Участие в работе методических объединений
Принимаю активное участие в работе методических объединений преподавателей.
Являюсь членом Ассоциации учителей математики Республики Бурятия "Эврика".
С 2015 года и до настоящего времени явля.юсь руководителем МО учителей "естественно-математического цикла".
Опытом своей работы охотно делюсь с коллегами, оказываю методическую и педагогическую поддержку и помощь.
Активный участник педагогических интернет – сообществ, имею свои личные странички и мини-сайты.
Неоднократно выступала с докладами на педсоветах, заседаниях МО,на семинарах, вебинарах, форумах.
Также являюсь докладчиком на постоянно-действующем семинаре для учителей математике по теме "Технологии формирования метапредметных результатов в рамках ФГОС СОО".
Скачать:
Вложение | Размер |
---|---|
Анализ работы МО 2020-2021 | 17.26 КБ |
План работы на 2020/2021 уч.г | 15.88 КБ |
Объемы многогранников в задач ЕГЭ | 718.44 КБ |
Экспертная деятельность. Грамоты. Дипломы. Благодарности | 1.26 МБ |
ВПО "Доверие" - общественная организация, объединяющая педагогов Россий | 221.73 КБ |
Приказ ПК 2022 | 1.75 МБ |
Предварительный просмотр:
Анализ работы МО учителей естественно0математического цикла
за 2020-2021 учебный год
Методическая проблема гимназии «Достижение устойчивого динамического развития гимназии как современной образовательной организации, ориентированной на инновационные процессы педагогической практики»
Тема МО:
Формирование и развитие функциональной грамотности учащихся на уроках и во внеурочной деятельности на предметах естественно-математического цикла.
Цель:
Повышение эффективности преподавания предметов естественно-математического цикла через применение современных образовательных технологий, непрерывное совершенствование профессионального уровня и педагогического мастерства.
Задачи:
1. Создание условий для повышения профессиональной компетенции учителей МО, в том числе в условиях введения ФГОС ООО.
2. Совершенствование системы повторения, отработке навыков тестирования и подготовке учащихся к итоговой аттестации в форме ГИА и ЕГЭ.
3. Вести работу по апробации внедрению современных образовательных технологий;
4. Внедрять новые формы непрерывного повышения профессиональной компетентности педагогов (вебинары, курсы, конкурсы и т.д.).
5. Привлечение педагогов МО к организации исследовательской и проектной деятельности обучающихся, развитию детской одаренности в условиях урочной, внеурочной и внеклассной деятельности.
6. Совершенствовать систему мониторинга и диагностики и разработать систему метапредметного мониторинга.
7. Внедрять новые формы обучения, такие как дистанционное обучение
Основные формы работы МО:
▪ проведение педагогических экспериментов по проблеме методики обучения и воспитания обучающихся и внедрение их результатов в образовательный процесс;
▪ заседания методических объединений по вопросам методики обучения и воспитания обучающихся;
▪ консультации учителей-предметников с руководителем м/о по текущим вопросам;
▪ лекции, доклады, сообщения и дискуссии по методике обучения и воспитания, вопросам общей педагогики и психологии;
▪ изучение и реализация в учебно-воспитательном процессе требований нормативных документов, актуального педагогического опыта;
Содержание работы методического объединения учителей математического цикла
- Проведение заседаний ШМО
- Выполнение нормативных документов, исполнение решений и рекомендаций ШМО
- Знакомство с передовым опытом и внедрение его в деятельность учителей ШМО
- Проведение и подготовка учащихся к олимпиадам, научным конференциям, интеллектуальным конкурсам и т.д.
- Подготовка и проведение внеклассных мероприятий по предметам
- Посещение учебных, факультативных и кружковых и внеурочных занятий по предметам
- Работа над темами самообразования
Организационно-педагогическое и методическое
сопровождение учебного процесса.
