программно-методические и дидактические материалы
Рабочая программа по алгебре и началам математического анализа 10-11 кл.
Рабочая программа по геометрии 10-11 кл
внеклассное мероприятие в 5 классе
КВН среди 6-х классов
обыкновенные дроби (презентация)
квадратные уравнения (тест)
тест по геометрии 7 кл.
дифференцированные контрольные работы по алгебре для 10 класса. Тема "Производная"
Внеклассное мероприятие по математике в 5 кл ко Дню знаний(конспект и презентации)
Скачать:
Предварительный просмотр:
Внеклассное мероприятие в 5 классах . Игра «Обыкновенные дроби»
Цели мероприятия:
Предметные: обобщить и систематизировать знания учащихся об обыкновенных дробях и смешанных числах; сравнении, сложении и вычитании дробей с одинаковыми знаменателями; закрепить навыки преобразования неправильной дроби в смешанное или натуральное число и преобразования смешанного или натурального числа в неправильную дробь; закрепить умения решать задачи на нахождение дроби от числа и числа по значению его дроби.
Личностные: развивать готовность к самообразованию и решению творческих задач, развивать познавательный интерес к математике; формировать умения планировать свои действия в соответствии с учебным заданием, работать в коллективе и находить согласованные действия.
Метапредметные: развивать мотивы и интересы своей познавательной деятельности, формировать умение делать обобщения, устанавливать аналогии.
Оборудование: компьютер, проектор, лист контроля.
Ход мероприятия:
- Вступительное слово учителя. Мы с вами изучили тему «Обыкновенные дроби». Изучив данный материал, вы расширили свои знания об обыкновенных дробях. Узнали, какие дроби называют правильными, а какие – неправильными, какие числа называют смешанными, как связаны деление натуральных чисел и дроби. Научились сравнивать, складывать и вычитать дроби с одинаковыми знаменателями. Также вы научились решать задачи на нахождение дроби от числа и числа по значению его дроби.
На сегодняшнем мероприятии вы покажете свои знания по данной теме. Это мероприятие будет проходить в форме игры. Для этого вы разделились на 5 команд. В каждой команде выбран командир, который будет следить за выполнением заданий членами его команды, контролировать и регулировать работу группы.
- Разминка будет проходить в виде блиц-опроса. Вопросы будут задавать поочерёдно каждой команде.
- Игра(презентация)
- Подведение итогов.Рефлексия.
Приложения
1.Вопросы для разминки:
1 команда
1) В дроби назовите числитель. Что он означает?
2) какая дробь называется правильной?
3) какую часть вашего класса составляют девочки?
4) Как называется число 4?
5) какую часть недели составляет понедельник?
2 команда
- Назовите дробную часть числа 7.
- Какая дробь называется правильной?
- Назовите все правильные дроби со знаменателем 4.
- Бревно распили на 8 чурок. Какую часть бревна составляют 3 чурки?
- Часы показывают 3 часа. Какую часть круга прошла часовая стрелка?
3 команда
- Приведите пример смешанного числа.
- Назовите все неправильные дроби с числителем 5.
- Чему равен числитель у дроби .
- Как в виде обыкновенной дроби записывается половина?
- Какую часть метра составляет 1 дм?
4 команда
- Представьте в виде неправильной дроби число 1.
- Что больше половина или две четверти?
- Какому числу равна дробь ?
- Из 23 учеников класса пятеро получили оценку «5». Какая часть класса получили «5?»
- Какую часть года составляет зима?
5 команда
- Саша съел четверть всех конфет, которые были в вазочке. Сколько конфет съел Саша, если в вазе было 16 конфет?
- Назовите все правильные дроби со знаменателем 5.
- Какую часть суток составляет один час?
- Чему равен знаменатель дроби и что он показывает?
- Выделите целую и дробную часть из неправильной дроби .
2. Игра (презентация)
3.Рефлексия
Продолжите высказывания о сегодняшнем мероприятии:
- Мне понравилась сегодняшняя игра, но …..
- Для меня эта тема была трудная, вот если бы …
- Для меня эта тема легкая и я…..
- Итоги
Предварительный просмотр:
КВН среди 6-х классов проводился в рамках недели математики
Цели мероприятия: способствовать проявлению индивидуальных творческих способностей учащихся, активизации их познавательной деятельности.
Задачи:
- в увлекательной игровой форме углубить знания по математике, способствовать развитию находчивости, смекалки у учащихся;
- способствовать развитию интуиции, эрудиции, логического мышления, расширению кругозора учащихся, побуждать познавательный интерес к изучению предмета;
- воспитывать культуру общения, умение работать в команде.
Из каждого класса по 14 учащихся. 28 учащихся делятся на 4 команды.
1 задание: придумать название команде, выбрать капитана и представиться.
2 задание для сплочения коллектива: из букв составить слово. (знаменатель, сокращение, треугольник, арифметика)
3 задание: разминка по 4 вопроса каждой команде
- Вопросы 1-ой команде: а)Если у четырехугольника отрезать один угол, то сколько углов у него останется. Б)Сколько получится 2+2:2; в) как называется равенство двух отношений? г) Чему равна 1/3 от 15? д)Сколько месяцев в году содержат 30 дней?
- Вопросы 2-ой команде: а)Два отца и два сына застрелили 3-х зайцев , причем каждый по одному. Как такое могло случиться? Б) Какое число делится без остатка на все числа? В) 60 листов книги имеют толщину 1 см. Какова толщина всех листов книги, если в ней 240 страниц? г) Как называется сотая часть числа? д) Найти 50% от 32.
- Вопросы 3-ей команде: а) Назовите наибольшее трехзначное число. Б) Как называется частное двух чисел? В) Вычислите 2+2*2. Г) Чему равно число, 1/3 которого равна 7?
