ИСТОРИЯ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Болдырева Александра Михайловна

История развития информатики и вычислительной техники

Скачать:

ВложениеРазмер
Файл galereya_portretov.pptx2.46 МБ
Файл material_k_prezentacii_po_istorii_informatiki.docx120.14 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

учитель информатики и ИКТ гбоу сош № 1386 г. Москвы Болдырева А. М. ГАЛЕРЕЯ ПОРТРЕТОВ

Слайд 2

Атанасов Джон Винсент John Vincent Atanasoff (04.10.1903 - 15.06.1995) Атанасов - американец болгарского происхождения родился 4 октября 1903 года в Гамильтоне (США, шт. Нью-Йорк). Он является автором первого проекта электронной цифровой вычислительной машины. В 1937 году Атанасов сформулировал, а в 1939 году опубликовал окончательный вариант своей концепции современной машины.

Слайд 3

Аристотель (384-322 гг. до н.э.) Родом Аристотель был из города Стагира на фракийском побережье полуострова Халькидика . Его отец был врачом и другом македонского царя Аминта II. Аристотель рос и учился вместе с сыном Аминта – будущим царем Филиппом II Македонским, и на протяжении всей жизни его судьба была тесно связана с македонским царским домом. В возрасте 18 лет Аристотель отправился в Афины к великому мыслителю Платону и провел в его школе около 20 лет. Он был самым способным из учеников Платона, глубоко усвоившим его знания и идеи, но далеко не всегда согласный со своим учителем.

Слайд 4

Буш Вэннивер Vannevar Bush (11.03.1890-28.06.1974) Дифференциальный анализатор Оригинальная иллюстрация Альфреда Д.Крима

Слайд 5

Джордж Буль George Boole (02.11.1815 – 08.12.1864) Джордж Буль по праву считается отцом математической логики. Его именем назван раздел математической логики - булевая алгебра. В 1848 году Джордж Буль опубликовал статью по началам математической логики - "Математический анализ логики, или Опыт исчисления дедуктивных умозаключений", а в 1854 году появился главный его труд "Исследование законов мышления, на которых основаны математические теории логики и вероятностей". В этих работах отразилось убеждение Буля о возможности изучения свойств математических операций, осуществляемых не обязательно над числами. Ученый говорил о символическом методе, который он применял как к изучению дифференцирования и интегрирования, так и к логическому выводу и к теоретико-вероятностным рассуждениям. Именно он построил один из разделов формальной логики в виде некоторой "алгебры", аналогичной алгебре чисел, но не сводящейся к ней.

Слайд 6

Чарльз Бэббидж Charles Babbage (26.12.1791 - 18.10.1871) Часть Разностной машины Бэббиджа, собранная после его смерти сыном из частей, найденных в лаборатории.

Слайд 7

Винер Норберт ( Wiener Norbert ) (26.11.1894 - 18.03.1964)

Слайд 8

Гейтс Уильям William Henry Gates III (28 октября 1955 года) Билл Гейтс и Пол Аллен

Слайд 9

Глушков Виктор Михайлович (24.07.1923 - 30.01.1982)

Слайд 10

Ершов Андрей Петрович (19.04.1931-1988) А.П.Ершов - академик АН СССР, математик, автор 200 книг и статей по программированию, языкам программирования, информатике.

Слайд 11

Ада Аугуста Лавлейс Augusta Ada King, Countess of Lovelace (10.12.1815 – 27.11.1852)

Слайд 12

Лебедев Сергей Алексеевич (2.11.1902-3.07.1974) Медаль хранится в Политехническом музее в Москве. На аверсе: великий английский математик Ч.Бэббидж. Надпись на реверсе: "Сергею Алексеевичу Лебедеву - создателю электронных вычислительных машин"

Слайд 13

Лейбниц Готфрид Вильгельм Gottfried Wilhelm Leibniz (01.07.1646 - 14.11.1716)

Слайд 14

Лозинский Дмитрий Николаевич (27.06.1939) Вклад Лозинского в борьбу с компьютерными вирусами трудно переоценить. Благодаря его упорному многолетнему труду по анализу компьютерных вирусов и совершенствованию программы Aidstest , а также других отечественных антивирусов, в нашей стране в последнее время практически не происходили глобальные эпидемии компьютерных вирусов. Спасенные данные на компьютерах и сэкономленное рабочее время миллионов пользователей принесли государству большой экономический эффект, который, по оценкам экспертов, определяется величиной 100 млн. долл.

Слайд 15

Ляпунов Алексей Андреевич (7.10.1911- 23.06.1973)

Слайд 16

Джон Непер John Naiper (1550-04.04.1617)

Слайд 17

Фон Нейман Джон John von Neumann (Neumann Janos) (28.12.1903 – 08.02.1957) Принципы архитектуры фон Неймана

Слайд 18

Питер Нортон ( Peter Norton ) (14.11.1943)

Слайд 19

Блэз Паскаль Blaise Pascal (19.06.1623 – 19.08.1662)

Слайд 20

Герман Холлерит Herman Holleit (29.02.1860-1929) Перфоратор Статистическая машина Германа Холлерита, изготовленная в 1890 году. Перфоратор Г.Холлерита, 1897 Табулятор

Слайд 21

Грейс Мюррей Хоппер Grace Murray Hopper (09.12.1906 – 01.01.1992)

Слайд 22

Конрад Цузе Konrad Zuse (22.06.1910 - 18.12.1995) Описание Z3 Вычислительная машина Z4, 1942-1945 Z3 в музее

Слайд 23

Клод Эльвуд Шеннон Claude Elwood Shannon (30.04.1916 - 24.02.2001)



Предварительный просмотр:

Материал к презентации по истории информатики «Галерея портретов»

Атанасов - американец болгарского происхождения родился 4 октября 1903 года в Гамильтоне (США, шт. Нью-Йорк). Он является автором первого проекта электронной цифровой вычислительной машины. В 1937 году Атанасов сформулировал, а в 1939 году опубликовал окончательный вариант своей концепции современной машины:

  1. в своей работе компьютер будет использовать электричество и достижения электроники;
  2. вопреки традиции его работа будет основана на двоичной, а не на десятичной системе счисления;
  3. основой запоминающего устройства послужат конденсаторы, содержимое которых будет периодически обновляться во избежание ошибок;
  4. расчет будет проводиться с помощью логических, а не математических действий.

В 1939 году Атанасов вместе со своим ассистентом - Клиффордом Э.Берри - построил и испытал первую вычислительную машину. Они решили назвать ее АВС (Atanasoff Berry Computer).
Из-за недостатка средств и отсутствия заинтересованности со стороны академической среды им пришлось прервать работу, которую позже довели до конца другие.

Во время военной неразберихи безрезультатно закончились и попытки Атанасова запатентовать свое изобретение. Тем временем вышеупомянутые "другие" - Джон Маукли и Дж.Проспер Эккерт - на основе предоставленного им Атанасовым полного описания АВС построили и запатентовали в 1947 году машину, которую многие до сих пор еще считают первым в мире компьютером: знаменитую ENIAC.

Прошло много лет и ввиду бурного развития вычислительной техники Атанасов предпринял усилия доказать всему миру, что именно он является отцом электронной вычислительной машины. Судебное разбирательство началось в 1971 году. Ответчиком была фирма HONEYWELL - обладатель патента на машину ENIAC. В 1973 году процесс закончился полной победой Атанасова.

Первые электромеханические компьютеры были разработаны в конце 30-х годов независимо друг от друга Конрадом Цузе (Германия), Джоном Р.Стибицем (США) и Горвардом Айкеном (США). Компьютер Атанасова в отличии от этих машин, был полностью собран из электронных элементов.

Оригинальные идеи Атанасова предвосхитили основные инженерные решения, положенные в основу универсальных ЭВМ, появившихся позднее.

 

Родом Аристотель был из города Стагира на фракийском побережье полуострова Халькидика. Его отец был врачом и другом македонского царя Аминта II. Аристотель рос и учился вместе с сыном Аминта – будущим царем Филиппом II Македонским, и на протяжении всей жизни его судьба была тесно связана с македонским царским домом. В возрасте 18 лет Аристотель отправился в Афины к великому мыслителю Платону и провел в его школе около 20 лет. Он был самым способным из учеников Платона, глубоко усвоившим его знания и идеи, но далеко не всегда согласный со своим учителем.

В 343 году до н.э. царь Филипп приглашает Аристотеля стать наставником своего сына Александра. Когда через несколько лет Александр сам становится царем, знаменитым Александром Македонским, Аристотель возвращается в Афины и собирает вокруг себя учащуюся молодежь, которой читает курсы различных наук. В 323 году до н.э. умер Александр Македонский и в Афинах победила антимакедонская партия. Аристотель, как друг и учитель Александра, вынужден был покинуть Афины. Год спустя он умер на острове Евбея.

