутся за стол, детям предлагается принести столько чашек, сколько гостей, отсчитать столько же блюдец и т.д.
«Оденем куклу на прогулку»
Та же обучающая задача вовлекается в другой сюжет: дети готовятся на прогулку, собираются взять с собой кукол. Но их необходимо одеть по сезону: из большего количества пальто, шапок, шарфов, рукавичек необходимо взять соответствующее количеству кукол.
Показ независимости числа от признаков предметов
Важно обратить внимание детей на то, что число предметов не зависит от их размера, формы расположения, занимаемой площади.
Детей приучают пользоваться разными приёмами практического сопоставления наложение, приложение, составление пар, применение эквивалентов (заместителей предметов). Эквиваленты применяют тогда, когда другие известные способы употребить невозможно. Например, чтобы убедиться, что на обеих карточках нарисовано одинаковое количество предметов, нужно взять кружки и наложить на рисунки другой карточки.
Счёт с учётом анализаторов.
Активизировать счётные навыки помогают интересные задания
Счёт на слух
Варианты заданий:
— за ширмой воспитатель издаёт звуки, дети считают с открытыми глазами;
— счёт звуков с закрытыми глазами;
— движения для извлечения звуков выполняются под столом, за спиной — это обостряет деятельность слухового анализатора.
Требования к выполнению и организации упражнений.
- Дети не должны видеть движения, а считать звуки.
- Звуки и движения должны быть ритмичными, разнообразными: удары в бубен, барабан, стук в дверь, проговаривание одного и того же слова.
Счёт по осязанию.
Варианты заданий:
— достать из «чудесного мешочка» указанное число предметов;
— пересчитать грибы на подставке, пуговицы, пришитые на картон, отверстия на дощечке;
— счёт мелких предметов под салфеткой.
Счёт движений.
Интересно подобные задания проводятся в виде физминутки.
Стихотворная форма задаёт ритм движениям, занимательный сюжет увлекает детей, оживляет их интерес.
Порядковый счёт.
Для обучения порядковому счёту используются качественно отличающиеся друг от друга предметы, расположенные в ряд. Это может быть набор матрёшек, разных размеров, знакомые геометрические фигуры, иллюстративный материал к сказкам «3 медведя», «Репка».
Для обучения создаётся определённая ситуация: матрёшки идут на прогулку, дети пошли в лес и т.д. определяется их порядковый номер.
Дети часто путают вопросы «который?» и «какой?» Последний требует выделения качественных свойств: цвета, размера и других. Чередование вопросов сколько? который? какой по счёту? Позволяет раскрыть их значение. С порядковым счётом дети сталкиваются в повседневной (Лена, встань первая»), на занятиях по физкультуре, когда воспитатель делает разные перестроения (первое звено, второе звено) на музыкальных занятиях.
Методика работы по разделу «количество и счёт» в старшей группе.
Счёт в пределах 10
Для получения чисел второго пятка и обучения счёту до 10 используют приёмы, аналогичные тем, которые применялись в средней группе. Образование чисел демонстрируются на основе сопоставления двух совокупностей предметов. На одном занятии необходимо получить сразу два новых числа, чтобы дети усвоили принцип получения предыдущего и последующего числа. Для закрепления навыков счёта используются дидактические игры. ИГРЫ «Что изменилось?», «Исправь ошибку». Несколько групп предметов размещают на фланелеграфе, доске, рядом ставят числовые фигуры (карточки с определённым количеством кружков). Играющие закрывает глаза, ведущий меняет местами числовые фигуры или убирает из какой-нибудь группы один предмет, составляя числовые карточки без изменения. Дети должны обнаружить ошибку. ИГРА «Сколько?» На доске закрепляются карточки с разным количеством предметов. Ведущий загадывает загадку. Тот, кто отгадает, должен пересчитать предметы на карточке и показать числовую фигуру. Например: сидит девица в темноте, а коса на улице. Играющие, догадавшиеся, что это морковь, пересчитывают, сколько морковок нарисовано на карточке и показывают число 4. Впервые в старшей группе учатся считать в разных направлениях. Детям объясняют, что для ответа на вопрос сколько? не имеет значения, в каком направлении ведётся счёт: справа налево, сверху вниз или снизу вверх. Позднее детям даём представление о том, что считать можно предметы, расположенные не только в ряд, но и самыми различными способами (по кругу, диагонали, неопределённой группой). Вывод: начинать счёт можно с любого предмета и вести в любом направлении, но при этом важно не пропустить ни один предмет и ни один не сосчитать дважды.