- Вопросы 4-ой команде: а) У трех маляров был брат Прокоп, а у Прокопа братьев не было. Как такое могло случиться? Б) Прибор для измерения углов. В) Найти 2/7 от 14. В) Сформулируйте основное свойство пропорции. Г) Что больше произведение цифр или их сумма?
4 задание: Конкурс капитанов. Бабушка вяжет внуку подарок на Новый Год – шарф длиной 200 см. Каждое утро она выжжет 30 см, но каждую ночь домовёнок Кузя распускает 20 см связанного шарфа. Какого числа шарф будет готов, если бабушка начала вязать 1-го декабря?
В это время конкурс вычислителей.
5 задание: командный конкурс – инсценировка сочетательного свойства сложения и умножения, распределительного свойства, основного свойства пропорции.
6 задание: Конкурс художников: на листе А4 нарисовать человечка, используя только цифры.
7 задание: Кроссворд
Конкурсы для болельщиков: 1) называют хором натуральные числа, как только встречается число, кратное 3, хлопок в ладоши. 2) назовите пословицы и поговорки, в которых встречаются числа.
8 задание составить ребус со словами квадрат, Пифагор, процент, деление.
Подведение итогов. Награждение победителей.
Приложения
- Конкурс вычислителей.
№ 1. (0,4 ∙ 2,38 – 3,452) : 4 - 2= –3
№ 2 2 - 2: (0,6 ∙ 3,28 – 5,468) = 3
№ 3 (0,4 ∙ 1,25 – 2,25 ) : 0,5 - = – 4
№ 4 - 2 + 0,54 : ( 0,8 ∙ 22,5 – 22,5) = – 2,37
Кроссворд
По вертикали
1. Находится под чертой дроби.
- Хорда, которая проходит через центр
окружности.
- Число, показывающее положение точки на координатной прямой.
- Часть плоскости, ограниченная окружностью, вместе с самой окружностью.
- Равенство двух отношений.
- Действие, обратное сложению.
- Результат деления.
- Действие, обратное делению.
- Частное двух чисел, отличных от нуля.
- Имеет начало, но не имеет конца.
18. Расстояние от начала отсчёта до точки, изображающей данное число на координатной прямой.
По горизонтали
2. У круга она равна πr2.
- Ей указывают положительное направление на координатной прямой.
- С помощью него можно построить перпендикулярные прямые.
- Отрезок, соединяющий центр окружности с какой-либо точкой этой окружности.
- Один из элементов дроби.
- Равенство с неизвестными.
- Сотая часть величины.
- Тело, ограниченное сферой.
17. Площадь его боковой поверхности вычисляется по формуле 𝑠 = 2𝜋𝑟ℎ.
З | Н | А | М | Е | Н | А | Т | Е | Л | Ь |
С | О | К | Р | А | Щ | Е | Н | И | Е | |
Т | Р | Е | У | Г | О | Л | Ь | Н | И | К |
А | Р | И | Ф | М | Е | Т | И | К | А |
Предварительный просмотр:
Подписи к слайдам:
В стране Восходящей Луны
Представьте дробь в виде смешанного числа: а) ; б) ; в) ; г) . За каждую дробь – 250 г масла! Киоск 1. Мне нужен 1 л кунжуткого масла.
Киоск 2. Представьте число в виде неправильной дроби: а) 2 ; б) 4 ; в) 6 ; г) 3 . За каждую дробь – 250 г жирковника или сормодины. И то и другое полезно… 5 8 3 11 1 13 7 15 Я бы хотела купить сормодину… или жирковник… А что посоветуете Вы?
Киоск 6 Ах, какой славный репец у Вас! Он сладкий? Можно попробовать? Вычислите: а) + ; б) + ; в) + ; г) + . За каждый пример – 1 стручок сладкого жгучего репца 73 131 3 14 2 7 5 7 4 14 11 17 6 17 27 131
Киоск 7 ЗЕЛЕНЬ Вычислите: а) - ; б) - ; в) - ; г) - . За каждый пример – 250 г зеленого рогоха в форме крокодила. 13 37 23 19 4 19 78 247 23 247 123 479 78 479 24 37 Ваш рогох такой же зеленый, как и мой дядюшка – Крокодил. Только дядюшка плоский, а рогох – круглый.
Киоск 10 Дорогой друг! Если я кивну Вам три раза, вы взвесите мне три экзотических кивано? Получить кивано не так легко! Вычислите: а) 2 + 3 ; б) 4 – 1 ; в) 3 + 2 ; г) 5 – 3 . За каждый пример – 4 50 г кивающих кивано 7 13 6 13 12 23 10 23 5 17 11 17 11 19 6 19
Киоск 11 Птичка моя! Если я спою Вам арию Карамболины из оперетты «Карамболетта», Вы продадите мне эти очаровательные карамболы? Я и сама неплохо пою. А вот с арифметикой у нас проблемы. Вычислите: а) 2 – 1 ; б) 7 + 5 ; в) 5 – 3 ; г) 3 + 2 . и получите за каждый пример – 5 0 0 г карамбола 5 11 2 11 3 7 2 7 4 9 1 9 2 21 3 21
Киоск 16 Мамма мия! Какая мамайя! Любезный! Перед Вашими вокальными данными бледнеет великий Карузо! Пусть бледнеет. А Вы решите уравнения: а) + y = 1; б) 1 – y = ; в) y + = 1; г) 1 – y = . И тогда за каждое получите – 1 кг мамайи 7 8 5 12 7 16 13 24
Киоск 17 Пока не решите уравнения: а) x + = 1, б) 1 – x = , в) x + = 1, г) 1 – x = , не видать Вам никаких тоусов! А вот за каждое решенное уравнение – 1 банка тоуса гарантирована. 1 7 3 5 3 7 1 9 Я прекрасно помню, что именно Вы здесь начальник. Мне бы только немного соматного тоуса для крамарон, т.е. для маркарон, ну… для мервишели.