Аристотеля считают основоположником логики. В определении Аристотеля логика представляет собой науку о выводе одних умозаключений из других сообразно их логической форме. В соответствии с этим логику Аристотеля называют формальной. В своих трудах Аристотель впервые обосновал один из важнейших разделов логики – учение о суждениях и силлогизмах.
В своих трактатах Аристотель обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего.
Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить эти две науки, а именно свести размышление, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатах Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств.

 

В науке США его роль сопоставима с той, какую сыграли в России Ломоносов, Менделеев или Курчатов. Это Вэннивер Буш задумал и основал Национальный фонд науки США (NCF – National Science Foundation), который совмещает функции академии наук и министерства науки и технологии.

Вэннивер Буш родился 11 марта 1890 года в городке Эверетт (шт.Массачусетс). В 1913 году получил в колледже Тафтса (Tufts College) степени бакалавра и магистра. Начал работать в General Electric в отделении тестирования электрооборудования.
В 1914-15 годах Буш служил в береговой инспекции ВМС США и одновременно преподавал математику в колледже Тафтса. За 1916-1917 годы он получил дипломы инженера в Гарвардском университете и в Массачусетском технологическом институте (MIT – Massachusets Technology Institute), стал доцентом электротехники в колледже Тафтса, а в 1919 году возвращается в MIT уже в качестве доцента по курсу "Передача электроэнергии".

Во время Первой мировой войны Буш служил в ВМС США в подразделении обнаружения подводных лодок. В 1923 году он уже профессор MIT. С 1928 по 1930 год профессор Буш с группой своих сотрудников разрабатывает "анализатор сетей", позволяющий моделировать системы электропередачи. Одновременно идет разработка аналоговой вычислительной машины - "дифференциального анализатора", в котором была воплощена идея универсальной машины для решения уравнений.  Вэнневер Буш фактически повторил конструкцию Кельвина-Томпсона.

Дифференциальный анализатор Буша  более десяти лет широко применялся в различных областях - в том числе и военной. Определения точек, куда нужно навести ствол орудия, чтобы выпущенный из него снаряд встретился с атакующим самолетом, производились с помощью именно аналоговых вычислительных устройств, позднее ими были ламповые. Наблюдение за их работой позволило Винеру разработать основы кибернетики и применить для таких целей уже цифровую, а не аналоговую машину.

В 1932 году профессор Буш назначается вице-президентом MIT и одновременно деканом его Технической школы (School of Engineering).

В 1938 году избирается президентом Института Карнеги, Вашингтон. В 1940 году Буш назначен председателем Государственного комитета оборонных исследований при президенте США. С 1941 по 1947 год Вэннивер Буш возглавляет бюро научных исследований и разработок при правительстве США. Кроме того, в 1939-41 годах Буш является председателем Национального наблюдательного совета по аэронавтике (National Advisory Committee for Aeronautics). В эти же годы он входит в состав Высшего политического совета, во главе которого стоит президент Рузвельт, а также занимает пост председателя Комитета по военной политике. В 1944 году Рузвельт запрашивает у Буша рекомендации, какие уроки Второй мировой войны извлечь США. Следует ответ, где, в частности, сказано, что "…государственные интересы в области науки и образования могут быть наилучшим образом достигнуты созданием Национального фонда науки".


В 1946 году следует назначение Вэннивера Буша председателем Объединенного совета по исследованиям и разработкам военного и морского ведомств. В 1947-48 годах он является председателем совета по разработкам Национального управления военными учреждениями. В то же время Буш возглавляет корпорацию AT&T, а в 1948 году – Merck & Co. В 1950 году сбылась мечта Буша – учрежден NSF, и он назначен первым директором Фонда.

Вспомним, какую роль сыграл NSF в развитии Интернет. Ведь именно он вывел возможности Сети на новый уровень, связав в середине восьмидесятых годов университеты США высокоскоростными каналами и объединив суперкомпьютеры. NSFnet существует и развивается благополучно и в наши дни.
В 1953-55 годах Буш становится членом наблюдательного совета NSF. В 1957 году он избирается президентом MIT и остается им до 1959 года. С 1959 года и до конца своих дней Вэннивер Буш был почетным президентом MIT.

12 и 13 октября 1995 года во многих университетах США и Канады проходили торжественные конференции, посвященные 50-летию публикации в журнале "The Atlantic Monthly" работы Буша "Пока мы мыслим" ( "As We May Think"), в которой впервые была сформулирована идея гипертекста. Вот как выглядит одна из его идей.

 Обсудим устройство персонального назначения. Пусть оно называется Memex и представляет собой что-то вроде автоматизированного архива или библиотеки. Memex хранит для своего хозяина все нужные книги, записи, корреспонденцию. Прибор автоматизирован до такой степени, что дает ответы на вопросы, заданные в простой форме, - то есть очень гибок в общении. Скорость ответов высока и не заставляет ждать.
Имеется графический экран, клавиатура и кнопки управления. Когда пользователь ищет нужную книгу, он должен ввести ее мнемонический код и нажать нужную для поиска кнопку. Перед ним на экране появится первая страница. Должна быть возможность листать книгу в любом направлении. Можно будет остановиться на выбранной странице, а потом пойти по ссылке и найти следующий интересующий материал. При этом всегда можно вернуться к предыдущей странице или одновременно рассматривать несколько страниц.
Появятся энциклопедии с готовыми ссылками для связывания информации и быстрого поиска. Их можно будет загружать в Memex и искать все, что нужно.

Вы уже поняли, что Memex – это прообраз персонального компьютера, снабженный программами и для полноты картины подключенный к сети Интернет.

Джордж Буль родился в Линкольне (Англия) в семье мелкого торговца. Материальное положение его родителей было тяжелым, поэтому Джордж смог окончить только начальную школу для детей бедняков; в других учебных заведениях он не учился. Этим отчасти и объясняется, что , не связанный традицией, он пошел в науке собственным путем. Буль самостоятельно изучил латынь, древнегреческий, немецкий и французский языки, изучил философские трактаты. С ранних лет Буль искал работу, оставляющую возможности для самообразования. После многих неудачных попыток Булю удалось открыть маленькую начальную школу, в которой он преподавал сам. Школьные учебники по математике привели его в ужас своей нестрогостью и нелогичностью, Буль вынужден был обратиться к сочинениям классиков науки и самостоятельно проштудировать обширные труды Лапласа и Лагранжа.

В связи с этим занятием у него появились первые самостоятельные идеи. Результаты своих исследований Буль сообщил в письмах профессорам математики (Д.Грегори и А.де Моргану) знаменитого Кембриджского университета и вскоре получил известность как оригинально мыслящий математик. В 1849 году в г.Корк (Ирландия) открылось новое высшее учебное заведение – Куинз колледж, по рекомендации коллег-математиков Буль получил здесь профессуру, которую сохранил до своей смерти в 1864 году. Только здесь он получил возможность не только обеспечить родителей, но и спокойно, без мыслей о хлебе насущном, заниматься наукой. Здесь же он женился на дочери профессора греческого языка Мери Эверест, которая помогала Булю в работе и оставила после его смерти интересные воспоминания о своем муже; она стала матерью четырех дочерей Буля, одна из которых, Этель Лилиан Буль, в замужестве Войнич, - автор популярного романа "Овод".

 Джордж Буль по праву считается отцом математической логики. Его именем назван раздел математической логики - булевая алгебра. В 1848 году Джордж Буль опубликовал статью по началам математической логики - "Математический анализ логики, или Опыт исчисления дедуктивных умозаключений", а в 1854 году появился главный его труд "Исследование законов мышления, на которых основаны математические теории логики и вероятностей". В этих работах отразилось убеждение Буля о возможности изучения свойств математических операций, осуществляемых не обязательно над числами. Ученый говорил о символическом методе, который он применял как к изучению дифференцирования и интегрирования, так и к логическому выводу и к теоретико-вероятностным рассуждениям. Именно он построил один из разделов формальной логики в виде некоторой "алгебры", аналогичной алгебре чисел, но не сводящейся к ней.

Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ), отрицание (НЕ).
Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключателей схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в ХХ столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

Чарльз Бэббидж был сыном богатого банкира из Дэвона (Англия) и очень талантливым математиком. В течение 13 лет он заведовал кафедрой математики Кембриджского университета (когда-то этот пост занимал Ньютон), но не прожил при университете ни дня и не прочел там ни одной лекции. Бэббидж был одним из основателей Королевского астрономического общества, автором всевозможных сочинений на самые различные темы - от политики до технологии производства. Он принимал участие в создании различных приборов, в частности, тахометра, и приспособлений, например предохранительной решетки для железнодорожного локомотива, которая позволяла отбрасывать с пути случайно попавшие туда предметы. Бэббидж занимался и такими серьезными проблемами, как расчет смертности населения и реформа почтовой службы.
Однако главной страстью Бэббиджа была борьба за безукоризненную математическую точность. Он обнаружил погрешности в таблицах логарифмов Непера, которыми широко пользовались при вычислениях астрономы, математики, штурманы дальнего плавания. В 1821 году приступил к разработке своей вычислительной машины, которая помогла бы выполнить более точные вычисления.

