Формирование базовых компетенций математического развития детей дошкольного возраста через STEM образование в ДОУ.
методическая разработка по математике
Мировая тенденция говорит о необходимости развития метапредметных навыков работы с информацией: критического мышления, овладение логическими операциями (сравнение, классификация, синтез, анализ и др.). Инновационные процессы на современном этапе развития общества затрагивают в первую очередь систему дошкольного образования как начальную ступень раскрытия потенциальных способностей ребенка. Проблема математического развития дошкольников на всех этапах развития образования является одной из актуальных, так как развитие у детей логического мышления является необходимым условием умственного развития личности. Важность данной проблемы трудно переоценить, основы развития интеллекта ребенка именно в возрасте от 3 до 7 лет, формируют основную базу знаний для его успешного развития в дальнейшей учебной деятельности.
Скачать:
Вложение | Размер |
---|---|
doklad_stem.docx | 30.16 КБ |
Предварительный просмотр:
Доклад
Формирование базовых компетенций математического развития детей дошкольного возраста через STEM образование в ДОУ.
Черникова Любовь Петровна, воспитатель
МКДОУ ЦРР – детского сада № 10 г. Россоши.
Мировая тенденция говорит о необходимости развития метапредметных навыков работы с информацией: критического мышления, овладение логическими операциями (сравнение, классификация, синтез, анализ и др.). Инновационные процессы на современном этапе развития общества затрагивают в первую очередь систему дошкольного образования как начальную ступень раскрытия потенциальных способностей ребенка. Проблема математического развития дошкольников на всех этапах развития образования является одной из актуальных, так как развитие у детей логического мышления является необходимым условием умственного развития личности. Важность данной проблемы трудно переоценить, основы развития интеллекта ребенка именно в возрасте от 3 до 7 лет, формируют основную базу знаний для его успешного развития в дальнейшей учебной деятельности.
Эффективная реализация образовательной деятельности по формированию элементарных математических представлений у дошкольников невозможна без использования инновационных технологий, которые могут при организации образовательного процесса обеспечить создание метапредметной среды, связанной с интеграцией разных образовательных областей. Одной из таких технологий является STEM–технология. «STEM» включает в себя расшифровку первых букв слов:
- «science» - наука;
- «technology» -технология;
- «engineering» - инженерия;
- «math»- математика.
Данные дисциплины становятся самыми востребованными в современном мире. Поэтому сегодня STEM-технология развивается, как один из основных трендов, сочетая в себе естественные науки с технологиями, инженерией и математикой.
STЕM-технология создает условия для переживания детьми реальных жизненных ситуаций. Именно это свойство STEM–технологии создает эффективную среду для организации работы по развитию математических способностей детей дошкольного возраста.
Для формирования базовых компетенций элементарных математических представлений у дошкольников я использую данную технологию в таких видах системы работы дошкольного образовательного учреждения, как режимные моменты, организованная образовательная деятельность, индивидуальная работа с детьми, самостоятельная деятельность детей в математических центрах групп, экспериментирования, конструирования, творчества, развлечения и с учетом форм работы с детьми – коллективной, групповой и индивидуальной.
Систему использования в образовательном процессе SТЕМ-технологии образовательного модуля «Математическое развитие» я строю в соответствии с требованиями Федерального государственного образовательного стандарта дошкольного образования и на основании основной общеобразовательной программы дошкольной образовательной организации. Это позволяет комплексно решить задачи математического развития с учётом возрастных и индивидуальных особенностей детей по направлениям: величина, форма, пространство, время, количество и счёт. А так же формирование у детей сенсорного опыта, цветового опыта и развитию логических операций к которым относится:
- классификация, анализ, сравнение, обобщение, синтез, сериация.
Работа с модулем построена на принципе личностно-ориентированного взаимодействия взрослых и детей с учётом показателей детской успешности.
Реализация STЕАM-технологии образовательного модуля «Математическое развитие».
Знакомство детей с основными областями математической действительности величиной и формой, пространственными и временными ориентировками, количеством и счетом происходит постепенно, поэтому задачи математического развития на разных возрастных этапах различно. Содержание каждой задачи имеет свою специфику и требует продуманного подбора, наиболее подходящих методов и приемов её реализации и компонентов развивающей предметно пространственной среды. Содержание модуля характеризуется комплексностью, в нем объединены игры и пособия для арифметической, геометрической, логической и символической пропедевтики. (направленности).