Заседания методического объединения:
№ | Тема, содержание (вопросы, рассматриваемые на заседании) | Цель и задачи проведения заседания | Сроки | Ответственные |
1 | Итоги прош. уч. года и задачи на новый уч.год. Анализ новых КИМов по предметам. | Утверждение плана работы на год. | 30.08.19 | Мурзина НЮ |
2 | Практико-ориентированный семинар «Функциональная грамотность – императив современного образования» | Мастер – класс «Решение практических задач, как средство развития математической грамотности» Открытый урок «Оптические системы. Строение зрительного анализатора» Мастер-класс «Финансовая грамотность»
| 29.04.202 | Мурзина НЮ Карпова ЛГ Ли-ю-кун НВ |
3 | Республиканский семинар-совещание «Повышение качества образования на основе результатов международных сопоставительных исследований». | «Формирование и развитие математической грамотности, естественно-научной, финансовой грамотности» | 22.04.2021 | Мурзина НЮ Карпова ЛГ Ли-ю-кун НВ |
4 | Методическая онлайн-мастерская "Эффективные практики формирования ФГ школьников". | «Использование заданий для формирования и оценки математической грамотности» | 18.02.202 | Мурзина НЮ Ли-ю-кун НВ |
5 | Городской конкурс «Учимся не для школы, а для жизни» Организация и проведение городского конкурса. | Составление заданий и проверка конкурсных работ | 23.12.2020 | Карпова НЮ Ли-ю-кун НВ Мурзина НЮ |
6 | Итоги ВОШ, задачи по подготовке к Республиканскому этапу. | Анализ заданий олимпиад | Январь 2019 | Мурзина НЮ |
7 | Итоги уч. года и задачи на новый уч.год. | Утверждение плана работы на новый учебный год | май | Мурзина НЮ |
Анализ проведения заседаний МО. Выводы
Заседания носили практико-ориентированный характер, это связано со стоящими перед МО целями и задачами.
Выводы:
Необходимо систематически знакомить учителей МО с новыми технологиями обучения, методами и систематически используя их в работе.
Предварительный просмотр:
План работы на 2020-2021 учебный год
Тема МО: Совершенствование профессиональной компетенции учителя через эффективное использование различных образовательных технологий, в том числе дистанционных образовательных технологий или электронного обучения
Цель:
- Совершенствование методических требований к современному уроку
- Внедрение инновационных технологий в процесс обучения
Задачи:
1. Провести методические семинары по теме «Эффективные образовательные технологии», «Дистанционные технологии»
2. Проводить общешкольные проекты по формированию функциональной грамотности.
3. Внедрять в образовательный процесс эффективные образовательные технологии и методы обучения.
Заседания методического объединения:
№ | Тема, содержание (вопросы, рассматриваемые на заседании) | Цель и задачи проведения заседания | Сроки |
Элементы информационного – коммуникационных технологий. - Учебные программы - Программы – тренажеры -Контролирующие программы -Демонстрационные программы -Имитационные и моделирующие программы -Информационно- справочные материалы -Мультимедиа – учебники | Рассмотреть элементы ИКТ, позволяющих выйти за рамки учебника и разнообразить учебную и внеурочную деятельность по предмету | 1 четверть | |
Дистанционные образовательные технологии - Использование элементов технологии дистанционного обучения во внеурочной деятельности. | - повышение эффективности и качества учебной и внеурочной деятельности (создание творческих работ, проектов, результативность участия в олимпиадах различного уровня, творческих конкурсах различного уровня и направленности); - активизация познавательной и творческой деятельности школьников за счет компьютерной визуализации учебной информации, включения игровых ситуаций; - усиление практической направленности знаний; - формирование устойчивого познавательного интереса школьников к интеллектуально-творческой деятельности, реализуемой с помощью средств ИКТ; - развитие способности свободного культурного общения школьников с учителем и между собой с использованием современных дистанционных технологий обучения. | 3 четверть | |
Электронное портфолио - учителя - ученика | Рекомендации по составлению электронного портфолио учителя, ученика. - структура портфолио - сайт учителя Список сайтов: http://nsportal.ru/ Социальная сеть работников образования http://www.proshkolu.ru/ Интернет-портал http://www.openclass.ru/ Сетевые образовательные сообщества http://pedsovet.org/ Всероссийский интернет-педсовет http://portfolio-edu.ru/ Портфолио учителей http://pedsovet.su/ Сообщество взаимопомощи учителей http://www.it-n.ru/ Сеть творческих учителей | 2 четверть | |
Разработка ситуационных заданий как способ формирования функциональной грамотности. | Ситуационная задача: её понятие, специфика, модель; Оценка решения ситуационной задачи | ||
Творческие отчеты учителей по темам самообразования. | Знакомство с материалами самообразования и их обсуждение. | май | |
Руководитель МО Мурзина Н.Ю.