В 1822 году была построена пробная модель Разностной машины, способной рассчитывать и печатать большие математические таблицы. Работа модели основывалась на принципе, известном в математике как "метод конечных разностей": при вычислении многочленов используется только операция сложения и не выполняется умножение и деление, которые значительно труднее поддаются автоматизации. При этом предусматривалось применение десятичной системы счисления, а не двоичной, как в современных компьютерах. Это было очень сложное, большое устройство и предназначалось для автоматического вычисления логарифмов.

На протяжении следующих десятилетий Бэббидж работал над своим изобретением. В 1834 году он пришел к идее создания еще более мощной машины - Аналитической, которая не просто должна была решать математические задачи одного определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. В этой машине он использовал идею программного управления Жаккарда с помощью перфокарт.

Бэббидж развил эту идею, применив ее для автоматизации вычислений, и реализовал управление в зависимости от текущего результата вычислений. Аналитическая машина должна была иметь такие компоненты, как "мельница" и "склад" (арифметическое устройство и память), состоящие из механических рычажков и шестеренок. Память машины вмещала до 100 сорокоразрядных чисел. Эти числа должны были храниться в памяти, пока до них не дойдет очередь в арифметическом устройстве. Результаты операции либо отправлялись в память, чтобы также ждать своей очереди, либо распечатывались.


Если Разностная машина имела сомнительные шансы на успех, то Аналитическая машина и вовсе выглядела нереалистичной. Ее просто невозможно было построить и запустить в работу. В своем окончательном виде машина должна была быть не меньше железнодорожного локомотива. Ее внутренняя конструкция представляла собой беспорядочное нагромождение стальных, медных и деревянных деталей, часовых механизмов, приводимых в действие паровым двигателем.
Аналитическая машина так и не была построена. Все, что дошло от нее до наших дней, - это ворох чертежей и рисунков, а также небольшая часть арифметического устройства и печатающее устройство, сконструированное сыном Бэббиджа.

Наивысшим достижением Чарльза Бэббиджа и вместе с тем его величайшей болью была разработка принципов, положенных в основу современных компьютеров, за целое столетие до того, как появилась техническая возможность их реализации. Он потратил несколько десятилетий, крупные правительственные субсидии и значительную часть собственных средств в попытках создать вычислительную машину, работающую на этих принципах. Интересно, что в процессе работы над проектом Аналитической машины Бэббидж нашел подходы к созданию значительно менее громоздкого устройства Разностной машины №2.

В 1985 году сотрудники Музея науки в Лондоне решили выяснить , возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 года Разностная машина № 2 Чарльза Бэббиджа впервые произвела вычисления.

По иронии судьбы Разностной машине повезло больше. Шведский издатель, изобретатель, переводчик Пер Георг Шойц, прочтя как-то об этом устройстве, построил его слегка видоизмененный вариант, воспользовавшись ценными советами Бэббиджа. В 1854 году это устройство прошло испытание в Лондоне, а годом позже Разностная машина Шойца была удостоена золотой медали на Всемирной выставке в Париже. Спустя еще несколько лет английский инженер Данкин по заказу британского правительства, отказавшего в свое время в поддержке Бэббиджу, сделал копию шведской машины для правительственной канцелярии.

В чем же суть достижений Чарльза Бэббиджа и его ученицы и помощницы Ады Лавлейс?

  1. Идея программного управления процессом вычислений.
  2. Предложение использовать перфокарты для ввода и вывода данных и для управления, а также для обмена и передачи чисел в самой машине.
  3. Изобретение системы предварительного переноса для ускорения расчетов.
  4. Применение способа изменения хода вычислений, получившего в дальнейшем название условного перехода.
  5. Введение понятия циклов операций и рабочих ячеек.

Винер Норберт

 1948 году в США и Европе вышла книга Винера "Кибернетика или Управление и связь в животном и машине", ознаменовавшая своим появлением рождение нового научного направления - кибернетики. Норберт Винер родился в городе Колумбия, штат Миссури, в семье выходца из России. Семи лет юный Норберт читал Дарвина и Данте, увлекался научной фантастикой. В 14 лет по окончании колледжа он получил первую ученую степень - бакалавра искусств. Затем учился в Корнельском и Гарвардском университетах и в 17 лет получил степень магистра искусств, а через год стал доктором философии по специальности "математическая логика". С 1919 года и до своей кончины он работал в Массачусетском технологическом институте в качестве профессора математики. Здесь же у него сложилась многолетняя личная дружба с Вэниваром Бушем.

Именно В.Буш с началом второй мировой войны привлек Винера к решению математических задач, связанных с управлением зенитным огнем на основании информации, получаемой от радиолокационных станций. Таким образом, Винер стал участником Битвы за Англию, благодаря чему смог познакомиться с Аланом Тьюрингом и Джоном фон Ньюманом. Огромное значение для формирования взглядов Винера на проблему "человек и компьютер" имела совместная деятельность с мексиканским психологом и кардиологом Артуром Розенблютом, именно ему была посвящена книга "Кибернетика". Перечислить всех тех великих ученых, с кем общался Винер, сложно, назовем только самые известные имена: Альберт Эйнштейн, Макс Борн, Ричард Курант, Клод Шеннон, Феликс Клейн.

Круг математических интересов Винера весьма широк. Ему принадлежат работы по теории вероятностей и статистике, по рядам и интегралам Фурье, теории потенциала, теории чисел, обобщенному гармоническому анализу и др.

Не стоит удивляться тому, что за Винером не числится никаких практических работ, связанных с компьютерами, в то время его занимали более серьезные вещи. Винер стал основателем кибернетической философии, основателем собственной школы, и его заслуга в том, что эта философия была передана ученикам и последователям. Именно школе Винера принадлежит ряд работ, которые, в конечном счете, привели к рождению Интернета.

Вместе с К.Шеноном Винер разработал статистические основы современной теории информации и ввел меру количества информации - бит. Пропагандируя и развивая идеи кибернетики, Винер публикует еще две книги "Кибернетика и общество" (1950) и "Творец и робот" (1964). Одновременно Винер продолжает публикацию специальных математико-кибернетических работ.

Гейтс Уильям


Уильям (или просто Билл) родился 28 октября 1955 года около девяти часов вечера в Сиэтле, штат Вашингтон, США в семье потомственных бизнесменов и политиков. Его прадедушка был мэром одного штата, дедушка - вице-президентом национального банка, а отец - известным адвокатом.

В начальной школе Билл удивил всех своими успехами, особенно в физике и математике. Осознав истинные способности сына, родители перевели его в частную Lakeside School, известную своей интенсивной программой в области науки. Весной 1968 года директор школы решил, что надо знакомить детей с миром компьютеров. Но компьютеры все еще были очень большими и слишком дорогими, чтобы простая школа могла позволить себе один из них, поэтому вместо покупки техники школа арендовала компьютерное время у General Electric.

Билл Гейтс, Пол Аллен и несколько лэйксайдских студентов (которые впоследствии будут первыми сотрудниками Microsoft) готовы были оставаться в компьютерном зале днями  напролет, часами писать программы и читать компьютерную литературу. Вскоре Гейтс и компания стали прогуливать уроки и не делать домашние задания и, что хуже всего, они использовали все купленное компьютерное время за несколько недель.

В конце 1968 года в Сиэтле открылась компания Computer Center Corporation, которая предложила школе компьютерное время по приемлемым ценам. Гейтс с друзьями сразу же стали исследовать новые компьютеры. Вскоре юные "хакеры" вызвали пару сбоев, взломали систему безопасности и заодно подправили файлы, в которых хранилась информация о том, кто и когда использовал компьютерное время. К их огорчению они были пойманы и в наказание отлучены от компьютеров. Но это не оставило юных энтузиастов. Билл Гейтс, Пол Аллен и их друзья-программисты объединились в Lakeside Programmers Group. Первую возможность применить свои знания им предоставила Computer Center Corporation. Она наняла студентов искать ошибки и слабые места в их программном обеспечении в обмен на компьютерное время. Они целыми днями просиживали за компьютерами и читали компьютерную литературу, а через некоторое время сотрудники фирмы стали обращаться к ним за консультациями.

В марте 1970 года Computer Center Corporation обанкротилась и друзьям пришлось искать другое место, где можно было бы использовать компьютеры. В конечном счете они обнаружили, что в Университете Вашингтона, где работал отец Пола Аллена есть несколько компьютеров. Гейтсу и компании удалось уговорить "нужных" людей, и они стали время от времени пользоваться университетскими компьютерами.
В 1971 году их наняла компания Information Sciences Inc. для разработки программы составления платежных ведомостей. У друзей появилось компьютерное время и источник доходов.