Таким образом, реализация модуля не только многопланово, многоуровневое но и поэтапно, не сразу как говорится а шаг за шагом.
Освоение математической действительности наиболее эффективно, если оно происходит в контексте практической и игровой деятельности. В своей работе в математическом модуле STEM образования мы выделили 5 направлений:
1 направление - Знакомство с геометрическими понятиями;
2 направление - Знакомство с величинами;
3 направление - Знакомство с числами в пределах 10 и 20;
4 направление - Знакомство со сложением и вычитанием.
5 направление – Развивающие иры
1 направление - Знакомство с геометрическими понятиями;
Пример практика: «Геометрические формы» познакомить детей с понятием многоугольник как обобщением понятий треугольник, квадрат, прямоугольник. Прежде чем познакомить детей с многоугольником, размещаю в центре модель новой фигуры - пятиугольника. И не называя её, предлагаю внимательно ее рассмотреть, сравнить с квадратом и прямоугольником, найти общие и отличительные характеристики фигуры. Дети указывают, что обе фигуры имеют вершины, углы и стороны, но в новой фигуре пять вершин, углов, сторон, в отличие от квадрата и прямоугольника. Далее предлагаю подумать, как можно назвать эту новую фигуру.
Дети называют ее пятиугольником. Далее детям предлагаю расположить фигуры по порядку возрастания количества вершин, углов. Так выкладываются треугольник, квадрат, прямоугольник, трапеция и пятиугольник. Здесь предлагаю детям новый принцип группировки фигур, объединяя в одну группу фигуры с равным количеством углов. В результате образуется три группы: треугольник, четырехугольник и пятиугольник. Обращая внимание детей на группы, выделенные по количеству углов, называю всё это множество многоугольниками. Далее нахожу в материалах модуля шестиугольники, восьмиугольники и показываю детям. При знакомстве с разными фигурами дети учатся видеть их особенность, их сходство и различие; важно подвести их к вполне доступным им обобщениям: хотя треугольники и четырехугольники бывают разные, но являются одной из разновидностей многоугольников. Таким образом, в результате занятия дети узнают, что одни формы оказываются подчиненными другим, понятие четырехугольник обобщает понятие квадрат, прямоугольник, трапеция, а понятие многоугольник обобщает все четырехугольники, все треугольники, пятиугольники, шестиугольники, независимо от размера и вида.
Материалы модуля позволяют накладывать фигуры друг на друга, комбинировать разные фигуры, обводить контуры фигур. Одним из эффективных приёёмов является зрительный диктант. Педагог или, возможно, ребёнок предлагает детям располагать фигуры на листе, следуя его инструкциям, например: «Расположить квадрат на середине листа бумаги, вокруг квадрата разместить восемь треугольников острым углом к квадрату, между треугольниками - маленькие круги, а над треугольниками - квадраты; в левом верхнем и нижнем углах, а также в правом верхнем и нижнем углах разложить круги» и т. д.
2 направление - Знакомство с величинами;
При знакомстве дошкольников с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребёнка, направленных на освоение понятия «величина».
1-й этап. Выделение и распознавание свойств и качеств предметов. Сравнение их без измерения.
Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), ёмкости (на глаз), площади (на глаз и наложением), время (ориентируясь на субъективное ощущение длительности или какие-то внешние признаки этого процесса — времена года различаются по сезонным признакам в природе, время суток — по движению солнца и т. п.). Сравнение величин с использованием промежуточной мерки. Данный этап очень важен для формирования представления о самой идее измерения посредством промежуточных мер. Мера может быть произвольно выбрана ребёнком из окружающей действительности (для ёмкости — стакан, для длины — кусочек шнурка, для площади — тетрадь и т. п.). При использовании промежуточных мер целесообразно познакомить ребёнка со способом счёта мер через посредство меток. В качестве метки может быть использован любой предмет — палочки, фигурки, пуговицы, кубики и т. п. Отмечая каждую отложенную (отмеренную) мерку, например, кружком, ребёнок получает условную предметную модель процесса измерения величины. Такую модель называют меточная форма числа, и она соответствует количеству мер, полученному при измерении данной величины. Таким образом, используя меточную форму числа, ребёнок фактически устанавливает связь между числом как мерой величины и числом как характеристикой количества (в данном случае — количества мер) в наглядной форме. После завершения такого процесса достаточно сосчитать метки мерок, чтобы получить численное значение величины (например, 38 попугаев). Использование этих приемов позволяет обогатить систему заданий на измерение величин заданиями на сравнение, на уравнивание, на установление разницы (на сколько больше — меньше)
Пример практика: дать представления о длине. Научить сравнивать предметы по длине (на палочках Кюизенера)). В занятии предлагаются правила измерения длины, которые понятны детям и доступны для повторения. Воспитатель заранее отбирает палочки, немного отличающиеся по длине и палочки, одинаковые по длине, раскладывает их перед детьми. Визуально дети попробуют определить, какая из палочек длинная, короткая, есть ли одинаковые по длине. Проверяют все высказанные варианты путём точного соизмерения, сравнения. Для того чтобы сравнить две палочки, необходимо приложить одну к другой. Концы обеих палочек совмещают или уравнивают слева. Затем надо определить, совместились ли, совпали два других конца (края) палочек справа. Если края полностью совпали, то палочки одинаковые, равные по длине. Если края полосок не совпали, то палочки разные, неодинаковые: одна длиннее, другая короче. Выстраивается лестница из палочек, определяется словами их длина.
3 направление - Знакомство с числами в пределах 10 и 20;
Познание чисел и освоение действий с числами - важнейший компонент содержания математического развития. Посредством числа выражаются количество и величины. Оперируя только числами, которые являются показателями количеств и величин объектов окружающей действительности, сравнивая их, увеличивая, уменьшая, можно делать выводы о точном состоянии объектов действительности. Этапы формирования количественных представлений в дошкольном возрасте – дочисловая деятельность, овладение счетной деятельностью.
Для правильного восприятия числа, для успешного формирования счетной деятельности, необходимо, прежде всего, научить детей работать с множествами.:
-видеть и называть существенные признаки предметов;
-видеть множество целиком;
-выделять элементы множества;
-называть множество (обобщающее слово) и перечислять его элементы;
-составлять множества из отдельных элементов и из подмножеств;
-делить множество на классы;
-упорядочивать элементы множества;
-сравнивать множества по количеству путём соотнесения один к одному;
-создавать равночисленные множества;
-объединять и разъединять множества (целое и части).
Счетная деятельность
Владение счётом включает в себя:
-знание слов-числительных и называние их по порядку;
-умение соотносить числительные элементам множества «один к одному» (устанавливать взаимно-однозначное соответствие);
-выделение итогового числа.
Владение понятием числа включает в себя:
-понимание независимости результата количественного счета от его направления, расположения элементов множества и их качественных признаков (размера, формы, цвета и др.;
-понимание количественного и порядкового значения числа.
Представления о натуральном ряде чисел и его свойствах включает в себя:
-знание последовательности чисел (счет в прямом и обратном порядке, называние предыдущего и последующего числа);
-знание образования соседних чисел друг из друга (путем прибавления и вычитания единицы);
-знание связей между соседними числами (больше, меньше).
Примеры игр на обучение счёту:
Положи столько же
Покажи столько, сколько предметов
Отсчитай…
Сколько?
Драматизация сказки
Что изменилось?
Необходимо научить детей различать понятия
Количество (свойство конкретного множества, отражающее сколько в нём элементов).
Число (абстрактное математическое понятие, характеризующее общее свойство конечных равномощных множеств).
Цифра (знак для записи чисел).
Учить детей обозначать это число цифрой как печатной, так и прописной необходимо после знакомства с образованием числа.
Для закрепления записи цифр использую различные обследовательские действия:
· обведение пальцем,
· написание цифр пальцем в воздухе,
· «песчаные цифры,
· выкладывание из счётных палочек, деталей конструктора, из ниток на бархатной бумаге,
· лепка цифр из пластилина,
· написание цифр пальцем на крупе,
· штриховка контурных цифр,
· чтение известных литературных произведений.
4 направление - Знакомство со сложением и вычитанием.