Порядковый счёт до 10
Продолжая обучению счёту в старшей группе, воспитатель уточняет отличие количественного и порядкового значения числа. Когда хотят узнать сколько предметов, их считают один, два, три… Но когда нужно найти очерёдность, место предметов среди других, считают по-другому: первый, второй…
В качестве счётного материала сначала используют однородные предметы, отличающиеся цветом или размером (флажки разного цвета), а позднее — совокупности объектов одного вида (посуда, животные), а также бессюжетные материалы (полоски, фигуры). Новым направлением работы является показ зависимости порядкового места предмета от направления счёта. Например: воспитатель ставит на стол в ряд 3 разные машины (грузовую, легковую, трактор)? Предлагает ответить на вопрос: сколько их? Далее начинается игра: машины поехали на заправку: первой едет грузовая машина, второй — легковая? третьей — трактор. Воспитатель задаёт вопросы: которая по счёту легковая? трактор? Но вот на пути автомобильный знак, показывающий, что дальше ехать нельзя, надо возвратиться назад. Машины разворачиваются в другую сторону: теперь та, что была последней, оказалась первой. Машины едут, а воспитатель выясняет, какая по счёту каждая из машин. Умение различать количественный и порядковый счёт можно закрепить в дидактических играх.
Игра «Которой игрушки не стало?».
Расставляют игрушки в определённом порядке. Дети закрывают глаза, а ведущий убирает одну из игрушек.
Игра «Кто первый назовёт?».
Детям показывают картинку, на которой в ряд (слева направо или сверху вниз) расположены предметы. Ведущий договаривается откуда начинать пересчёт предметов: слева направо, сверху вниз. Ударяет молоточком несколько раз. Дети должны посчитать количество звуков и найти игрушку, которая стоит на указанном месте. Кто первый назовёт игрушку, тот выиграл.
Сравнение чисел
Дети учатся устанавливать связи и отношения между смежными числами. Связи между числами — определение: какое число больше, какое меньше. Отношения между числами — определение: на сколько одно число больше (меньше) другого. Сравниваются все числа в пределах 10. Начинать целесообразно с чисел 2 и 3, а не о1 и 2. наглядной основой сравнения чисел служит сопоставление двух совокупностей предметов. Например, сопоставив 2 матрёшки с 3 кубиками, выясняют, что матрёшек меньше, чем кубиков, а кубиков больше, чем матрёшек. Значит 2 меньше 3, а 3 больше 2. Осознанию взаимообратных отношений между числами помогает употребление слов «лишний» и «не хватает». Сравнивая 4 цыплёнка и 5 цыплят, воспитатель обращает внимание детей на то, что 1 цыплёнок лишний, их 5 — значит, число 5 больше 4. Однако утёнка не хватает, а их 4 — значит, 4 меньше 5.
Варианты заданий:
- Сравнение групп предметов, представленных условными знаками, моделями геометрических фигур.
Например, дети угадывают, кого в трамвае больше: мальчиков или девочек, если мальчики представлены на доске кружками, а девочки — квадратами.
- Включение различных анализаторов. Например, поднимите руку на 1 раз больше, чем пуговиц на карточке; отсчитайте на 1 квадрат меньше, чем услышите звуков.
- Использование числовой лесенки. Окрашенные с двух сторон кружки синего и красного цвета раскладывают по 5 (10) штук рядами. Количество кружков в ряду последовательно увеличивают на 1, причём «дополнительный» кружок повёрнут другой стороной. Числовая лесенка позволяет наглядно представить последовательность чисел натурального ряда.
Количественный состав числа из единиц
Детей знакомят с составом числа из единиц в пределах 5.