В 1972 году Билл Гейтс и Пол Аллен основали компанию Traf-O-Data. Они разрабатывали компьютерные программы для местных властей, рассчитывали графики движения городского транспорта. Предприниматели заработали $20 тыс. на этом проекте, но когда Билл окончил школу и поступил в колледж, компания закрылась.


В 10-11 классе администрация школы Lakeside предложила Гейтсу компьютеризировать школьное расписание. Гейтс вместе с Алленом написали программу.

Вскоре после этого они нашли себе работу в компании TRW. Там были проблемы с компьютерами, аналогичными тем, что стояли в Computer Center Corporation. Полу и Биллу было поручено найти и исправить ошибки в программном обеспечении. Именно тогда Гейтс и Аллен стали задумываться о создании собственной компании по разработке программного обеспечения...

В декабре 1974 года Пол шел навестить Билла и купил новый выпуск одного из компьютерных журналов. На обложке Popular Electronics он увидел изображение Altair 8080, а под ним было написано: "Первый комплект для сборки микрокомпьютера, успешно конкурирующий с коммерческими моделями". Аллен сломя голову побежал к дому Гейтса. Прочитав журнал, они оба поняли, какие возможности открылись перед ними: рынок вот-вот наполнится разными моделями новых мощных машин, для которых обязательно потребуется программное обеспечение.Через пару дней Билл позвонил в MITS (Micro Instrumentation and Telemetry Systems) создателям компьютера Altair и сказал, что он и Аллен написали программное обеспечение для Altair. Это была ложь - они не написали ни строчки кода. Но в MITS, конечно об этом не знали, и сразу же захотели увидеть это программное обеспечение. Гейтс и Аллен засели за разработку компилятора, который они пообещали. Почти весь код сделал Билл, тогда когда Пол сделал программу для эмуляции Altair на компьютерах PDP-10, которые стояли в школе. Через пару недель все было готово. Аллен полетел в MITS для того, чтобы  продемонстрировать программу.  Первый раз он увидел Altair своими глазами и всем сердцем надеялся, что код Гейтса заработает. Ведь если он неправильно смоделировал Altair на PDP-10, то презентация была бы очень короткой... Однако мастерство и интуиция друзей не пропали зря, и все прошло нормально. MITS купил у Гейтса и Аллена  права на программу.
После удачной сделки Билл Гейтс убедился во мнении, что рынок программного обеспечения появился на свет. В этом же году он основал Microsoft.

Несколько любопытных фактов из истории создания Бейсика под началом Гейтса. Основой для этого языка послужил BASIC PLUS от компании DEC (Digital Equipment Corporation) в рамках RSTS-11 (Resource Sharing Time Sharing) — многопользовательской операционной системы с разделением времени, предназначенной для 16-разрядных мини-компьютеров из серии PDP-11.
Математическую библиотеку для работы с плавающей запятой помог написать сокурсник Билла по Гарварду — Монт Давидофф (Monte Davidoff). Его имя можно увидеть в исходных текстах интерпретатора Бейсика, однако, что странно, Давидофф более нигде не упоминается.

В 1979 году Гейтс был отчислен из университета за прогулы и неуспеваемость, но этот факт не сильно расстроил, поскольку ему поступило предложение от IBM создать операционную систему для первого в мире персонального компьютера. Гейтс приобрел систему QDOS (Quick and Dirty Operating System) за $50.000, изменил название на MS-DOS и продал лицензию IBM. Вырученные деньги позволили Microsoft работать в течение нескольких лет. Презентация нового компьютера IBM с программным обеспечением Microsoft создала настоящую сенсацию на рынке. Многие компании начали обращаться к Microsoft за лицензией.

Microsoft продолжал захватывать мировой рынок, выпустив приложения Microsoft Word и Microsoft Excel. Благодаря компании Corbis, входившей в корпорацию Microsoft, Гейтс получил огромную фото-картотеку Беттмана и других фотографов. Фотографии использовались для рассылки в электронном виде.

В 1986 году Microsoft было преобразовано в акционерное общество открытого типа. В том же году Билл Гейтс стал миллиардером, тогда ему был 31 год. На следующий год Microsoft представила на рынке первую версию Windows, и уже в 1993 году общий объем продаж Windows в месяц превысил один миллион. В 1995 году появились Windows95, и за две недели были проданы семь миллионов копий.
 

Программное обеспечение Microsoft стало настолько широко используемым, что компания попала в поле зрения американского антимонопольного комитета, который несколько раз пытался инициировать дело по принудительному дроблению монополии Гейтса. Пока что тщетно.

В 1995 году политика Microsoft была изменена в корне - основной упор стал делаться на Интернет.

Билл - трудоголик. С 9-00 до 0-30 он работает (перерыв только на обед). После этого дома около часа он читает книги. Билл равнодушно относится к одежде (его обычна одежда - свитер и джинсы), пище (его обычная еда "фаст-фуд"). Гейтс нетерпим к служащим, уступающим ему в умственных способностях или способностях к труду. Гейтс имеет абсолютную зрительную память, он может, пробежав глазами многостраничный текст, воспроизвести его абсолютно достоверно. Самого его называют вечным двигателем.

Билл Гейтс в 1994 году женился на Мелинде Френч, менеджере Microsoft, от которой у него родились двое детей - дочка Дженнифер в 1996 году и сын Рори в 1999. Интересно, что по условиям браного договора, Гейтс обязуется выплачивать $ 10 млн. за каждого их совместного ребенка. С появлением семьи, Гейтс стал больше внимания уделять благотворительности. Один миллиард долларов был вложен в стипендии, которые Microsoft предоставляет талантливым, но необеспеченным студентам (Gates Millennium Scholarship Program); $ 750.000 Гейтс вложил в программу по развитию вакцинации (Global Alliance for Vaccines and Immunization).

Проблемы с антимонопольным комитетом США вновь возникли в 1999 году, когда окружной суд признал Microsoft Corporation монополией. В апреле 2000 года министерство юстиции США предложило разбить Microsoft на две отдельные корпорации: одна будет заниматься Microsoft Office и Internet Explorer, тогда как другая - исключительно Windows (к слову, эта операционная система используется более чем в 85% компьютеров в мире). Возражения Гейтса основываются на том, что технически невозможно отделить Windows от других приложений Microsoft. Как говорит Гейтс, мы призываем к самому справедливому суду - суду истории. Пока что ничего кардинального в империи Microsoft не произошло. 

За разработку теории цифровых автоматов, создание многопроцессорных макроконвейерных суперЭВМ и организацию Института кибернетики АН Украины международная организация IEEE Computer Society в 1998 г. посмертно удостоила Виктора Михайловича Глушкова медали "Computer Pioneer", которая была вручена семье В. М. Глушкова.

Виктор Михайлович Глушков родился 24 августа 1923 г. в Ростове-на-Дону в семье горного инженера. 21 июня 1941 года В. М. Глушков с золотой медалью закончил cреднюю школу № 1 в г. Шахты. Начавшаяся Великая Отечественная война разрушила планы В. М. Глушкова поступить на физический факультет Московского государственного университета. Мать В. М. Глушкова была расстреляна фашистами осенью 1941 г. После освобождения г. Шахты В. М. Глушков был мобилизован и участвовал в восстановлении угольных шахт Донбасса.

После объявления осенью 1943 г. приема студентов в Новочеркасский индустриальный институт В. М. Глушков стал студентом теплотехнического факультета этого института. Здесь он учился в течение четырех лет, проявив интерес не столько к основному предмету — теплотехнике, сколько к наукам физико-математического цикла, имея одни пятерки в зачетной книжке. Поняв на четвертом году обучения, что теплотехнический профиль будущей работы его не удовлетворит, В. М. Глушков решил перевестись на математический факультет Ростовского университета. С этой целью он экстерном сдал все экзамены за четыре года университетского курса математики и физики и стал студентом пятого курса Ростовского университета. В дипломной работе, выполненной под руководством известного математика профессора Д. Д. Мордухай-Болтовского, В. М. Глушков развил методы вычисления таблиц несобственных интегралов, обнаружив неточности в существующих таблицах, выдержавших до того по 10—12 изданий.

В августе 1956 г. В. М. Глушков радикально изменил сферу своей деятельности, связав ее с кибернетикой, вычислительной техникой и прикладной математикой. С этого времени В. М. Глушков жил и работал в Киеве. Здесь он руководил лабораторией вычислительной техники и математики Института математики АН Украины, созданной ранее С. А. Лебедевым и известной своими пионерскими разработками вычислительных машин МЭСМ и СЭСМ. В 1957 г. В. М. Глушков стал директором Вычислительного центра АН УССР с правами научно-исследовательской организации. Через пять лет, в декабре 1962 г. на базе ВЦ АН УССР был организован Институт кибернетики АН Украинской ССР. Его директором стал В. М. Глушков.