Сложения и вычитания целесообразно распределить на три этапа:
1-й этап — подготовка к правильному пониманию различных сюжетных ситуаций, соответствующих смыслу действий — организуется через систему заданий, требующих от ребенка адекватных предметных действий с различными совокупностями;
2-й этап — знакомство со знаком действия и обучение составлению соответствующего математического выражения;
3-й этап — формирование собственно вычислительной деятельности (обучение вычислительным приемам).
Пример: Ситуаций, моделирующих объединение двух множеств.
Задание. Возьмите три морковки и два яблока (наглядность). Положите их в корзину. Как узнать, сколько их вместе? (Надо сосчитать.)
Цель. Подготовка ребёнка к пониманию необходимости выполнения дополнительных действий (в данном случае — пересчет) для определения общего количества предметов совокупности.
Задание. На полке стоят 2 чашки и 4 стакана. Обозначьте чашки кружками, стаканы квадратиками. Покажите, сколько их вместе. Сосчитайте.
Цель. Подведение ребенка к пониманию смысла операции объединения, а также обучение переводу словесно заданной ситуации в условную предметную модель. Такая модель помогает ребенку абстрагироваться от конкретных признаков и свойств предметов и сосредоточиться только на количественной характеристике ситуации.
Задание. Из вазы взяли 4 конфеты и 1 вафлю. Обозначьте их фигурками и покажите, сколько всего сладостей взяли из вазы. Сосчитайте.
Цель. Подвести ребенка к пониманию того, что смысл ситуации определяется не «главным словом»: «взяли» (типичной ошибкой даже в школе в этой ситуации является действие 4-1), а соотношением между данными и тем, что требуется найти. Условная предметная модель в этой ситуации помогает абстрагироваться от «мешающего» слова «взяли», поскольку показ рукой «всего взятого» обычно выглядит как охватывающее движение всей совокупности.
Ситуаций, моделирующие вычитание. Подразделяется на три вида предметных действий:
а) уменьшение данной совокупности на несколько единиц;
б) уменьшение на несколько единиц совокупности, сравниваемой с данной;
в) разностное сравнение двух совокупностей (множеств).
На подготовительном этапе ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов воспитателя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.
Задание. Удав нюхал цветы на полянке. Всего цветов было 7. Обозначьте цветы кружками. Пришел Слоненок и нечаянно наступил на 2 цветка. Что надо сделать, чтобы показать, что случилось? Покажите, сколько цветов теперь сломал Слоненок.
Цель. Подвести ребенка к пониманию смысла ситуации удаления числа множества. Учить моделировать эту ситуацию на условной предметной наглядности, помогающей абстрагироваться от несущественных чист, признаков предметов и сосредоточиться только на изменении кол и-ни венной характеристики ситуации.
Задание. У Мартышки было 6 бананов. Обозначьте и кружками. Несколько бананов она съела, и у неё стало меньше. Что надо сделать, чтобы показать, что случилось, почему вы убрали 4 банана? (Стало на 4 меньше.) Покажи - оставшиеся бананы. Сколько их?
Цель. Учить ребенка составлять условную предметную модель словами
Но по заданной ситуации и соотносить словесную формулировку с удалением элементов.
Задание. На одной полке 5 чашек. Обозначьте чашки кружками. А на другой — 8 стаканов. Обозначьте стаканы квадратиками. Поставьте их так, чтобы сразу было видно, чего больше, стаканов или чашек? Чего меньше? На сколько?
Цель. Учить ребенка составлять условную предметную модель словес но заданной ситуации и учить соотносить словесную формулировку «на сколько больше» и «на сколько меньше» с процессом сравнения множеств и количественной оценкой разницы числа элементов.
Наша работа основана на принципах развития и усложнения. Предыдущий этап обучения предполагает формирование базовых знаний и умений для освоения последующего этапа.
5 направление – Развивающие игры
В этом направлении мы опишем несколько видов игр: «Уникуб». «Сложи узор»; Кубики для всех «Световид».
Развивающие игры STEM образования математический модуль - это в первую очередь игры творческие. В работе с такими играми следует предоставлять детям больше самостоятельности. При выполнении заданий ребёнок может допускать ошибки, поэтому лучше дать возможность отыскать их самостоятельно. При необходимости, воспитатель может помочь в исправлении ошибки. Начинать любую игру необходимо с посильных для ребёнка задач. Ко всем играм прилагаются готовые узоры-задания.
