Основные математические понятия
статья по математике

Котлярова Жанна Валентиновна

Как и любая наука, математика имеет свои основные по­нятия, которыми оперирует: множество, число, счет, вели­чина, форма и др. Исходным содержанием большинства ма­тематических понятий служат реальные предметы и явления окружающей жизни и деятельности людей.

Скачать:

ВложениеРазмер
Файл osnovnye_matematicheskie_ponyatiya.docx17.91 КБ

Предварительный просмотр:

Основные математические понятия

Как и любая наука, математика имеет свои основные понятия, которыми оперирует: множество, число, счет, величина, форма и др. Исходным содержанием большинства математических понятий служат реальные предметы и явления окружающей жизни и деятельности людей.

Основное понятие в математике — понятие множества. Множество — это совокупность объектов, которые рассматриваются как единое целое. Мир, в котором живет человек, представлен разнообразными множествами: множество звезд на небе, растений, животных вокруг него, множество разных звуков, частей собственного тела. Множество характеризуется различными свойствами, т.е. множество задано некоторыми характеристиками. Под этими характеристиками подразумеваются такие свойства, которыми владеют все объекты, принадлежащие данному множеству, и не владеет ни один предмет, который не принадлежит ему, т.е. этот предмет не является его элементом. Множество в отличие от неопределенной множественности имеет границы и может быть охарактеризовано натуральным числом. В таком случае считают, что число обозначает мощность множества.

В начале развития счетной деятельности сравнение множеств осуществляется поэлементно, один к одному. Элементами множества называют объекты, составляющие множества. Это могут быть реальные предметы (веши, игрушки, рисунки), а также звуки, движения, числа и др. Сравнивая множества, человек не только выявляет равномощность множеств, но и отсутствие у множества того или другого элемента, той или другой его части. Есть два способа определения мощности множества: первый - пересчитывание всех его элементов и называние результата числом; другой - выделение характерологических особенностей множества.

Элементами множества могут быть не только отдельные объекты, но и их совокупности. Например, при счете парами, тройками, десятками. В этих случаях элементами множества выступает не один предмет, а два, три, десять - совокупность.

Основными операциями с множествами являются: объединение, пересечение и вычитание.

Объединением (суммой) двух множеств называют третье множество, которое включает все элементы этих множеств. При этом сумма множеств не всегда равняется сумме чисел элементов множеств. Она равна сумме чисел элементов только тогда, когда в обоих множествах нет общих элементов. Если таковые есть, то в сумму они включаются только один раз. Например, в загадке «Два отца и два сына. Сколько их всего'» видим пример объединения множеств, когда сумма элементов не равна сумме чисел. Поскольку один и тот же человек включается дважды (и в первое, и во второе множество), он считается один раз. Или другой пример: чтобы определить количество дисциплин, которые изучаются учащимися педколледжа в семестре, необходимо из расписания каждого дня сделать выборку: ко множеству предметов, которые изучают учащиеся в понедельник, добавить не все Уроки последующих дней недели, а лишь те, которые не назывались в понедельник. Таким образом, количество предметов будет меньше, чем общее количество уроков в неделю, так как есть предметы, повторяющиеся в разные дни.

При вычитании двух множеств получаем третье множество, называемое разностью. Разность включает элементы первого множества, не принадлежащие второму. На рисунке 3 заштрихованная часть является разницей двух множеств.

Характеризуя множества, в математике используются такие понятия: конечное и бесконечное множества, равномощное и неравномощное, одно- и двухэлементное, пустое множество, часть множества, или подмножество. Дети раннего и дошкольного возраста знакомятся только с конечными, т.е. имеющими границы, множествами.

Счет - первая и основная математическая деятельность, основанная на поэлементном сравнении конечных множеств. Характеризуя это понятие, прежде всего, следует подчеркнуть, что это есть установление взаимооднозначного соответствия между двумя множествами. В истории развития человечества долгое время использовался дочисловой счет. Человек сравнивал множества, констатировал их равночисленность (равенство) или не равночисленность (столько же, меньше, больше...).

С появлением натуральных чисел человек в качестве одного из множеств стал использовать числовой ряд.

Число - показатель мощности прерывной (множества) или непрерывной величины. Число всегда есть отношение этой величины к избранной мере, поэтому число не является постоянной характеристикой, оно относительно к той единице, которая принимается за меру (считать можно парами, десятками; измерять можно разными мерами - результат будет разный).