В стране Восходящей Луны Вот так знание математики помогло ящерице Киндзе, не потратив ни юке, принести полную корзину еды своим деткам.
рефлексия Продолжите высказывания о сегодняшнем мероприятии: Мне понравилась сегодняшняя игра, но ….. Для меня эта тема была трудная, вот если бы … Для меня эта тема легкая и я…..
Предварительный просмотр:
8 класс. Алгебра. Тема «Квадратные уравнения»
Тест
- Какое из данных уравнений не является квадратным?
а) 4х2 +5х- 3= 0
б) 7х-5=о
в) 9х2 =13х
г) 12х2 +7=0
2.Какое из уравнений является неполным квадратных уравнением?
а) 13х2 +5х-7=0
б) 4х-х2 =17
в) х2 +9=8х
г)х2 -5=0
3.Укажите приведенное квадратное уравнение
а)3х2 -2х+5=0,
б) 7х-х2 =12,
в) х2 +2х-47=0,
г)5х2 -9х+10=0.
4.Составьте квадратное уравнение, зная его коэффициенты, а=3, в=0,7, с= -.
- 3х2 +0,7х- =0,
б)-х2 +3х+0,7=0,
в)0,7х2 -х+3=0.
5. Корнем, какого из уравнений является 0,5:
- 4х2 -6х+5=0,
б)6х2 – 4х+0,5=0,
в)-х2 +6х-2=0.
6. Какая пара чисел является корнями уравнения 9х2 -13х+4=0
- х1 =7,х2 =- 2,
б) х1 =1, х2=.
в) х1 =3, х2=-
7.Какое из данных уравнений не имеет корней?
- х2 -7х+6=0,
б) 8х2 +х+5=0,
в)25х2 -10х+1=0,
8.Укажите уравнение, которое имеет два различных корня:
- 6х2 -5х+2=0,
б) х2 +12х+32=0,
в)16х2 -24х+9=0.
9. Укажите уравнение, которое имеет один корень:
- 12х2 -8х+1=0,
б) – 3х2 +5х-11=0,
в) 36х2 +60х+25=0.
10.Решите неполное квадратное уравнение и выберите ответ:
1)– 0,5х2 =0, | а)х1 =0, х2 = |
2) 2х2 +15=0, | б)х1 = х2= - |
3) 3х2 –х=0, | в)х=0 |
4) 25х2 -16=0 | г)нет корней |
Ответ запишите в таблицу
1) | 2) | 3) | 4) |
11.Решите уравнение:
- х2 +2х- 24=0,
б) -4х2 +19х – 12=0,
в)5х2 –х+4=0,
г)9х2 -24х +16 =0.
Ответы запишите в таблицу
а) | б) | в) | г) |
12.При каких значениях параметра p уравнение -4х2 + pх -p =0 имеет один корень?
- – 2 и 2,
б) 0 и 4,
в) 0 и -4.
13.Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения
х2 -2х -63=0.
- 9 и 7;
б) -9 и -7;
в) 9 и -7.
14.Составьте уравнение, зная его корни: х1 = 3; х2 = -9.
а) х2 -6х -27=0;
б) х2 +6х -27=0;
в) х2 +6х +27=0.
Предварительный просмотр:
Тест по геометрии-7
Тема «Признаки равенства треугольников. Равнобедренный треугольник»
B-1
1. ∆ МКР = ∆ М1К1Р1, М = М1, К1Р1 = 5 см.
Тогда КР = …
2. ∆ АВС = ∆ MFK, В = М.
Тогда разность АС – FK равна…
3. Отрезки KP и EF пересекаются в точке М так, что KM = MP и EM = MF. PF = 12 см.
Тогда KE = …
4. Медиана АМ треугольника АВС перпендикулярна стороне ВС.
ВАС = 40°.
Тогда ВАМ = …
5. В четырехугольнике АВСD 1 = 2, 3 = 4. ВD = 5 см.
Периметр четырехугольника равен 32 см. Тогда периметр треугольника АВD равен…
6. Точка О делит пополам диагональ…
B-2
1. ∆ АВС = ∆ А1В1С1, ВС = В1С1, A = 35°.
Тогда A1 = …
2. ∆ АВС = ∆ MFK, А = М.
Тогда отношение равно…
3. Отрезки AD и BC пересекаются в точке О так, что АО = OD и СО = ОВ.
CDO = 34°. Тогда ВАО = …
4. Биссектриса AD треугольника АВС перпендикулярна стороне ВС. ВС = 7,2 см.
Тогда BD = …
5. В четырехугольнике MNPQ 1 = 2, 3 = 4. NQ = 9 см.
Периметр четырехугольника равен 28 см. Тогда периметр треугольника MNQ равен…
6. Делит угол пополам диагональ…
Предварительный просмотр:
Дифференцированная контрольная работа по алгебре в 10 классе.
Тема «Производная»
Работа представлена в трёх вариантах. Вариант «А»- базовый уровень, вариант «Б»-повышенный уровень, вариант «В»- высокий уровень.
За любой из этих вариантов можно получить оценки «5», «4», «3», «2».
Предварительный просмотр:
Урок алгебры в 9 классе
Тема урока: «Квадратичная функция, ее график и свойства»
ФИО учителя: Цивилева Мария Цыреновна
УМК А.Г. Мерзляк, В.Б.Полонский, М.С.Якир – М. : Вентана-Граф,2020
Урок изучения нового материала
Оборудование: ноутбук, проектор, экран
Цели урока: 1. Предметные: сформировать умения распознавать квадратичную функцию, исследовать ее свойства, строить график квадратичной функции, используя график функции у=ах2
2. Личностные: формировать интерес к изучению темы и желание применять приобретенные знания и умения.
3.Метапредметные: формировать умение понимать и использовать математические средства наглядности.