Отправной точкой для работ В. М. Глушкова в области теории цифровых автоматов было понятие автомата, введенное американскими математиками Клини, Муром и другими авторами знаменитого сборника "Автоматы", вышедшего в 1956 г. в Принстоне под редакцией Шеннона и Маккарти и в том же году переведенного на русский язык под редакцией А. А. Ляпунова. В самом начале своей работы в этой области В. М. Глушков нашел гораздо более изящное, алгебраически простое и логически ясное понятие автомата Клини и получил все результаты Клини.

Основной идеей, объединяющей работы по цифровым автоматам, была возможность использования алгебраического аппарата для представления таких объектов, какими являются компоненты ЭВМ, схемы и программы. В. М. Глушков развил эту идею и, что особенно важно, построил необходимые математические средства и показал, как компоненты ЭВМ могут быть представлены через алгебраические выражения. Другая идея В. М. Глушкова была связана с возможностью трансформации алгебраических выражений. При этом такие трансформации отображали процессы работы инженеров и программистов над схемами ЭВМ и программами. Именно это обстоятельство позволило находить адекватные модели компонентов ЭВМ и манипулировать ими в процессе проектирования и изготовления.

В 1961 г. была издана знаменитая монография В. М. Глушкова "Синтез цифровых автоматов", переведенная позже на английский язык и изданная в США и других странах. Еще одна важнейшая теоретическая работа "Абстрактная теория автоматов" была опубликована В. М. Глушковым в 1961 г. в журнале "Успехи математических наук". Она создала основу для работ по теории автоматов с привлечением алгебраических методов. Под влиянием этой работы В. М. Глушковав СССР теорией автоматов стали заниматься многие математики-алгебраисты.

В 1964 г. за цикл работ по теории автоматов В. М. Глушков был удостоен Ленинской премии.

Значение этих работ трудно переоценить, так как использование понятия "автомат" в качестве математической абстракции структуры и процессов, происходящих внутри вычислительных машин, открыло совершенно новые возможности в технологии создания компьютеров. Современные системы автоматизации проектирования вычислительных машин повсеместно используют эти идеи.

В 1964 г. В. М. Глушков был избран действительным членом АН СССР по Отделению математики (математика, в том числе вычислительная математика).

В области теории программирования и систем алгоритмических алгебр В. М. Глушковым был сделан фундаментальный вклад в виде алгебры регулярных событий.

Монография В. М. Глушкова, Г. Е. Цейтлина и Е. Л. Ющенко "Алгебра, языки, программирование", содержащая введение в теорию универсальных алгебр с учетом применения этого аппарата в теоретическом программировании, была опубликована в 1974 г.

Важно подчеркнуть, что в связи с исследованиями по формализации языков, верификации программ и их оптимизации на стыке математической логики и теории программирования в середине 70-х годов возникло новое направление по алгоритмическим (программным) логикам и логикам процессов. Прообразом пропозициональных программных логик явились системы алгоритмических алгебр, исследованные В. М. Глушковым. Киевская школа (Е. Л. Ющенко, Г. Е. Цейтлин, В. Н. Редько и др.) развивала эти исследования в направлении аксиоматизации систем алгоритмических алгебр как основы схематологии структурного программирования и универсальных программных логик.

Пути совершенствования технологии разработки программ В. М. Глушков видел в развитии алгебры алгоритмических языков, т. е. техники эквивалентных преобразований выражений в этих языках. В эту проблему он вкладывал общематематический и даже философский смысл, рассматривая создание алгебры языка конкретной области знаний как необходимый этап ее математизации.

Сопоставляя численные и аналитические методы решения задач прикладной математики, В. М. Глушков утверждал, что развитие общих алгоритмических языков и алгебры таких языков приведет к тому, что выражения в этих языках (сегодняшние программы для ЭВМ) станут столь же привычными, понятными и удобными, какими сегодня являются аналитические выражения. При этом фактически исчезнет разница между аналитическими и общими алгоритмическими методами и мир компьютерных моделей станет основным источником развития новой современной математики, как это и происходит сейчас.

Современные ЭВМ невозможно проектировать без систем автоматизации проектно-конструкторских работ. Возможность применения ЭВМ в процессе проектирования ЭВМ стала реальной после того, как в начале 60-х годов были созданы соответствующие разделы абстрактной и структурной теории автоматов, позволившие решить целый ряд задач, возникающих в процессе проектирования электронных схем. Дальнейшее развитие методики проектирования ЭВМ потребовало новой техники, в частности разработки методов блочного синтеза. Основы теории проектирования ЭВМ были заложены в статьях В. М. Глушкова, опубликованных в журнале "Кибернетика" в 1965—1966 гг. и в Вестнике АН СССР в 1967 г. Вскоре стало ясно, что для эффективного использования ЭВМ в процессе проектирования необходимо комплексное решение всех задач, возникающих при автоматизации проектирования. Необходимость применить системный подход к САПР ЭВМ проявилась при создании ЭВМ третьего поколения.

В связи с переходом к проектированию ЭВМ четвертого и последующих поколений уже в начале 70-х годов В. М. Глушковым, Ю. В. Капитоновой и А. А. Летичевским отмечалась тенденция к слиянию процесса проектирования ЭВМ с проектированием и разработкой их математического обеспечения.

За работу по автоматизации проектирования ЭВМ В. М. Глушков, В. П. Деркач и Ю. В. Капитонова в 1977 г. были удостоены Государственной премии СССР.

В 1958 году В. М. Глушков предложил идею создания универсальной управляющей машины. Идея была реализована в управляющей машине широкого назначения (УМШН) за рекордно короткий срок - три года. Руководителями работы по созданию УМШН были В.М.Глушков и Б.Н.Малиновский (он же - главный конструктор машины).

Основные принципы построения машины, сформулированные В.М.Глушковым и Б.Н.Малиновским: полупроводниковая элементная база, высоконадежная защита программ и данных, небольшая разрядность машинного слова (26 разрядов), достаточная для задач управления технологическими процессами, и, главное, универсальное устройство связи с объектом (УСО). Эти принципы были реализованы как в разработке УМШН, названной позже "Днепр", так и в последовавших за ней разработках других управляющих машин.

В США разработка универсальной управляющей машины была начата несколько раньше, но запуск ее в производство был осуществлен в 1961 г., т. е. практически одновременно с машиной "Днепр".

Первые машины "Днепр" выпускал Киевский завод "Радиоприбор".

Другим направлением работ Института кибернетики в области средств вычислительной техники стали ЭВМ для инженерных расчетов. Первой машиной этого класса была ЭВМ "Промiнь", которую выпускал с 1963 г. Северодонецкий приборостроительный завод. Это была первая машина со ступенчатым микропрограммным управлением, на которое позже В. М. Глушков получил авторское свидетельство.

За ней последовали машина МИР-1 (1965 г.), МИР-2 (1969 г.) и МИР-3. Главным их отличием от других ЭВМ была аппаратная реализация машинного языка, близкого к языку программирования высокого уровня. ЭВМ семейства "МИР" интерпретировали алголоподобный язык "Аналитик", разработанный в Институте кибернетики под руководством В. М. Глушкова А. А. Летичевским, Ю. В. Благовещенским, А. А. Дородницыной.

Коллектив разработчиков ЭВМ МИР-1 во главе с В. М. Глушковым был отмечен Государственной премией СССР.

В конце 60-х годов под руководством В. М. Глушкова была начата разработка ЭВМ "Украина" — следующий шаг в развитии интеллектуализации ЭВМ и развитии архитектуры высокопроизводительных универсальных ЭВМ, отличной от архитектурных принципов Дж. фон Неймана. ЭВМ "Украина" не была построена из-за отсутствия в то время необходимой элементной базы.

Идеи, положенные В. М. Глушковым в основу проекта "Украина", во многом предвосхищали то, что было использовано в американских универсальных ЭВМ 70-х годов. Монография "Вычислительная машина с развитыми системами интерпретации", написано В. М. Глушковым, А. А. Барабановым, Л. А. Калиниченко, С. Д. Михновским, З. Л. Рабиновичем, была издана в 1970 г. Она содержала теоретическое обоснование развития архитектуры ЭВМ в направлении реализации языков высокого уровня.

В 1974 г. В. М. Глушков на конгрессе IFIP выступил с докладом о рекурсивной ЭВМ (соавторы В. А. Мясников, М. Б. Игнатьев, В. А. Торгашов). Он высказал мнение о том, что только разработка принципиально новой нефоннеймановской архитектуры вычислительных систем позволит решить проблему создания суперЭВМ, производительность которых наращивается неограниченно при наращивании аппаратных средств. Идея построения рекурсивной ЭВМ, поддержанной мощным математическим аппаратом рекурсивных функций, опередила свое время и осталась нереализованной из-за отсутствия необходимой технической базы.