Оборудование:
А) предметы одного вида, отличающиеся цветом, формой, размером (наборы матрёшек, флажки разного цвета);
Б) предметы, объединённые родовым понятием (посуда, мебель, одежда, обувь, животные);
В) бессюжетный материал (геометрические фигуры, полоски разной ширины).
Алгоритм решения данной задачи
- Как составлена группа?
- По скольку в ней разных предметов?
- Сколько предметов всего?
- Назовите и предметы, и их количество.
Варианты заданий:
- Игра «Назови 3(4,5) предмета
- С элементами соревнования «Кто быстрее назовёт 3 (4,5) головных убора
- Игра с мячом «Я знаю 5 имён девочек»
Формирование количественных представлений в подготовительной группе
Счёт групп предметов
При закреплении навыков счёта и отсчёта важно упражнять не только в счёте отдельных предметов, но и групп, состоящих из однородных предметов. Детям демонстрируется группа предметов (матрёшки). Вопросы «Сколько групп?» Сколько матрёшек в каждой группе? Сколько всего матрёшек? Каждый раз устанавливают связь между количеством групп и количеством предметов в группе. Дети видят: увеличивают количество предметов в группе — уменьшается количество групп и наоборот. Осуществляется подготовка детей к усвоению десятичной системы счисления, счёту десятками.
У воспитателя на доске 10 кругов. Вопросы сколько кругов? О десяти предметах можно сказать по — другому: один десяток. На следующей полосе помещает ещё 10 кругов. Вопросы сколько здесь кружков? Можно сказать: ещё один десяток. Сколько всего десятков? Два десятка. Что больше 2 десятка или 1? Что меньше? Вывод: 2 десятка больше 1, десяток меньше 2. Можно познакомить детей с использованием счёта группами в повседневной жизни: мелкие предметы удобно покупать десятками (пуговицы, зажимы для волос, булавки, яйца).
Устный счёт
Для уточнения знаний о последовательности натурального ряда чисел используются специальные упражнения на счёт в прямом и обратном порядке. Воспитатель, начиная с 1 предмета, последовательно добавляет предметы по одному, каждый раз спрашивая детей о количестве. Аналогично проводятся упражнения на последовательное уменьшение чисел (было 9 предметов, один убрали, сколько осталось? Сколько надо убрать, чтобы осталось?) В интересной форме закрепить знание прямой и обратной последовательности чисел позволяют упражнения лесенкой. Дети «шагают» по ступенькам лесенки то вверх, то вниз, считая либо количество ступенек, которые уже прошли, либо число ступенек, которое им ещё осталось пройти. (Давайте сосчитаем, сколько ступенек до неваляшки. Будем считать, сколько ступенек нам осталось пройти до неваляшки: 10,9,8…)
Упражнения с числовыми фигурами.
Вдоль доски в ряд расставлены числовые фигуры от 1 до 10, две фигуры помещают не на свои места. Дети определяют, какая фигура «заблудилась». Ряд фигур может быть расставлен в обратном порядке.
Игра «Разговор чисел»
Вызванные дети получают в руки числовые фигуры. Дети — это числа, а какие, им подскажут числовые карточки. Команда играющим: «Числа, встаньте по порядку, начиная от самого маленького!» После этого воспитатель предлагает рассказать о себе. Например: «Число 4 сказало числу 5: я меньше тебя на один! Что же число 5 ответит ему? А что скажет числу 6?» Для закрепления навыков счёта в прямом и обратном порядке используются игры: «Назови пропущенное число», «Считайте дальше», «Кто знает — пусть дальше считает».
Игра «Кто знает — пусть дальше считает».
Воспитатель объясняет правила игры «Я буду ставить на стол игрушки, а вы считайте, сколько их стало». Итак, на столе 3 кубика. Педагог ставит ещё 1 — ребёнок говорит «четыре» и т.д. Интерес к таким играм повышается, если они проводятся в кругу, воспитатель бросает детям мяч, передаёт платочек. Правила игры не повторять уже названное число, не вести счёт сначала, от числа 1.