Ход урока:
Этапы урока | Деятельность учителя и деятельность учеников |
I. Организационный этап | Приветствие. Обсуждение целей урока. Учитель создает благоприятный психологический настрой на работу. Учащиеся включаются в деловой ритм урока |
II. Актуализация знаний 1) устная работа – решение задач (слайды 2-4) 2)самостоятельная работа (сделать на листочках), слайд 5. | 1)Задание из ОГЭ: соотнести график функции и формулу, задающей функцию. Проверяется уметь оформлять свои мысли в устной форме с достаточной полнотой и точностью 2)Сам.работу выполняют с помощью шаблона графика функции у=х2 |
III.Проверка домашнего задания. Слайд 6. №333
2) | При проверке дом.задания проверялось умение выделять полный квадрат из квадратного трехчлена. Т.е, приведение функции, записанной в виде у=ах2 +вх+с к виду У=а(х-m)2 + n. Это нужно будет для выделения полного квадрата для функции, записанной в общем виде. |
IV. Изучение нового материала. Слайды 7,8,9 План изучения нового материала: 1.Определение квадратичной функции. №340(устно, какие из данных функций являются квадратичными; привести пример квадратичной функции) 2.Как из графика функции у=ах2 можно получить график функции у= ах2 +вх +с 3.Алгоритм построения графика квадратичной функции 1)Найти абсциссу и ординату вершины параболы по формулам х0 =- , у0 = f(х0). 2)Определить направление ветвей параболы: при а <0 ветви направлены вниз; при а>0 ветви направлены вверх. 3)Вычислить координаты нескольких точек, принадлежащих искомому графику. Это могут быть точки пересечения с осями координат и еще несколько точек. Причем дополнительные точки можно найти как точки, принадлежащие графику функции у=ах2 , приняв вершину параболы за начало отсчета, а прямую х0 =- считать осью симметрии графика. 4)Провести через все отмеченные точки плавную непрерывную линию. 4.Пример. Построить график функции f(х)= х2 +4х -5 1) х0 =- = = -2; у0 = f(-2) = (-2)2 +4*(-2) -5 =-9. Т.о., вершина параболы (-2; -9). 2)На координатной плоскости отмечаем вершину параболы. Т.к., а=1, то ветви параболы направлены вверх и парабола пересекается с осями координат. Найдем точки пересечения с ОХ. Для этого решим уравнение: х2 +4х -5=0. Получим х1 =-5, х2 =1. Следовательно, парабола пересекает ось ОХ в точках (-5;0) и (1;0). Точка пересечения с осью ОУ: х=0, у=-5. Делаем вывод, что значение с=-5 это и есть точка пересечения с осью ординат. Еще три дополнительные точки можно получить следующим образом: т.к., данная парабола равна параболе у= х2 , то считая вершину параболы началом отсчета и прямую х= -2 ее осью симметрии можно отметить точку (-1,-8), и симметричную ей относительно прямой х=-2 точку (-3;8). Для параболы у=х2 это точки (1;1) и (-1;1). Точке (0;-5) симметрична (-4;-5). | |
V. Закрепление изученного материала Рабочая тетрадь №6, стр.105 | Учащиеся выполняют работу, учитель задает наводящие вопросы, корректирует работу. Формируется умение работать по алгоритму, используя изученный материал. |
VI.Подведение итогов урока. Подведение итогов урока. Выполнить задание №1 в рабочей тетради на стр.104 Рефлексия слайд 11. | Отметь для себя на какой ступени лестницы успеха ты находишься в конце урока. |
VII.Домашнее задание, слайд 12 §11,№342,346 |
Предварительный просмотр:
Подписи к слайдам:
Каждый график
Устная работа
Самостоятельная работа Построить график функции с помощью шаблона параболы у=х²
Проверка домашнего задания №333 1) У=х 2 -2х-8= (х 2 -2х +1)-9=(х-1) 2 -9 График –парабола с вершиной в (1;-9), равная параболе у=х 2 2)-2 х 2 +8х -3 = -2(х 2 -4х +1,5)= -2(х 2 -4х +4)+5 = -2(х-2) 2 +5 График –парабола с вершиной в (2;5), равная параболе у=-2х 2
определение Квадратичной функцией называется функция, которую можно задать формулой вида y=ax² + bx+c , где х - независимая переменная, a, b и с -некоторые числа (причём а≠0). №340(учебник)
Чтобы построить график функции надо: 1. Описать функцию: название функции, что является графиком функции, куда направлены ветви параболы, Какой параболе равна данная парабола. Пример: у = х ² -2х-3 – квадратичная функция, графиком является парабола, ветви которой направлены вверх (т.к. а=1, а > 0), равна параболе у = х ² .
Чтобы построить график функции надо: 2. Найти координаты вершины параболы А( m ; n ) по формулам: или n = у( m ) т.е. подставить найденное значение абсциссы m в формулу, которой задана функция и вычислить значение. Прямая x=m является осью симметрии параболы. Пример: у = х ² -2х-3 (а = 1; b = -2; с = -3) Найдём координаты вершины параболы n = 1 ² -2 · 1-3 = -4 А(1;-4) – вершина параболы. х =1 – ось симметрии параболы.
Домашнее задание § 11,№342,346
Предварительный просмотр:
МО «Курумканский район»
МБОУ «Курумканская средняя общеобразовательная школа №1»
«Рассмотрено» Руководитель МО: Цивилева М.Ц./_______/ Протокол № ___ от «__»_____________20___г. | «Согласовано» Заместитель директора по УВР МБОУ «КСОШ №1» /__________/ «__»____________20___г. | «Утверждаю» Руководитель МБОУ «КСОШ №1»: /________/ Приказ № ___ от «__»_______________20___г. |
РАБОЧАЯ ПРОГРАММА
Предмет: геометрия
Класс: 10-11
ФИО учителя: Цивилева М.Ц.