На конгрессе IFIP в 1974 г. в Стокгольме В.М. Глушкову по решению Генеральной Ассамблеи IFIP была вручена специальная награда – серебряный сердечник. Так был отмечен большой вклад ученого в работу этой организации в качестве члена Программного комитета конгрессов 1965 и 1968 гг., а также в качестве Председателя Программного комитета конгресса 1971 г.

В конце 70-х годов В. М. Глушков предложил принцип макроконвейерной архитектуры ЭВМ со многими потоками команд и данных (архитектура MIMD по современной классификации) как принцип реализации нефоннеймановской архитектуры.

Разработка макроконвейерной ЭВМ была выполнена в Институте кибернетики под руководством В. М. Глушкова С. Б. Погребинским (главный конструктор), В. С. Михалевичем, А. А. Летичевским, И. Н. Молчановым. Машина ЕС-2701 (в 1984 г.) и вычислительная система ЕС-1766 (в 1987 г.) были переданы в серийное производство на Пензенский завод ВЭМ. На тот период это были самые мощные в СССР вычислительные системы с номинальной производительностью, превышающей рубеж 1 млрд. оп./с. При этом в многопроцессорной системе обеспечивались почти линейный рост производительности по мере наращивания вычислительных ресурсов и динамическая реконфигурация. Они не имели аналогов в мировой практике и явились оригинальным развитием ЕС ЭВМ в направлении высокопроизводительных систем. Увидеть их в действии В. М. Глушкову уже не пришлось.

По инициативе В. М. Глушкова была издана первая в мире "Энциклопедия кибернетики". В подготовке энциклопедии приняли участие более 100 ведущих ученых СССР, в том числе более 50 специалистов Института кибернетики АН Украины. В 1978 г. коллектив редакторов и ответственных за разделы энциклопедии был отмечен Государственной премией Украины. В энциклопедии освещались:

  1. теоретическая кибернетика (теория информации, теория автоматов, теория систем);
  2. экономическая кибернетика (экономико-математические модели для систем управления предприятиями и отраслями промышленности, транспортом и т.п.);
  3. биологическая кибернетика (модели мозга, органов человека, регулирующих систем живых организмов);
  4. техническая кибернетика (управление сложными техническими системами);
  5. теория ЭВМ (принципы построения и конструирования вычислительных машин и их программного обеспечения);
  6. прикладная и вычислительная математика.

В. М. Глушков считал, что последовательное накопление знаний, представленных в виде компьютерных баз знаний, и эффективные способы их обработки помогут людям сохранить то лучшее, что они создают, а развитие интеллектуальных способностей ЭВМ обессмертит творцов человеческой цивилизации. Эта точка зрения становится в настоящее время главной в понимании проблем современной информатики.

Большое внимание В. М. Глушков уделял работам по созданию автоматизированных систем управления (АСУ) на базе применения средств вычислительной техники.

Для построения типовых АСУП В. М. Глушковым еще в 1965 г. было выдвинуто понятие специализированной операционной системы, предназначенной для систем с регулярным потоком задач, в отличие от операционных систем универсальных ЭВМ типа IBM/360, которые решают случайные потоки задач и хороши для пакетного режима вычислительных центров ("относительно хороши, конечно", как отмечал В.М.Глушков).

Монография В. М. Глушкова "Введение в АСУ", которая была посвящена, в основном, системам организационного управления, вышла вторым изданием в 1974 г. В ней были систематизированы оригинальные результаты, полученные В. М. Глушковым в 1964—1968 гг.


В. М. Глушков разрабатывал идею безбумажной информатики. "Основы безбумажной информатики" — именно так называлась его последняя монография, вышедшая в свет в 1982 г. В этой книге были описаны математический аппарат и комплекс идей, относящихся к проблемам информатизации. В. М. Глушков и его сподвижники готовили общественность к восприятию идей информатизации, без чего невозможен прогресс к постиндустриальному обществу.

В. М. Глушков еще 30 лет тому назад способствовал развитию информационных (в том числе компьютерных) технологий обучения.

Главными звеньями в данной проблематике В. М. Глушков считал компьютерное обучение пользователей ЭВМ, интеллектуализацию автоматизированных обучающих систем (свободно-конструированный ответ, адаптация изложения учебного материала к индивидуальным особенностям обучаемых и т. п.), деятельности или "задачный" подход к проектированию обучающего диалога.

В. М. Глушков опубликовал более 800 печатных работ. Из них более 500 написаны им собственноручно, а остальные — совместно с его учениками и другими соавторами.

Этот результат ученого кажется удивительным, особенно в связи с его собственным признанием, что статьи он оформляет медленно и это для него тяжелое дело. А при его загрузке обязанностями директора института и консультанта многих крупных проектов систем в СССР и его требовательности к качеству научной продукции это тем более удивительно. Единственное объяснение этого феномена в том, что В. М. Глушков был подлинным подвижником в науке, обладавшим гигантской работоспособностью и трудолюбием. В. М. Глушков как мыслитель отличался широтой и глубиной научного видения, своими работами он предвосхитил то, что сейчас появляется в современном информационном обществе. При жизни он щедро делился своими знаниями, идеями и опытом с окружавшими его людьми. И, конечно, он хотел оставить потомкам свое научное наследие.

Виктор Михайлович умер 30 января 1982 г., когда ему было 58 лет. Он похоронен в Киеве на Байковом кладбище.

Имя академика В. М. Глушкова носят сейчас созданный им Институт кибернетики Национальной академии наук Украины, один из красивейших проспектов столицы Украины – г. Киева, средняя школа № 1 в г. Шахты.

В Институте кибернетики создана комната-музей В. М. Глушкова.

А.П.Ершов - академик АН СССР, математик, автор 200 книг и статей по программированию, языкам  программирования, информатике.

По окончании МГУ в 1954 году Ершов попал в группу автоматизации программирования к своему первому и основному научному руководителю А.А.Ляпунову.

До начала 50-х годов не существовало специальности "программист". Ершову повезло: он оказался одним из первых программистов, имевших специальное образование. Вскоре Ершов становится руководителем работ и автором одной из первых программирующих программ для отечественных ЭВМ - БЭСМ и Стрела.
В 70-х годах Ершов разрабатывает типовую, общую для многих языков схему трансляции, пригодную для создания фрагментов оптимизированных трансляторов.

Работы Ершова по технологии программирования заложили основы этого научного направления в нашей стране.
В 80-х годах Андрей Петрович очень много времени и сил отдает проблеме подготовки программистов. Дело в том, что средства вычислительной техники и системы программирования меняются быстрее, чем поколение людей. Поэтому Ершов огромное внимание уделял новым методам обучения и отбору тех нужных специалистам фундаментальных основ информатики, которые долго не устаревают. Решающую роль в этом деле он отводил компьютеризации обучения. Ершов А.П. одним из первых начал эксперименты по преподаванию программирования в средней школе, которые привели к введению курса информатики и вычислительной техники в средние школы страны и обогатили нас тезисом "программирование - вторая грамотность".

Графиня Ада Лавлейс, дочь поэта Байрона, изучала астрономию, латынь, музыку и математику. Совместно с английским математиком Чарльзом Бэббиджем она работала над созданием арифметических программ для его счетных машин. Ее работы в этой области были опубликованы в 1843 году. Однако в то время считалось неприличным для женщины издавать свои сочинения под полным именем и, Лавлейс поставила на титуле только свои инициалы. Поэтому ее математические труды, как и работы многих других женщин-ученых, долго пребывали в забвении.

В материалах Бэббиджа и комментариях Лавлейс намечены такие понятия, как подпрограмма и библиотека подпрограмм, модификация команд и индексный регистр, которые стали употребляться только в 50-х годах нашего века. Сам термин библиотека был введен Бэббиджем, а термины рабочая ячейка и цикл предложила Ада Лавлейс.

Графиню Лавлейс называют первым программистом, в ее честь назван язык программирования АДА.

Ада Байрон родилась 10 декабря 1815 года в Англии в семье поэта Джорджа Байрона и Аннабеллы Милбэнк. В середине XIX века существовало табу на получение женщинами высшего образования, путь в университеты был закрыт. Но тяга к знанию оказалась велика, и, когда семнадцатилетняя дочь лорда Байрона по собственной воле пришла к изучению математики, не оставалось ничего другого, как организовать учебу дома. Одним из приглашенных учителей стал английский математик и логик Август де Морган, чье имя, конечно, известно читателям (вспомните законы де Моргана в логике!). К числу друзей ее матери принадлежал выдающийся английский изобретатель и ученый Чарльз Бэббидж. В 1833 году юная Ада посещает его мастерскую, где знакомится с работой ученого над так называемой “дифференциальной”, а точнее, “разностной” машиной. С тех пор между ними сложился творческий союз, продлившийся более десяти лет. К 1843 году, на который пришелся пик их взаимодействия, Августа успела сменить фамилию Байрон на Лавлейс, обзавестись тремя детьми и стать заметной персоной лондонского света. Кто знает, как бы сложились дальнейшие обстоятельства, если бы к ней не попал конспект лекций Бэббиджа, сделанный Луиджи Федериго Менабреа, ставшим впоследствии выдающимся математиком, механиком, военным инженером и даже государственным деятелем. Этот конспект, озаглавленный «Заметки об аналитической машине», в 1842 году опубликовало на французском языке издательство Женевского университета.