В качестве первой игры можно выбрать «Сложи узор» и первые задания к нему. Далее следует вводить «Уникуб» и «Кубики для всех- Световид».
Данный порядок введения игр - один из возможных. Он может быть изменен в зависимости от индивидуальных особенностей ребёнка: его возраста, уровня развития мыслительных операций. Последовательность ознакомления с играми также во многом обусловлена заинтересованностью ребёнка, направленной на выполнение тех или иных заданий.
Игра «Сложи узор» Развивает у детей способность к анализу и синтезу. Мы используем вариацию заданий в игре - срисовывание узоров с кубиков. Это более сложный вид работы с кубиками, развивающий графические навыки. Рисование узора требует больше времени, чем его складывание из кубиков, поэтому количество заданий на срисовывание должно быть небольшим.
Еще один вид работы с кубиками, наиболее насыщенный творческими элементами, это составление новых узоров. Этот узор должен быть красивым, симметричным, напоминающим своим видом какой-либо предмет.
Наличие нескольких комплектов игры «Сложи узор» даёт возможность организации соревновательной деятельности среди детей. Оптимальное количество участников: 3-5 человек.
Игра «Уникуб» Развивает у ребёнка пространственное представление, образное мышление, способность комбинировать, конструировать, сочетать форму и цвет, складывая объемную фигуру. Предлагаю ребёнку начать действия с кубиками с наиболее легких заданий. Задания в «Уникубе» от многих детей могут потребовать повышенной концентрации внимания, дополнительного сосредоточения, поэтому их количество не должно быть большим. Непосредственно руководство педагога игрой направлено на развитие самостоятельности детей, их творческих способностей. Наблюдаю, как ребёнок сначала осваивает складывание простых построек, затем свободно комбинирует форму и цвет с целью реализации своего замысла. Настоящая творческая работа у ребёнка начинается с придумывания и складывания новых моделей. Признаком хорошего овладения «Уникубом» служит не только умение выполнить задание, но и затрачиваемое на это время.
Описанные игры развивают различные познавательные процессы: внимание, зрительную память, пространственное воображение; стимулируют способность к комбинированию, предвидению результатов своих действий.
Исходя из выше сказанного, можно сделать вывод об успешности использования SТЕАМ - технологии в образовательной деятельности дошкольной образовательной организации и о необходимости дальнейшего совершенствования направления работы, нацеленного на формирование элементарных математических представлений у детей дошкольного возраста.
Спасибо за внимание.
По теме: методические разработки, презентации и конспекты
Об использовании ресурсов развивающего оборудования в образовательной организации для формирования инженерно – технического мышления и логико-математического развития детей дошкольного возраста в рамках реализации концепции математического образования.
В дошкольном возрасте одним из важнейших видов деятельности детей является конструирование, связанное с моделированием как реально существующих, так и придуманных детьми объектов. В процессе конструир...
Мастер- класс для педагогов «Транслирование опыта развития математической грамотности детей дошкольного возраста через активное внедрение информационных ресурсов в условиях новой парадигмы образовании».
Модернизация системы образования стала отличительным признаком развития современного российского общества. Динамичная технологизация и всеобъемлющая информатизация – процессы, требующие от образ...
Формирование базовых компетенций математического развития детей дошкольного возраста через STEM образование в ДОУ.
Мировая тенденция говорит о необходимости развития метапредметных навыков работы с информацией: критического мышления, овладение логическими операциями (сравнение, классификация, ...
Формирование базовых компетенций математического развития детей дошкольного возраста через STEM образование в ДОУ.
Мировая тенденция говорит о необходимости развития метапредметных навыков работы с информацией: критического мышления, овладение логическими операциями (сравнение, классификация, синтез, анализ...
Отчет о работе по реализации инновационного проекта (программы) «Формирование базовых компетенций детей дошкольного возраста через STEM - образование»
Модернизация технологий и содержания дошкольного образования в соответствии с требованиями федерального государственного образовательного стандарта...
Формирование базовых компетенций детей дошкольного возраста через STEM-образование.
Цель проекта — развитие у дошкольников базовых личностных компетенций: критического мышления, креативности, лидерства, командной деятельности, умения решать нестандартные задачи....