Категория: высшая
Сроки реализации рабочей программы: 2021-2023 г.г.
Курумкан
2021 год
Пояснительная записка
Рабочая программа по геометрии для 10-11 классов МБОУ «Курумканская средняя общеобразовательная школа №1» составлена на основании следующих нормативных документов:
- Федеральный закон от 29.12.2012 No 273-ФЗ «Об образовании в Российской Федерации» (с изменениями)
- Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17.05.2012 No 413 (в действующей редакции);
- Приказ Министерства просвещения России от 11.12.2020 N 712 "О внесении изменений в некоторые федеральные государственные образовательные стандарты общего образования по вопросам воспитания обучающихся" (Зарегистрировано в Минюсте России 25.12.2020 N 61828)
- Приказ Министерства просвещения Российской Федерации «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам -образовательным программам начального общего, основного общего и среднего общего образования» от 22марта2021 года No 115
- Приказ Министерства просвещения Российской Федерации от 11.12.2020 № 712 "О внесении изменений в некоторые федеральные государственные образовательные стандарты общего образования по вопросам воспитания обучающихся" (Зарегистрирован 25.12.2020 № 61828);
- Примерная основная образовательная программа среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 28.06.2016 N 2/16-з);
- Санитарные правила СП2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденными постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 No28;
- Постановление Главного государственного санитарного врача Российской Федерации от 28.01.2021 No 2 «Об утверждении санитарных правил и норм СанПиН1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;
- Приказ Министерства просвещения Российской Федерации от 20.05.2020No 254(с изменениями и дополнениями от 23.12.2020) "Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность"
- Приказ Министерства образования и науки Российской Федерации от 09.06.2016
No 699 о перечне организаций, осуществляющих выпуск учебных пособий, которые допускаются к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования;
- Закон Республики Бурятия «Об образовании в Республике Бурятия» № 240-V от 13 декабря 2013 г;
-. Концепция развития математического образования в Российской Федерации от 24 декабря 2013 г. № 2506-р
- Положение о рабочей программе муниципального бюджетного образовательного учреждения «Курумканская средняя общеобразовательная школа №1»
- Основная образовательная программа основного общего образования МБОУ «Курумканская СОШ №1»,
- Устав МБОУ «Курумканская СОШ №1», утвержденный 23.12.2015 г.
- Учебный план обеспечивает реализацию Федерального государственного образовательного стандарта среднего общего образования, выполнение его требований
Рабочая программа по геометрии для 10-11 классов ориентирована на УМК авторского коллектива: А.Г.Мерзляк, Д.А. Номировский, В.Б.Полонский, М.С.Якир.
Личностные, метапредметные и предметные результаты освоения содержания курса геометрии
Изучение геометрии по данной программе способствует формированию у учащихся личностных, метапредметных, предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта среднего общего образования.
Личностные результаты:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
4) осознанный выбор будущей профессиональной деятельности на базе ориентирования в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
6) умение управлять своей познавательной деятельностью;
7) умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
8) критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты:
1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
7) формирование компетентности в области использования информационно-коммуникационных технологий;
8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
9) умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятной форме; принимать решение в условиях неполной или избыточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
10) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Планируемые результаты обучения геометрии
Учащиеся научатся:
• оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
• распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
• изображать геометрические фигуры с помощью чертёжных инструментов;
• извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
• применять теорему Пифагора при вычислении элементов стереометрических фигур;
• находить объёмы и площади поверхностей простейших многогранников с применением формул;
• распознавать тела вращения: конус, цилиндр, сферу и шар;
• вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
• оперировать понятием «декартовы координаты в пространстве»;
• находить координаты вершин куба и прямоугольного параллелепипеда;
• находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
• понимать роль математики в развитии России.
В повседневной жизни и при изучении других предметов:
• соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
• использовать свойства пространственных геометрических фигур для решения задач практического содержания;
• соотносить площади поверхностей тел одинаковой формы и различного размера;
• оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников).
Учащиеся получат возможность научиться:
• применять для решения задач геометрические факты, если условия применения заданы в явной форме;
• решать задачи на нахождение геометрических величин по образцам или алгоритмам;
• делать плоские (выносные) чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
• извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
• применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
• описывать взаимное расположение прямых и плоскостей в пространстве;
• формулировать свойства и признаки фигур;
• доказывать геометрические утверждения;
• задавать плоскость уравнением в декартовой системе координат;
• владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
• использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;
• решать простейшие задачи введением векторного базиса.
Содержание курса
В УМК систематично и последовательно изложено содержание школьного курса стереометрии. Это содержание следующим образом распределено по классам:
10 класс(70 часов)
Глава 1.Введение в стереометрию (9 ч.)
Основные понятия стереометрии. Аксиомы стереометрии и следствия из них. Пространственные фигуры. Начальные представления о многогранниках.
Глава 2. Параллельность в пространстве (15 ч.)
Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости, параллельность плоскостей. Преобразование фигур в пространстве. Параллельное проектирование
Глава 3. Перпендикулярность в пространстве (27 ч.)
Угол между прямыми в пространстве. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярные плоскости. Площадь ортогональной проекции многоугольника.
Глава 4. Многогранники (15 ч.)
Призма. Параллелепипед. Пирамида. Усеченная пирамида. Платоновы тела
Повторение ( 4ч.)
11 класс (68 часов)
Глава 1. Координаты и векторы в пространстве (16 ч.)
Декартовы координаты точки в пространстве. Векторы в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Гомотетия. Скалярное произведение векторов. Геометрическое место точек пространства. Уравнение плоскости
Глава 2. Тела вращения (29 ч.)
Цилиндр. Комбинации цилиндра и призмы. Конус. Усечённый конус. Комбинации конуса и пирамиды. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Комбинации цилиндра и сферы, конуса и сферы
Глава 3. Объёмы тел. Площадь сферы (17 ч.)