Понятие величина в математике рассматривается как основное. Возникло оно в глубокой древности и на протяжении истории развития общества подвергалось ряду обобщений и конкретизации. Величина - это и протяженность, и объем, и скорость, и масса, и число, и т.д. В данном же случае мы сужаем понятие «величина» и будем характеризовать им только размер предметов.

Величина предмета — это его относительная характеристика, подчеркивающая протяженность отдельных частей и определяющая его место среди однородных. Величина является свойством предмета, воспринимаемым различными анализаторами: зрительным, тактильным и двигательным. При этом чаше всего величина предмета воспринимается одновременно несколькими анализаторами: зрительно-двигательным, тактильно-двигательным и т.д.

Величина предмета, т.е. размер предмета, определяется только на основе сравнения. Нельзя сказать, большой это или маленький предмет, его только можно сравнить с другим. Восприятие величины зависит от расстояния, с которого предмет воспринимается, а также от величины предмета, с которым он сравнивается (рис. 4). Чем дальше предмет от того, кто его воспринимает, тем он кажется меньшим, и наоборот, чем ближе - тем кажется большим.

Характеристика величины предмета зависит также от расположения его в пространстве. Один и тот же предмет может характеризоваться то как высокий (низкий), то как длинный (короткий). Это зависит от того, в горизонтальном или вертикальном положении он находится. Так, на рисунке 5, а предметы расположены в вертикальном положении и характеризуются как высокий и низкий, а на рисунке 5, 6 эти же самые предметы характеризуются как длинный и короткий.

Величина предмета всегда относительна, она зависит от того, с каким предметом он сравнивается. Сравнивая предмет с меньшим, мы характеризуем его как больший, а сравнивая этот же самый предмет с большим, называем его меньшим. Данное положение представлено на рисунке 6.

Итак, величина конкретного предмета характеризуется такими особенностями: сравнимость, изменчивость и относительность.

Величина предмета определяется человеком только в сравнении с другой величиной мерой. Мера является эталоном величины. В качестве эталонов величины выступают наши представления об отношениях между предметами и обозначаются словами, указывающими на место предмета среди других (большой, маленький, высокий, длинный, короткий, толстый, тонкий и т.д.).

Начальному выделению величины, возникновению элементарных представлений о ней способствуют предметные действия, включающие различные виды непосредственного сопоставления объектов между собой по их величине (накладывание, прикладывание, приставление), а также опосредованное сравнение с помощью измерения. Измерение - один из видов математической деятельности. С помощью измерения определяется непрерывная величина: масса, объем, протяженность. В истории развития человеческого общества счет и измерение были, конечно, самыми первыми видами математической деятельности, тесно связанными с элементарными потребностями человека, и прежде всего с определением площадей земельных участков, вместимости сосудов и др.


По теме: методические разработки, презентации и конспекты

Конспект занятий по воспитанию у дошкольников основных нравственных понятий «Мальчик-звезда»

Конспект занятий по воспитанию у дошкольников основных нравственных понятий«Мальчик-звезда» Цели: подвести детей к таким нравственным категориям, как добро и зло;воспитывать у детей ак...

Основные теоретические понятия творчества

Что есть детское творчество? Как проявляются творческие способности?Способностями называют такие индивидуально – психологические особенности личности, которые влияют на успешное выполнение той или ино...

Конспекты организованной образовательной деятельности по формированию основных экологических понятий в процессе ознакомления с насекомыми для детей старшего дошкольного возраста.

Конспекты Организованной образовательной Деятельности по формированию основных экологических понятий в процессе ознакомления с насекомыми с детьми старшего дошкольного возраста....

Формирование у детей дошкольного возраста основных экологических понятий в процессе ознакомления с растениями, их многообразием.

Аннотация: одной из важнейших проблем современности в условиях экологического кризиса является проблема поиска новых подходов в образовании. Важнейшим условием, при котором решается данная проблема ...

Основные математические понятия (словарь терминов)

Важное место в развитии дошкольников в детском саду отводится обучению основам математики. Программный материал направлен на формирование математических способностей и представлений, развитие умственн...

Мастер – класс для педагогов "Знакомство с основными финансовыми понятиями детей старшего дошкольного возраста посредством дидактических игр".

Данный мастер-класс имеет следующую  цель: познакомить воспитателей с технологией формирования основных понятий финансовой грамотности у детей старшего дошкольного возраста  посредством дида...

Мастер – класс для педагогов "Знакомство с основными финансовыми понятиями детей старшего дошкольного возраста посредством дидактических игр".

Данный мастер-класс имеет следующую  цель: познакомить воспитателей с технологией формирования основных понятий финансовой грамотности у детей старшего дошкольного возраста  посредством дида...