Методическая разработка по предмету ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ по теме: «Предел функции. Теоремы о пределах. Замечательные пределы».
методическая разработка на тему
Тип занятия: комбинированный.
Формы занятия: индивидуальная.
Оборудование: проектор, компьютер, доска, рабочие тетради.
Продолжительность занятия: 90 мин.
Цели занятия:
Дидактическая цель. Познакомить обучающихся с понятием предела функции в точке. Разобрать теоремы о пределах. Рассмотреть замечательные пределы.
Воспитательная цель. Формировать мировоззрение учащихся, раскрыв понятие предела функции в точке. Активизировать учебную деятельность учащихся, разобрав теоремы о пределах и их применении при вычислении пределов. Развивать любознательность и интерес к изучению математики, раскрывая прикладную направленность предела функции.
Методическая цель: Организация деятельностного подхода обучающихся на уроке.
Основные знания и умения. З н а т ь определение предела функции в точке
У м е т ь применять теоремы о пределах, применять замечательные пределы.
Учебно-методическое обеспечение:, задания для самостоятельной работы.
Скачать:
Вложение | Размер |
---|---|
predel_funktsii._teoremy_o_predelah._zamechatelnye_predely._.docx | 76.1 КБ |
Предварительный просмотр:
Методическая разработка
по предмету ЕН.01
ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ
по теме:
«Предел функции. Теоремы о пределах. Замечательные пределы»
Преподаватель математики:
Т.Н. Рудзина
Москва
2015 г.
Тип занятия: комбинированный.
Формы занятия: индивидуальная.
Оборудование: проектор, компьютер, доска, рабочие тетради.
Продолжительность занятия: 90 мин.
Цели занятия:
Дидактическая цель. Познакомить обучающихся с понятием предела функции в точке. Разобрать теоремы о пределах. Рассмотреть замечательные пределы.
Воспитательная цель. Формировать мировоззрение учащихся, раскрыв понятие предела функции в точке. Активизировать учебную деятельность учащихся, разобрав теоремы о пределах и их применении при вычислении пределов. Развивать любознательность и интерес к изучению математики, раскрывая прикладную направленность предела функции.
Методическая цель: Организация деятельностного подхода обучающихся на уроке.
Основные знания и умения. З н а т ь определение предела функции в точке
У м е т ь применять теоремы о пределах, применять замечательные пределы.
Учебно-методическое обеспечение:, задания для самостоятельной работы.
Тема 10. Предел функции. Теоремы о пределах. Замечательные пределы.
Определение. ε – окрестностью точки а называется открытый интервал (а-ε, а+ε) (ε – эпсилон буква греческого алфавита), или |х - а|< ε.
Определение предела функции. Пусть функция у = f(х) определена в некоторой точке а, кроме, может быть, самой этой точки.
Число b называется пределом функции f(х) при х стремящемся к а, если для любого сколь угодно малого, наперед заданного ε>0 существует такое δ>0, что для всех х таких, что |х-а|<δ выполняется неравенство |f(x) - b|<ε.
В компактном виде это определение можно записать lim f(x) = b.
(lim – сокращенное слово limit(предел)).
Читается так: предел f(x) при х стремящемся к а равен b.
При отыскании предела мы не учитываем значение функции в самой точке а, оно может быть любым. Рис. 1, 2, 3, 4.
y y
f(a) y= f(x)
y = f (x)
b
0
0 a x а х
Рис.1 Рис.2
y
f(a)
f(a)
0 a x 0 a x
Рис.3 Рис.4
На приведенных рисунках предел существует в случаях 1) и 2), причем во 2) значение функции в точке а не совпадает с предельным, а в 1) совпадает f(a) = b . На рисунках 3) и 4) предел у функции в точке а не существует.
Определение. Функция f(x) называется непрерывной в точке а, если ее предел в этой точке совпадает со значением функции в той же точке, или lim f(x) = f(a).
Все элементарные функции непрерывны в каждой точке, где они определены.
Основные теоремы о пределах функций.
1. Предел суммы двух функций равен сумме пределов.
lim (f(x) + φ(x)) = lim f(x) + lim φ(x)
2. Предел произведения двух функций равен произведению пределов.
lim [f(x) * φ(x)] = lim f(x) * lim φ(x)
3. Предел произведения числа на функцию равен произведению числа на предел функции.
lim С*f(x) = С *lim f(x)
Это свойство можно записать так: постоянный множитель выносится за знак предела.
4. Предел отношения двух функций равен отношению пределов этих функций. (Кроме случая, когда знаменатель стремиться к нулю).
lim f(x) / φ(x) = lim f(x) / lim φ(x), limφ(х)≠0.
Если знаменатель стремиться к нулю, а числитель - нет, то говорят, что отношение стремиться к бесконечности.
Бесконечность – это не число, ее можно добавить ко множеству вещественных чисел R в качестве нового элемента ∞. После этого числовая прямая превращается в так называемую расширенную прямую.
Раз мы добавили новый элемент ко множеству вещественных чисел, то запишем арифметические операции с этим элементом ∞.
Пусть а любое вещественное число, а Є R, тогда
а + ∞ = ∞ | -∞ + а = -∞ | ∞ * (-а) = - ∞, а › 0 |
∞ - а = ∞ | -∞ - а = - ∞ | ∞ * ∞ = ∞ |
а * ∞ = ∞, а ≠ 0 | ∞ + ∞ = ∞ | а/∞ = 0, ∞/а = ∞ |
- ∞ - ∞ = - ∞ |
Есть особые случаи, когда предел суммы, произведения или частного нельзя найти, зная только пределы слагаемых, сомножителей или делимого и делителя. Такие случаи называются неопределенностями.