Объём тела. Формулы для вычисления объёма призмы. Формула для вычисления объёмов пирамиды и усеченной пирамиды. Объёмы тел вращения. Площадь сферы.
Повторение (6 ч.)
Формы организации учебного процесса:
-фронтальная работа, где происходит проблематизация и предъявляется необходимый минимум учебного материала
-работа в постоянных парах (группах)– тренаж, повторение, закрепление материала, предъявленного в предшествовавшей фронтальной работе
-работа в парах(группах) сменного состава – глубокое освоение отдельных моментов материала по изучаемой теме
индивидуальная работа— самостоятельное выполнение заданий по теме урока
Основная форма обучения - урок
В системе уроков выделяются следующие типы:
- Уроки изучения нового материала
- Уроки закрепления знаний
- Уроки обобщения и систематизации знаний
- Уроки-лекции, уроки-практикумы.
Текущий контроль осуществляется в виде: самостоятельных работ, письменных тестов, математических диктантов, проектной деятельности, исследовательской деятельности, устных и письменных опросов по теме урока.
Вводную диагностику, промежуточные контрольные работы и итоговую диагностику предполагается проводить в виде разноуровневых тестовых заданий.
С учетом уровневой специфики классов выстроена система учебных занятий уроков, спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты).
Планируется использование следующих педагогических технологий:
- технологии полного усвоения;
- технологии обучения на основе схематичных моделей;
- технологии обучения на основе решения задач;
- технологии проблемного обучения;
- технологии проектов;
- технологии обучения с использованием ИКТ.
В течение года возможны коррективы рабочей программы, связанные с объективными причинами.
Предварительный просмотр:
МО «Курумканский район»
МБОУ «Курумканская средняя общеобразовательная школа №1»
«Рассмотрено» Руководитель МО: Цивилева М.Ц./_______/ Протокол № ___ от «__»_____________20___г. | «Согласовано» Заместитель директора по УВР МБОУ «КСОШ №1» /__________/ «__»____________20___г. | «Утверждаю» Руководитель МБОУ «КСОШ №1»:./_________/ Приказ № ___ от «__»_______________20___г. |
РАБОЧАЯ ПРОГРАММА
Предмет: алгебра и начала математического анализа
Класс: 10-11
ФИО учителя: Цивилева М.Ц.
Категория: высшая
Сроки реализации рабочей программы: 2021-2023 г.г.
Курумкан
2021 год
Пояснительная записка
Рабочая программа по алгебре и началам математического анализа для 10-11 классов МБОУ «Курумканская средняя общеобразовательная школа №1» на 2020 - 2021 учебный год составлена на основании следующих нормативных документов:
- Федеральный закон от 29.12.2012 No 273-ФЗ «Об образовании в Российской Федерации» (с изменениями)
- Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17.05.2012 No 413 (в действующей редакции);
- Приказ Министерства просвещения России от 11.12.2020 N 712 "О внесении изменений в некоторые федеральные государственные образовательные стандарты общего образования по вопросам воспитания обучающихся" (Зарегистрировано в Минюсте России 25.12.2020 N 61828)
- Приказ Министерства просвещения Российской Федерации «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам -образовательным программам начального общего, основного общего и среднего общего образования» от 22марта2021 года No 115- Приказ Министерства просвещения Российской Федерации от 11.12.2020 № 712 "О внесении изменений в некоторые федеральные государственные образовательные стандарты общего образования по вопросам воспитания обучающихся" (Зарегистрирован 25.12.2020 № 61828);
- Примерная основная образовательная программа среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 28.06.2016 N 2/16-з);
- Санитарные правила СП2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденными постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 No28;
- Постановление Главного государственного санитарного врача Российской Федерации от 28.01.2021 No 2 «Об утверждении санитарных правил и норм СанПиН1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;
- Приказ Министерства просвещения Российской Федерации от 20.05.2020No 254(с изменениями и дополнениями от 23.12.2020) "Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность"
- Приказ Министерства образования и науки Российской Федерации от 09.06.2016
No 699 о перечне организаций, осуществляющих выпуск учебных пособий, которые допускаются к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования;
- Закон Республики Бурятия «Об образовании в Республике Бурятия» № 240-V от 13 декабря 2013 г;
-Концепция математического образования в Российской Федерации от 24 декабря 2013 года № 2506-р
- Положение о рабочей программе муниципального бюджетного образовательного учреждения «Курумканская средняя общеобразовательная школа №1»
- Основная образовательная программа основного общего образования МБОУ «Курумканская СОШ №1»,
- Примерная программа по алгебре и началам математического анализа авторского коллектива: А.Г.Мерзляк, Д.А. Номировский, В.Б.Полонский, М.С.Якир.
- Устав МБОУ «Курумканская СОШ №1», утвержденный 23.12.2015 г.
Учебный план обеспечивает реализацию Федерального государственного образовательного стандарта среднего общего образования, выполнение его требований
Рабочая программа по алгебре и началам математического анализа для 10-11 классов ориентирована на УМК авторского коллектива: А.Г.Мерзляк, Д.А. Номировский, В.Б.Полонский, М.С.Якир.
ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА АЛГЕБРЫ
Изучение алгебры и начал математического анализа по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта среднего общего образования.
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознание вклада отечественных учёных в развитие мировой науки;
2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
4) осознанный выбор будущей профессиональной деятельности на базе ориентировки в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
6) умение управлять своей познавательной деятельностью;
7) умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
8) критичность мышления, инициатива, находчивость, активность при решении математических задач.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ:
1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
7) формирование компетентности в области использования информационно-коммуникационных технологий;
8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
9) умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятной форме; принимать решение в условиях неполной или избыточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
10) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ И НАЧАЛ МАТЕМАТИЧЕСКОГО АНАЛИЗА В 10-11 КЛАССЕ
Числа и величины
Учащийся научится:
оперировать понятием «радианная мера угла», выполнять преобразования радианной меры в градусную и градусной меры в радианную;
оперировать понятием «комплексное число», выполнять арифметические операции с комплексными числами;
изображать комплексные числа на комплексной плоскости, находить комплексную координату числа.