Установление взаимо — обратных отношений между смежными числами.
От упражнений в сравнении численностей множеств предметов, выраженных смежными числами, дети переходят к сравнению чисел без опоры на наглядный материал.
Варианты заданий: 1. Отсчитать, положить игрушек на 1 больше (меньше), чем число, которое названо.
2.Назови число, больше 5 (6,7) на 1.
- Назови «соседей числа»
Для выполнения таких заданий необходимо объяснить значение слов «до» и «после», «предыдущее и «последующее» число. Выражение «до» указывает на то, что числа меньше, а «после» больше названного. Стоит до 5? Какое после 5?
- Назови числа /3,4 числа/, которые идут после 4,
- Угадай, какое число пропущено между 7 и 5, 8 и 6?
- Назови 2 числа, пропустив между ними 1 число.
Состав числа из двух меньших чисел
Показываются все способы состава чисел в пределах пятка.
Число 2 — это 1 и 1, 3 — это 2 и 1, 1 и 2, 4 — это 3 и 1, 2 и 2, 1 и 3, 5 — это 4 и 1, 2 и 3, 1 и 4.
На наборном полотне 3 кружка одного цвета. Поворачивая обратной стороной последний кружок, спрашиваем «Сколько всего? Как составлена группа? Из 2-х красных и 1-го синего кружка». Затем переворачиваем ещё один, выясняем как теперь составлена группа. Вывод: число 3 можно составить по-разному; из 2 и 1, из 1 и 2. Для закрепления знаний используем упражнения:
- Рассказы — задачи «На верхнем проводе сидело 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они ещё могут сидеть?
- Задания: одному ребёнку взять 3 жёлудя /камешка/ в обе руки, остальным догадаться, сколько в каждой руке.
- Игра «Угадай число». На карточке от 3 до 5 кружков, другая карточка переворачивается обратной стороной. Нужно отгадать число на перевёрнутой карточке, если вместе они образуют число 3 /4,5/.
Усвоение состава числа из 2 чисел обеспечивает переход к обучению детей вычислению.
Знакомство с цифрами.
В процессе обучению счёту педагог показывает разные способы обозначения какого — либо количества. Для этого справа от группы предметов /после их пересчёта/ выкладывают такое же количество палочек, вывешивают счётную карточку, числовую фигуру. Затем показывают способ графического обозначения числа — цифру. Исследования А.М. Леушиной показали эффективность знакомства с цифрами параллельно с образованием сразу двух чисел. На первом занятии показывается образование чисел 1 и 2, показываются цифры 1 и 2. Число 1 обозначается цифрой 1, читаются стихотворения «Вот один иль единица, очень тонкая, как спица». Широко используются различные обследовательские действия: обведение пальцем по контуру цифры, прорисовка в воздухе, штриховка контурных цифр, а также употребление в ходе обследования образных сравнений (единица как солдатик, 8 похожа на снеговика). Особое внимание заслуживает число 10, так как оно записывается двумя цифрами 0 и 1. Поэтому прежде необходимо познакомить детей с нулём. Понятие о нуле дети получают, выполняя задание отсчитывать предметы по одному. Например, на столе 9 кубиков и цифра 9. Последовательно убирая по одному кубику, воспитатель просит пересчитать и показать соответствующую цифру. Когда на столе остаётся 1 кубик, воспитатель предлагает убрать его. Сколько теперь кубиков? Ни одного или ноль кубиков. Ноль кубиков обозначается цифрой 0. На столе 0 кубиков, а у Коли 1 кубик. Где больше кубиков? Значит, 1 больше 0, 0 меньше 1. Когда все цифры изучены, для их закрепления используются дидактические игры.