Предварительный просмотр:
Подписи к слайдам:
Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).
Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда. В куб вписан шар радиуса 1 . Найдите объем куба.
1. Во сколько раз увеличится объем куба, если его ребра увеличить в три раза? 3. Диагональ куба равна . Найдите его объем. 2. Объем куба равен 24 . Найдите его диагональ 4. Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Найдите ребро куба.
1 . Площадь поверхности куба равна 24. Найдите его объем 3 . Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. 2 . Объем первого куба в 8 раз больше объема второго куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба? 4 . Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.
1 . Найдите объем многогранника, вершинами которого являются точки A, B, D, E, A1 , B1 , D1 , E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 , площадь основания которой равна 6, а боковое ребро равно 2. 3 . Найдите объем многогранника, вершинами которого являются точки A1 , B1 , B, C правильной треугольной призмы ABCA1B1C1 , площадь основания которой равна 4, а боковое ребро равно 3. 2 . Найдите объем многогранника, вершинами которого являются точки A, B, C,A1 , B1 , C1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 , площадь основания которой равна 6, а боковое ребро равно 3. 4 . Найдите объем многогранника, вершинами которого являются точки A, B, C, A1 , C1 правильной треугольной призмы ABCA1B1C1 , площадь основания которой равна 3, а боковое ребро равно 2.
В правильной треугольной пирамиде S АВС с вершиной S и основанием АВС сторона основания равна 9, а высота равна 3. На ребрах АВ, АС и А S отмечены соответственно точки М, N и К такие, что AM=AN=AS, А K = 4. а) Докажите, что плоскости М NK и S ВС параллельны. б ) Найдите объем пирамиды KSBC .
В правильной треугольной призме АВСА 1 В 1 С 1 стороны основания равны 6 , боковые ребра равны 8, точка D середина ребра СС 1 . Найдите расстояние от вершины В до плоскости АВ 1 D .
В правильной треугольной пирамиде S АВС c основанием АВС точки М и N середины ребер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. а) Докажите, что плоскость α делит медиану основания СЕ в отношении 5 : 1, считая от точки С . б ) Найдите объем пирамиды, вершиной которого является точка С , а основанием - сечение пирамиды S А BC плоскостью α , если известно, что сторона основания АВ равна 18, а боковое ребро SA равно 12.
В правильной четырехугольной пирамиде РАВС D сторон а основания АВ равна 7, а боковое ребро PB равно 6. На ребрах CD и РС взяты соответственно точки М и К, при этом D М = 2; PK = 1 . а) Докажите, что плоскост ь ВМК перпендикулярна плоскости АВС. б ) Найдите объем пирамиды КВСМ.
В правильной треугольной пирамиде S АВС длина стороны основания АВ равна 6, а длина бокового ребра равна . На ребре АВ отмечена точка М так, что АМ = 4. На ребре S В отмечена точка К, причем SK : KB = 1 : 3. а) Докажите, что плоскости СКМ и АВС перпендикулярны. б ) Найдите объем пирамиды ВСКМ.
В правильной треугольной пирамиде S АВС длина стороны основания АВ равна 6, а длина бокового ребра равна . На ребре АВ отмечена точка М так, что АМ = 4. На ребре S В отмечена точка К, причем SK : KB = 1 : 3. а) Докажите, что плоскости СКМ и АВС перпендикулярны. б) Найдите объем пирамиды ВСКМ.
В правильной треугольной пирамиде S АВС длина стороны основания АВ равна 6, а длина бокового ребра равна . На ребре АВ отмечена точка М так, что АМ = 4. На ребре S В отмечена точка К, причем SK : KB = 1 : 3. а) Докажите, что плоскости СКМ и АВС перпендикулярны. б ) Найдите объем пирамиды ВСКМ.