Учащийся получит возможность:
использовать различные меры измерения углов прирешении геометрических задач, а также задач из смежных дисциплин;
применять комплексные числа для решения алгебраических уравнений.
Выражения
Учащийся научится:
оперировать понятиями корня n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма;
применять понятия корня n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычислениях и при решении задач;
выполнять тождественные преобразования выражений, содержащих корень n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифм;
оперировать понятиями: косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс;
выполнять тождественные преобразования тригонометрических выражений.
Учащийся получит возможность:
выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов;
применять тождественные преобразования выражений для решения задач из различных разделов курса.
Уравнения и неравенства
Учащийся научится:
решать иррациональные, тригонометрические, показательные и логарифмические уравнения, неравенства и их системы;
решать неравенства методом интервалов;
решать алгебраические уравнения на множестве комплексных чисел;
понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
применять графические представления для исследования уравнений.
Учащийся получит возможность:
овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры.
Функции
Учащийся научится:
понимать и использовать функциональные понятия, язык (термины, символические обозначения);
выполнять построение графиков функций с помощью геометрических преобразований;
выполнять построение графиков вида y степенных, тригонометрических, обратных тригонометрических, показательных и логарифмических функций;
исследовать свойства функций;
понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Учащийся получит возможность:
проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
использовать функциональные представления и свойства функций для решения задач из различных разделов курса математики.
Элементы математического анализа
Учащийся научится:
понимать терминологию и символику, связанную с понятиями производной, первообразной и интеграла;
вычислять производную и первообразную функции;
использовать производную для исследования и построения графиков функций;
понимать геометрический смысл производной и определённого интеграла;
вычислять определённый интеграл.
Учащийся получит возможность:
сформировать представление о пределе функции в точке;
сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах;
сформировать и углубить знания об интеграле.
Вероятность и статистика. Работа с данными.
Учащийся научится:
решать комбинаторные задачи на нахождение количества объектов или комбинаций;
применять формулу бинома Ньютона для преобразования выражений;
использовать метод математической индукции для доказательства теорем и решения задач;
использовать способы представления и анализа статистических данных;
выполнять операции над событиями и вероятностями.
Учащийся получит возможность:
научиться специальным приёмам решения комбинаторных задач;
характеризовать процессы и явления, имеющие вероятностный характер.
СОДЕРЖАНИЕ КУРСА АЛГЕБРЫ И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА 10-11 КЛАССА
10 класс
Повторение и расширение сведений о функции (12 часов)
Наибольшее и наименьшее значения функции. Чётные и нечётные функции. Построение гра-
фиков функций с помощью геометрических преобразований. Обратная функция. Равносильные
уравнения и неравенства. Метод интервалов. Контрольная работа № 1
Степенная функция (19 часов)
Степенная функция с натуральным показателем. Степенная функция с целым показателем. Определение корня n-й степени. Свойства корня n-й степени. Контрольная работа № 2.
Определение и свойства степени с рациональным показателем. Иррациональные уравнения. Метод равносильных преобразований при решении иррациональных уравнений. Иррациональные неравенства. Контрольная работа № 3
Тригонометрические функции (29 часов)
Радианная мера угла. Тригонометрические функции числового аргумента. Знаки значений тригонометрических функций. Чётность и нечётность тригонометрических функций. Периодические функции. Свойства и графики функций y = sin x и y = cos x. Свойства и графики функций y = tg x и y = ctgx. Контрольная работа № 4
Основные соотношения между тригонометрическими функциями одного и того же аргумента. Формулы сложения. Формулы приведения. Формулы двойного и половинного углов. Сумма и разность синусов(косинусов). Формула преобразования произведения тригонометрических функций в сумму. Контрольная работа № 5
Тригонометрические уравнения и неравенства (17 часов)
Уравнение cos x = b. Уравнение sin x = b. Уравнения tg x = b и ctg x = b. Функции y = arccos x,y = arcsin x,
y = arctg x,y = arcctg x.Тригонометрические уравнения, сводящиеся к алгебраическим. Решение тригонометрических уравнений методом разложения. Решение простейших тригонометрических неравенств на множители. Контрольная работа № 6
Производная и её применение (26 часов)
Представление о пределе функции в точке и о непрерывности функции в точке. Задачи о мгновенной скорости и касательной к графику функции. Понятие производной. Правила вычисления производной. Уравнение касательной. Контрольная работа № 7.
Признаки возрастания и убывания функции. Точки экстремума функции. Наибольшее и наименьшее значения функции. Построение графиков функций. Контрольная работа № 8
Повторение курса алгебры и начал математического анализа 10 класса (3 часа)
Итоговая контрольная работа
11 класс
Показательная и логарифмическая функции (28 часов)
Степень с прозвольным действительным показателем. Показательная функция. Показательные
Уравнения. Показательные неравенства. Контрольная работа №1.
Логарифм и его свойства. Логарифмическая функция и ее свойства. Логарифмические уравнения. Логарифмические неравенства. Производная показательной и логарифмической функций.
