Методическое пособие для проведения самостоятельной работы по теме: "Производная сложной функции"
методическая разработка на тему
Примеры нахождения производной сложной функции разобраны , предложено большое количество приметров
Скачать:
Вложение | Размер |
---|---|
trenazher_proizvodnaya_slozhnoy_funktsii.doc | 113.5 КБ |
Предварительный просмотр:
Самостоятельная работа
Тема: Решение задач тренажера по теме: «Производная сложной функции».
Цель работы: овладение методами вычисления производной сложной функции.
Умение и навыки, которые должны приобрести студенты: самостоятельно вычислять производные сложных функций, осуществлять поиск информации с использованием компьютерной техники и Интернета
Рекомендации по выполнению.
1.Разобрать решение примеров.
2.Выполнить задания тренажера, используя указания.
3.Оформить решение задач тренажера в тетради.
1.Разберите решение примеров:
Вычисление производных сложных функций осуществляется по правилу дифференцирования сложной функции:
Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.
Пример 1
Найти производную функции
Под синусом у нас находится не просто , а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:
Функция – это сложная функция, причем многочлен является вложенной функцией , а – внешней функцией.
Первый шаг, который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является вложенной, а какая – внешней.
После того, как определены вложенная и внешняя функции применяют правило дифференцирования сложной функции .
Вычислим производную:
получаем:
Постоянный множитель обычно выносят в начало выражения:
Пример 2
Найти производную функции
Пример 3
Найти производную функции
Для того чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:
Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это вложенная функция, а возведение в степень – внешняя функция.По правилу дифференцирования сложной функции :
Степень снова представляем в виде радикала , а для производной вложенной функции применяем простое правило дифференцирования суммы:
Обратите внимание на приоритет (порядок) применения правил: правило дифференцирования сложной функции применяется в последнюю очередь.
2.Выполните задания тренажера «Производная сложной функции»:
а) , | б) . | |
а) , | б) . | |
а) , | б) . | |
а) , | б) , | |
а) , | б) . | |
а) , | б) . | |
а) , | б) . | |
а) , | б) , | |
а) , | б) . | |
а) , | б) . | |
а) , | б) . | |
а) , | б) , | |
в) , | г) . | |
а) , | б) . | |
в) , | г) . |
3.Оформить решение примеров в тетради.
4. По результатам решения тренажера выставляется оценка, которая учитывается при приеме дифференцированного зачета.
Шкала оценки образовательных достижений
Процент результативности (правильных ответов) | Оценка уровня подготовки | |
Балл (оценка) | Вербальный аналог | |
90-100 | 5 | отлично |
80-89 | 4 | хорошо |
70-79 | 3 | удовлетворительно |
менее 70 | 2 | неудовлетворительно |
5 Оформить отчет о работе
По теме: методические разработки, презентации и конспекты
МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ ПРОВЕДЕНИЯ ПРАКТИЧЕСКИХ РАБОТ ПО ПРОГРАММЕ ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.01. ТЕХНОЛОГИЯ ОБРАБОТКИ СЫРЬЯ И ПРИГОТОВЛЕНИЯ БЛЮД ИЗ ОВОЩЕЙ И ГРИБОВ ПО ПРОФЕССИИ «ПОВАР, КОНДИТЕР»
Содержание методического пособие включает в себя сборник технологических карт по приготовлению блюд обеспечивает подготовку выпускников по профессии «Повар, кондитер» на базе основного общего об...
Методическое пособие для проведения самостоятельной работы по теме: "Метод координат"
Работа содержит 2 варианта для самостоятельной работы студентов по теме: Метод координат...
Методическое пособие для проведения самостоятельной работы по теме: "Исследование функции с помощью производной"
Предложен теоретический материал, разобраны примеры и дано задание для самостоятельной работы...
Методическое пособие для проведения самостоятельной работы по теме: "Предел функции"
Предложен теоретический материал по пределам, разобраны примеры, даны примеры для самостоятельной работы студентов...
«Методическое пособие для выполнения самостоятельных работ по техническому переводу»
Что такое технический перевод текста? Это сложная и очень ответственная работа для специалистов, владеющих не только иностранным языком, но и разбирающихся в техниче...
ОДП.11. Информатика и ИКТ Методическое пособие по выполнению самостоятельных работ по профессии 260807.01. Повар, кондитер
Данное методическое пособие разработано в соответствии с Федеральным государственным образовательным стандартом начального профессионального образования по профессии 260807.01 Повар, кондитер. В метод...
Методическое пособие для внеаудиторной самостоятельной работы студентов "Устройство и функции приемного отделения стационара"
Методическое пособие предназначено для самостоятельной внеаудиторной работы при изучении темы «Устройство и функции приемного отделения стационара» для студентов, обучающихся по специально...