Выделяют неопределенности двух типов:
Арифметические неопределенности (0/0); (00/00); (00 – 00); (0 * 00).
Степенно-показательные неопределенности (100); (000); 00.
Эти записи не являются операциями над числами и 00, они представляют собой только деловые обозначения.
В случае неопределенности предел может быть равен нулю, конечному числу, бесконечности или не существовать. Для нахождения предела (раскрытие неопределенности) надо исследовать каждый случай отдельно.
Пример 1. Найти lim [(х2 – 4) / (x2+x – 2)].
Решение:
1) Подставим точку х = - 2 в нашу функцию, получим lim [(х2 – 4) / (x2+x – 2)] =
= (4 – 4) / (4 – 2 – 2) = (0/0).
2) Раскроем эту неопределенность, разложив числитель и знаменатель на простые множители, найдя корни числителя и знаменателя, тогда lim [(х2 – 4) / (x2+x – 2)] lim [(х – 2) * (x+2)] / [(x-1)*(x + 2)] = (-2 – 2)/(-2-1) = -4/ -3= 4/3/
Пример 2. lim [(х2 – 4) / (x2+x – 2)]
Решение:
lim [(х2 – 4) / (x2+x – 2)] = (00/00). Чтобы раскрыть эту неопределенность, вынесем за скобки из числителя и из знаменателя х в старшей степени, т.е. х2, получим: lim [(х2 – 4) / (x2+x – 2)] = lim [(х2 *
(1 – 4/х2) / (x2(1+1/x – 2/x2)] = 1/1=1, т.к. lim 4/х2 = 4 / 00 = 0, . lim 1/х =
1/00=0 и . lim 2/х2 = 2/00
Для раскрытия неопределенностей используются не только различные приемы преобразования функций, как мы видели в примерах 1 и 2, но и так называемые замечательные пределы.
Первый замечательный предел .lim sinx/х = 1, он раскрывает неопределенность (0/0).
Второй замечательный предел. . lim (1+1/х)х = ℮, где ℮=2, 7, …
иррациональное «непперово» число. Это число часто берут за основание логарифма, тогда такой логарифм обозначается так: log℮x = lnx и называется натуральным логарифмом.
Пример. 3 Найти lim (sin3x)/х = (0/0).
Решение: lim (3sin3x) / (3х) = 3 lim (sin3x) / (3х) = 3*1 = 3
Пример. 4 Найти lim (sin5x)/(sin2х) = (0/0).
Решение: lim (sin5x / sin2х) = lim [((sin5x / 5х)*5x) / ((sin2x / 2x) * 2x)]
= 5/2 * [(lim (sin5x / 5х)) / lim (sin2x / 2х)] = 5/2
Пример. 5 Найти lim (1+(1/2x))x = 100.
Решение: lim (1+(1/2x))2x * (1/2) = ℮1/2=℮
Пример. 6 Найти lim (1+(1/(x-1))x = 100.
Решение: lim [1+(1/(x-1))]x -1+1 = lim [(1+(1/(x-1)))x -1 * (1+(1/(x-1)))1] = ℮*1 = ℮
По теме: методические разработки, презентации и конспекты
Методическая разработка интегрированного урока по учебным дисциплинам «Элементы математической логики» и «Элементы высшей математики» преподавателей МКЭиИТ Невзоровой И.Б. и Сипачевой О.И.
Данная работа содержит методику проведения интегрированного урока по учебным дисциплинам «Элементы математической логики» и «Элементы высшей математики» для студентов 2 курса специальности 23011...
Учебно-методическая разработка по учебной дисциплине Элементы высшей математики
Учебно-методическая разработка по учебной дисциплине «Элементы высшей математики» предназначена для студентов КГБОУ СПО «Хабаровский машиностроительный техникум» специальности 230111 «Компьютерные сет...
Методическая разработка занятия по предмету Элементы высшей математики по теме: "Определение обыкновенных дифференциальных уравнений. Общее и частное решение. Уравнения с разделенными переменными".
Определение обыкновенных дифференциальных уравнений. Общее и частное решение. Уравнения с разделенными переменными.Тип занятия: комбинированный, с элементами игры.Формы занятия: индивидуальная, группо...
Методическая разработка по предмету ЕН.01 Математика по теме: "Применение производной к исследованию функций. Исследование функций на монотонность".
Применение производной к исследованию функций. Исследование функций на монотонность.План урока.Тема. Применение производной к исследованию функций. Исследование функций на монотонность.Цели. Рассмотре...
Методическая разработка по предмету ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ по теме: «Построение кривых второго порядка»
Тип занятия: комбинированный.Формы занятия: индивидуальная, групповая, фронтальная.Оборудование: проектор, компьютер, доска, рабочие тетради.Продолжительность занятия: 90 мин.Цели занятия:Дидактическа...
Методическая разработка по предмету ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ по теме: «Построение кривых второго порядка».
Тип занятия: комбинированный.Формы занятия: индивидуальная, групповая, фронтальная.Оборудование: проектор, компьютер, доска, рабочие тетради.Продолжительность занятия: 90 мин.Цели занятия:Дидактическа...
Методическая разработка учебного занятия по дисциплине ЕН.01 Математика на тему:«Матрицы. Действия над матрицами»
Методическая разработка занятия составлена с применением компьютерных технологий, а именно, с применением электронного варианта лекции по теме «Матрицы. Действия над матрицами». Применение...