Контрольная работа №2
Интеграл и его применение (11 часов)
Первообразная. Правила вычисления первообразной. Площадь криволинейной трапеции. Определенный интеграл. Вычисление объёмов тел. Контрольная работа №3
Элементы комбинаторики. Бином Ньютона (12 часов)
Метод математической индукции. Перестановки, размещения. Сочетания(комбинации). Бином Ньютона. Контрольная работа №4
Элементы теории вероятностей (11 часов)
Операции над событиями. Зависимые и независимые события. Схема Бернулли. Случайные величины и их характеристики. Контрольная работа №5
Повторение курса алгебры и начал математического анализа (41 час)
Национально-региональный компонент
Рабочая программа предусматривает реализацию национально-регионального компонента на уроках математики посредством решения задач, составленных на культурно-краеведческом материале Республики Бурятия. Числовые данные взяты из научной, справочной, художественной литературы, периодической печати. Задачи интересны в познавательном отношении. С их помощью достигается знакомство школьников с природой Бурятии, культурой, историей, традициями, с устным народным творчеством. Простые задачи можно предложить для устной работы, включить в домашнее задание, более сложные - для фронтальной, индивидуальной работы на уроках.
- Элементы комбинаторики, статистики и теории вероятности.
- Наибольшее и наименьшее значения функции
Основная форма обучения - урок
В системе уроков выделяются следующие типы:
- Уроки изучения нового материала
- Уроки закрепления знаний
- Уроки обобщения и систематизации знаний
- Уроки-лекции, уроки-практикумы.
Формы организации учебного процесса:
- фронтальная работа, где происходит проблематизация и предъявляется необходимый минимум учебного материала
- работа в постоянных парах (группах)– тренаж, повторение, закрепление материала, предъявленного в предшествовавшей фронтальной работе
- работа в парах(группах) сменного состава – глубокое освоение отдельных моментов материала по изучаемой теме
- индивидуальная работа— самостоятельное выполнение заданий по теме урока
Форма текущего и итогового контроля:
Проводится в виде самостоятельных работ на 10 – 20 минут и математических диктантов. В конце изучения темы проводится контрольная работа, рассчитанная на 45 мин. Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала. Содержание определяется учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса.
Итоговый контроль проводится в виде контрольных работ, тематических тестов, тестов в формате ЕГЭ.
Предварительный просмотр:
:
Внеклассное мероприятие ко Дню знаний в 5 классе
Учитель: Цивилева М.Ц.
Цель мероприятия: формировать интерес к предмету математика;
подготовить учащихся к новому учебному году.
создание условий для практического применения приобретенных знаний, умений и навыков по математике;
расширение границ познания учащихся по математике.
Развивать умение работать в команде, выдвигать гипотезы, отстаивать свою точку зрения.
Ход мероприятия:
Учащиеся класса разбиваются на несколько команд.
1 задание. Составить слово. Командам дается набор букв, из которых нужно составить слово. Слова: периметр, площадь, квадрат, частное.
Это задание сплачивает команду, настраивает на работу.
2 задание - литературное. Назовите пословицы и поговорки, в которых используются числительные
Ответ: Семеро одного не ждут. Один с сошкой, а семеро с ложкой. Семь пятниц на неделе. Семь раз отмерь, один раз отрежь. У семи нянек дитя без глазу. Семеро – не один, в обиду не дадим. Семь ворот и все в огород. Семь бед-один ответ. Одним махом всех убивахом. Семи пядей во лбу. Лук от семи недуг. Тайна за семью печатями. Одно дерево срубишь, десять посади. Один в поле не воин. На все четыре стороны. На все четыре стороны. Знать, как свои пять пальцев. Двое пашут, а семеро руками машут. Конь о четырех ногах, да и то спотыкается.
Слайды 2,3,4
3 Задание. Историческое. Слайды 5-10
Он был задумчив и спокоен,
Загадкой круга увлечен.
Над ним невежественный воин
Взмахнул разбойничьим мечом.
Прошла столетий вереница,
Научный подвиг не забыт,
Никто не знает, кто убийца,
И знают все, кто был убит.
Кто из математиков погиб от руки воина, гордо воскликнув: «Отойди, не трогай моих чертежей!»
4 задание- биологическое (слайд 11)
Это растение называют господином пустыни. Является любимым лакомством слонов. Впервые его культивировали в Древнем Египте. Бывает различной формы: круглой, удлиненной и даже кубической. Масса отдельных экземпляров достигает 78 кг. В нем содержится много разных витаминов и других полезных веществ.
Узнайте, что это такое. Для этого решите примеры и расшифруйте слово
Р | 59+37 |
А | 151-104 |
У | 37*5 |
Б | 144:9 |
З | 12*11 |
47 | 96 | 16 | 185 | 132 |
5 задание Сказочное (слайд 12-18)
В волшебной стране свои волшебные законы, один из которых гласит: «Ковер-самолет будет летать только тогда, когда имеет прямоугольную форму».
У Ивана- царевича был ковер-самолет размером 9 на 12. Как-то Змей Горыныч подкрался незаметно и отрезал от этого ковра прямоугольный кусочек размером 1 на 8. Вот так:
Расстроился Иван- Царевич и хотел было отрезать кусочек 1 на 4, чтобы получился прямоугольник 8 на 12. Но тут к нему на помощь пришла Василиса Премудрая и предложила поступить по-другому. Она разрезала ковер на три части, из которых волшебными нитками сшила ковер-самолет размером 10 на 10.
Догадайтесь, как Василиса Премудрая переделала ковер-самолет.
6 задание – логическое(слайд19)
Четыре подруги пришли на каток, каждая со своим братом. Они разбились на пары и начали кататься. Оказалось, что в каждой паре «кавалер» выше «дамы» и никто не катается со своей сестрой. Самым высоким в компании был Юра Воробьев, следующий по росту – Андрей Егоров, потом Люся Егорова, Сережа Петров, Оля Петрова, Дима Крылов, Инна Крылова и Аня Воробьева.
Определите, кто с кем катался.
Подведение итогов
Предварительный просмотр:
Подписи к слайдам:
Сказочное задание Иван-Царевич на ковре-самолете
Змей Горыныч
Василиса Премудрая
разрезать сложить
На катке
Предварительный просмотр:
Подписи к слайдам:
Предварительный просмотр:
Подписи к слайдам:
Архимед