Игра «Цифра заблудилась», «Путаница». Цифры раскладываются на стол по порядку, одну или несколько цифр меняют местами. Дети должны найти эти изменения. Игра «Какой цифры не стало?» В игре также убираются 1-2 цифры. Играющие не только замечают изменения, но и говорят, где какая цифра стоит и почему. Игра «Найди соседей цифры». Каждому ребёнку предлагается карточка с изображением цифры, и он должен назвать предыдущую и последующую цифры. Игра «Убираем цифры». Игрой можно заканчивать занятие, если в дальнейшем цифры не понадобятся. Перед всеми на столах разложены цифры. Дети по очереди загадывают загадки про числа. Каждый ребёнок, догадавшийся о какой цифре идёт речь, убирает её из числового ряда. Загадки могут быть самые разнообразные. Например, убрать цифру, которая стоит после цифры 6, перед цифрой 4; убрать цифру, убрать цифру, которая показывает сколько раз я хлопну в ладоши: цифру, которая встречается в сказке о Белоснежке.
Деление целого на части.
С помощью этой задачи осуществляется подготовка к усвоению дробей.
Последовательность работы:
- Деление предмета на части путём складывания (сгибания) (Сложить квадрат пополам, на 4 части)
- Деление предмета на части путём разрезания. (Разрезать полоску бумаги на 2 части, квадрат на 2 части, чтобы получилось 2 треугольника).
- Деление на части «вкусных» вещей: печенье, яблоко, конфета и т.п. Эти задания стимулируют активность детей в усвоении материала. /Что делать, если в магазине нужно купить только полбуханки хлеба, разделить печенье, яблоко между подружками/.
Уравнивая целый предмет и части, дети приходят к выводу: целое больше его половины, половина больше четверти, целое больше четверти. Важно показать детям необходимость точных действий при складывании и разрезании. Предметы могут быть разделены как на равные, так и не на равные части. Половинами части называются лишь тогда, когда части равные. Словарная работа: разделить на части, целое, половина, пополам, одна из двух частей, одна из 4 частей, одна вторая, одна четвёртая часть. На последующих занятиях проводятся упражнения в делении геометрических фигур на 2, 4, 8 частей и составлении целых фигур из частей. Например: как надо сложить и разрезать квадрат, чтобы получилось 2 равных прямоугольника? После того, как дети овладевают приёмами измерения, предлагается разделить палку, рейку, дощечку на 2, 4, 8 равных частей. Ребята видят, что данные предметы не складываются, усвоенные способы деления не подходят. Как быть? Воспитатель раскладывает перед детьми предметы, которые можно использовать в качестве мерки. В итоге с воспитателем дети приходят к выводу, что надо выбрать подходящую мерку отмерить кусок, равный длине предмета, разделить мерку /сложить/ на соответствующее количество частей и затем отмерить эти части на предмете, сделать отметки карандашом. Полезно упражнять в делении геометрических фигур, нарисован на бумаге в клетку. Дети рисуют фигуры заданного размера, а затем по указанию воспитателя делят их на 2, 4 равные части, измеряя по клеткам.
По теме: методические разработки, презентации и конспекты
Формирование элементарных математических представлений детей дошкольного возраста
Обучению дошкольников началам математики должно отводиться важное место. Это вызвано целым рядом причин (особенно в наше время): началом школьного обучения, обилием информации, получаемой ребенк...
Предпосылки формирования элементарных математических представлений детей дошкольного возраста
Предпосылки формирования элементарных математических представлений детей дошкольного возраста...
Семинар-практикум для педагогов. "Использование развивающей среды по формированию элементарных математических представлений детей дошкольного возраста"
Предметно-развивающая среда в учреждении, реализующем программу дошкольного образования, является одним из важнейших критериев оценки качества образования. Это обусловлено значимостью окружающей обста...
Применение ТРИЗ для формирования элементарных математических представлений детей дошкольного возраста
В современном обществе демократические преобразования ориентируют педагогов на личностную модель учебно-воспитательной работы, предполагающую развитие инициативы и самостоятельности ребенка, его актив...
Индивидуальный план самообразования на тему "Формирование элементарных математических представлений детей дошкольного возраста через дидактические игры"
Огромную роль в развитии математических способностей и в развитии интеллекта играют инеллектуальные игры. Сегодня, а тем более, завтра, математика будет необходима огромному числу людей различных проф...
пособие "Логико-малыш для формирования элементарных математических представлений детей дошкольного возраста"
материал на семинар-практикум по ФЭМП у дошкольников...