История появления «Заметок» такова. К началу 40-х годов XIX века у английского правительства сложилось сугубо отрицательное отношение к работам Бэббиджа. В какой-то мере их можно понять: после 20 лет обещаний результатов не было, к тому же, не доделав дифференциальную, изобретатель приступил к созданию «аналитической машины». Британский премьер-министр Роберт Пил не был особенно прозорлив, а потому написал: “Что нам делать, чтобы избавиться от мистера Бэббиджа и его вычислительной машины? Даже если она и будет закончена, то будет ли она иметь какое-то значение для науки?» При таком отношении к себе и своему труду Бэббиджу не оставалось ничего другого, как искать, как бы сказали теперь, спонсоров за рубежом, тем более что университеты Италии и Франции, а вовсе не Англии были тогда основными центрами математического образования и культуры. В 1840 году состоялся длительный вояж, который принес некоторую материальную поддержку. Но его главным итогом оказались «Заметки» Менабреа, материалом для которых послужили лекции, прочитанные в Туринском университете. Это был единственный печатный материал, посвященный аналитической машине, и близкие друзья Бэббиджа, Лавлейс и Чарльз Уитстон, решили их перевести на английский язык.

В 1842 году Лавлейс приступила к работе, для которой она располагала прекрасным знанием французского языка, отличным пониманием сути деятельности Бэббиджа, основанном не на отдельных лекциях, а на постоянном взаимодействии с их автором, и еще не оцененным до того момента творческим потенциалом. На перевод ушли осень и зима 1843 года.

Когда Бэббидж ознакомился с ним, он был поражен. Вот что он писал об этом 20 лет спустя: «Вскоре после выхода в свет записок Менабреа герцогиня Лавлейс сообщила мне, что перевела их. Я спросил у нее, почему она сама, зная предмет гораздо лучше, не написала собственную работу. Она ответила, что ей это просто не пришло в голову. Тогда я предложил ей написать комментарии, эта идея была немедленно воспринята».

В итоге комментарии оказались втрое больше по объему, чем оригинал. К тому же они демонстрировали совершенно иной уровень обобщения проблем, связанных с автоматизацией вычислений. Историк Сэди Плант, биограф Лавлейс, дал очень точную характеристику этому труду: “Она писала программы для виртуальной машины, для машины, которая должна была появиться в будущем”. Действительно, в 1843 году машины не было, чертежи были фрагментарны, но из них 27-летняя женщина смогла сложить свой собственный образ вычислительной системы.

Сергей Алексеевич Лебедев – действительный член АН СССР и АН УССР, лауреат Ленинской и Государственных премий, Герой Социалистического труда, главный конструктор первой в СССР и Европе электронной вычислительной машины БЭСМ и целого ряда других суперЭВМ. Один из инициаторов становления специальности «Вычислительная техника» в Московском энергетическом институте.

Сергей Алексеевич Лебедев родился 2 ноября 1902 года в Нижнем Новгороде. Мать Анастасия Петровна (в девичестве Маврина) покинула богатое дворянское имение, чтобы стать преподавателем в учебном заведении для девочек из бедных семей. Алексей Иванович Лебедев, отец Сергея, работал на ткацкой фабрике.

В 1921 году он экстерном сдал экзамены за среднюю школу и поступил в МВТУ на электротехнический факультет. Начало инженерной и научной деятельности С.А.Лебедева совпало с осуществлением плана ГОЭЛРО - плана по электрификации страны. По ходу работы С.А.Лебедеву пришлось столкнуться с необходимостью быстрого моделирования сложных систем и большим количеством трудоемких вычислений.

В 45 лет С.А.Лебедев, будучи уже известным ученым в области электроэнергетики, переключается полностью на новое для него направление - вычислительную технику. В Институте электротехники АН УССР он организовал первый в стране научный семинар, на базе которого была создана лаборатория по разработке ЭВМ, названной МЭСМ (Малая электронная счетная машина). Она стала первой ЭВМ, созданной в России.

В 1951 году С.А.Лебедев перешел на работу в Москву, где возглавил лабораторию в Институте точной механики и вычислительной техники (ИТМ и ВТ) АН СССР. С 1953 года и до конца своей жизни он   был директором этого института. В ИТМ и ВТ Лебедев возглавил работу по созданию нескольких поколений ЭВМ. Понимая, как важна подготовка специалистов для нового направления, с 1953 года и до конца своих дней Лебедев возглавлял кафедру "Электронные вычислительные машины" в Московском физико-техническом институте.

Сергей Алексеевич Лебедев в ИТМ и ВТ возглавил работу по созданию нескольких поколений ЭВМ. В начале 60-х годов создается первая ЭВМ из серии больших электронных счетных машин (БЭСМ) - БЭСМ-1. При создании БЭСМ-1 были применены оригинальные научные и конструкторские разработки. Эта ЭВМ была тогда самой производительной машиной в Европе (8-10 тысяч операций в секунду) и одной из лучших в мире. Под руководством С.А.Лебедева были созданы и внедрены в производство еще две ламповые ЭВМ - БЭСМ-2 и М-20. В 60-х годах были созданы полупроводниковые варианты М-20: БЭСМ-3М, БЭСМ-4, М-220 и М-222. При проектировании БЭСМ-6 впервые был применен метод предварительного имитационного моделирования работы операционной системы будущей ЭВМ, что позволило найти ряд решений по организации вычислительного процесса, которые обеспечили невиданное в истории вычислительной техники долголетие БЭСМ-6.
Кроме фундаментальных разработок, С.А.Лебедев выполнил важные работы по созданию многомашинных и многопроцессорных комплексов.

Первым шагом в международном признании заслуг Сергея Алексеевича в области информатики явилось присуждение ему в 1996 году медаль «Computer Pioneer Award» за выдающиеся новаторские работы в области создания вычислительной техники.

Лейбниц Готфрид Вильгельм

Первая машина, позволяющая легко производить вычитание, умножение и деление, была изобретена в Германии Готфридом Вильгельмом Лейбницем. Он родился в Лейпциге и принадлежал к роду, известному своими учеными и политическими деятелями. Его отец был профессором этики, а дед - профессором права Лейпцигского университета.
В 1661 году Лейбниц становится студентом.  Он изучает философию, юриспруденцию и математику в университетах Лейпцига, Вены и Альтдорфа. В 1666 году он защищает сразу две диссертации на звание доцента - по юриспруденции и математике. Затем Лейбниц служит при дворах немецких князей в качестве юриста, находится на дипломатической службе. С 1676 года и до самой смерти Лейбниц состоял советником и библиотекарем при дворе ганноверского герцога. На протяжении 40 лет Лейбниц вел научные исследования, публиковал научные труды, поддерживал переписку со всеми ведущими учеными эпохи.


В 1672 году, находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство для расчетов. В 1694 году он завершил создание механического калькулятора. Развив идеи Паскаля, Лейбниц использовал операцию сдвига для поразрядного умножения чисел. Лейбниц продемонстрировал свою машину во Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями.


Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разработал в Англии Исаак Ньютон), комбинаторики, теории определителей.

Лейбниц указал путь для перевода логики из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно. Он предложил использовать в логике математическую символику и впервые высказал мысль о возможности применения в ней двоичной системы счисления, которая позднее нашла применение а автоматических вычислительных машинах.

Лозинский Дмитрий Николаевич

Родился 27 июня 1939 г. в Москве.
В 1961 г. окончил мехмат МГУ. С 1965 г. работал в ГВЦ Госплана СССР, после ряда реорганизаций оказался в Министерстве экономики России. В ГВЦ первое время занимался экономическим моделированием. C 1966 г. понемногу изучал программирование, а с 1967 г. пришлось полностью перейти на этот вид деятельности. Занимался задачами обработки данных.

Осенью 1988 г. обнаружил в Госплане вирус Vienna. Написал программу, назвав ее Aidstest. С тех пор пришлось ее совершенствовать, добавляя обработку новых вирусов. В 1990 г. в связи с невозможностью распространения программы в одиночку заключил договор с Научным центром СП "Диалог" при ВЦ АН СССР, который теперь носит название ЗАО "ДиалогНаука".
Основное достижение в компьютерном бизнесе - то, что удалось одним из первых осуществить прорыв психологии потребителей - убедить достаточно многих людей, что программы можно покупать, даже если они и не защищены от копирования.

Вклад Лозинского в борьбу с компьютерными вирусами трудно переоценить. Благодаря его упорному многолетнему труду по анализу компьютерных вирусов и совершенствованию программы Aidstest, а также других отечественных антивирусов, в нашей стране в последнее время практически не происходили глобальные эпидемии компьютерных вирусов. Спасенные данные на компьютерах и сэкономленное рабочее время миллионов пользователей принесли государству большой экономический эффект, который, по оценкам экспертов, определяется величиной 100 млн. долл.

Любимый способ проведения досуга - в одиночку бродить по лесу.

Алексей Андреевич Ляпунов - один из первых отечественных ученых, кто оценил значение кибернетики, внес большой вклад в ее становление и развитие. Еще в середине 50-х годов, когда в СССР считалась "буржуазной лженаукой", ученый активно выступил в защиту этого перспективного научного направления. Под его руководством в стране начались первые исследования в области кибернетики. Общие и математические основы кибернетики, вычислительные машины, программирование и теория алгоритмов, машинный перевод и математическая лингвистика, кибернетические вопросы биологии, философские и методологические аспекты развития современной науки - вот не полный перечень основных направлений науки, получившей интенсивное развитие по инициативе и при участии А.А.Ляпунова. В конце 50-х годов он сформулировал основные направления развития кибернетики , которые на протяжении десятков лет являлись основой теоретических и практических исследований в этой области.

А.А.Ляпунову принадлежит разработка математической теории управляющих (кибернетических) систем, строгое определение которых было сформулировано им вместе с его учеником С.В.Яблонским.

А.А.Ляпунову принадлежит разработка математической теории управляющих (кибернетических) систем, строгое определение которых было сформулировано им вместе с его учеником С.В.Яблонским.
Он создал первые учебные курсы программирования и разработал операторный метод - по существу первый язык программирования, отличающийся от языка систем команд ЭВМ и разработанный по появления алгоритмических языков типа АЛГОЛ и другие. Большая роль А.А.Ляпунову принадлежит в  распространении идей и методов кибернетики. В 1958 году под руководством А.А.Ляпунова начал выходить периодический сборник "Проблемы кибернетики", на страницах которого публиковались результаты отечественных исследований.

По семейным преданиям род Ляпуновых берет начало от князя Константина Галицкого, брата Александра Невского. Имена этих мужей связаны с борьбой России с немецкими крестоносцами, с борьбой за ее существование.
Прадед Алексея Андреевича, Михаил Васильевич Ляпунов, ученик Н.И.Лобачевского, - профессор астрономии Казанского университета, директор Казанской обсерватории, а позже - директор Демидовского лицея, первого высшего учебного заведения Ярославля.

Широта научных интересов Алексея Андреевича в значительной мере обусловлена средой, в которой он рос. Его отец, Андрей Николаевич, был и его первым учителем астрономии, физики, математики и минералогии. Сам Андрей Николаевич окончил физико-математический факультет Московского университета, продолжил образование в Гейдельберге и Геттингене.

Первая проба сил Алексея Андреевича в самостоятельных исследованиях относится к астрономии - наблюдения, проведенные им в школьные годы, дважды были опубликованы в Бюллетене Московского общества любителей астрономии. В 1928 году Алексей Андреевич поступил на физико-математический факультет Московского университета. Однако через полтора года ему пришлось покинуть университет "как лицу дворянского происхождения". И с осени 1930 года началась трудовая деятельность в Геофизическом институте. В 1932 году Алексей Андреевич становится учеником академика Н.Н.Лузина. Под его руководством и по составленным им программой Алексей Андреевич получает математическое образование, а вскоре и первые результаты в одной из фундаментальных областей математики - в теории множеств, которой посвящены 62 работы Алексея Андреевича.

Первым шагом в международном признании заслуг Алексея Андреевича Ляпунова в области информатики явилось присуждение ему в 1996 году медали "Computer Pioneer".
Джон Непер
Потомок старинного воинственного шотландского рода. Изучал логику, теологию, право, физику, математику, этику. Увлекался алхимией и астрологией. Изобрел несколько полезных сельскохозяйственных орудий.

Джон Непер, задумавший сконструировать систему зеркал и линз, которая поражала бы цель смертоносным лучом, изобрел логарифмы, о чем сообщалось в публикации 1614 года.

Таблицы Непера, расчет которых требовал очень много времени, были позже "встроены" в удобное устройство, чрезвычайно ускоряющее процесс вычисления - логарифмическая линейка. Непер же придумал в 1617 году (год его смерти) другой - не логарифмический- способ перемножения чисел. Инструмент получил название "палочки Непера".


Фон Нейман Джон

Венгр по национальности, сын будапештского банкира Джон фон Нейман уже в восьмилетнем возрасте владел основами высшей математики и несколькими иностранными и классическими языками. Закончив в 1926 году Будапештский университет, фон Нейман преподавал в Германии, а в 1930 году эмигрировал в США и стал сотрудником Принстонского института перспективных исследований.

В 1944 году фон Нейман и экономист О.Моргенштерн написали книгу "Теория игр и экономическое поведение". Эта книга содержит не только математическую теорию игр, но ее применения к экономическим, военным и другим наукам. Джон фон Нейман был направлен в группу разработчиков ENIAC консультантом по математическим вопросам, с которыми встретилась эта группа.

В 1946 году вместе с Г.Гольдстейном и А.Берксом он написал и выпустил отчет "Предварительное обсуждение логической конструкции электронной вычислительной машины". Поскольку имя фон Неймана как выдающегося физика и математика было уже хорошо известно в широких научных кругах, все высказанные положения в отчете приписывались ему. Более того, архитектура первых двух поколений ЭВМ с последовательным выполнением команд в программе получила название "фон Неймановской архитектуры ЭВМ".

 

Принципы архитектуры фон Неймана

1. Принцип программного управления.

Этот принцип обеспечивает автоматизацию процессов вычислений на ЭВМ. 

Программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.  Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”. Таким образом, процессор исполняет программу автоматически, без вмешательства человека

2. Принцип однородности памяти.

Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатом вычислений.

Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. 

Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Фон Нейман описал, каким должен быть компьютер, чтобы он был универсальным и удобным средством для обработки информации. Он прежде всего должен иметь следующие устройства:

  1. Арифметическо-логическое устройство, которое выполняет арифметические и логические операции
  2. Устройство управления, которое организует процесс выполнения программ
  3. Запоминающее устройство для хранения программ и данных
  4. Внешние устройства для ввода-вывода информации.

Компьютеры, построенные на этих принципах, относят к типу фон - неймановских.

На сегодняшний день это подавляющие большинство компьютеров, в том числе и IBM PC – совместимые. Но есть и компьютерные системы с иной архитектурой – например системы для параллельных вычислений.

 


Питер Нортон

Знаменитый американский программист. Родился в г.Сиэтле (штат Вашингтон, США), получил образование в Ридоновском колледже (Портленд, штат Орегон) и Калифорнийском университете в Беркли, по профессии — математик. Он хорошо известен в современном компьютерном мире как "великий учитель" персональных компьютеров.

Вся профессиональная жизнь Питера Нортона связана с программированием. В 1982 году он случайно стер исходный файл с жесткого диска компьютера. Можно было потратить несколько дней и занести в компьютер всю информацию по новой, однако Нортон сделал по-другому — быстро написал программу, которая восстанавливает потерянные данные. Дело в том, что операционная система MS-DOS по команде "удалить файл" на самом деле физически не стирает его содержимое с магнитного носителя, а лишь в особом месте диска помечает занимаемое файлом место как свободное для повторного использования. Если успеть снять эту пометку до того, как на "свободное" место будет записана новая информация, то удаленные данные окажутся полностью восстановленными. На этой простой, но прежде не приходившей никому в голову идее Питер Нортон впоследствии заработал миллионы.

Судьба заставила его написать программу, являющуюся прообразом сегодняшних утилит. Затем появились и другие утилиты, способствующие облегчению труда программиста. Свою деятельность Питер Нортон начал с рассылки бессчетного количества бесплатных, полных обещаний реклам. Такая расточительность чуть не привела его в 1982 году к банкротству, хотя, конечно, способствовала его популярности. 

“Когда я написал программу UnErase, позволяющую восстановить случайно стертый файл, многим казалось, что такие программы никому не нужны, — вспоминал Питер Нортон. — Но я-то знал, какую ценность она представляет. Спустя некоторое время, когда все поняли, насколько важно иметь возможность восстановить утерянную информацию, утилита UnErase фактически сформировала новый сектор рынка программных средств для персональных компьютеров, который называется рынком сервисных программ (утилит)”.

В 1982 году все разработанные утилиты были собраны воедино и выпущены под единым названием Norton Utilities.
Распространением продукта занималась созданная компания Peter Norton Computing, уставной капитал которой – 500 000 долларов – был собран из личных сбережений Питера, взносов родителей, друзей и знакомых друзей.Вместо абстрактного логотипа «Утилиты Нортона» украсила фотография Питера Нортона. Расчет был прост: потенциальные покупатели с большой вероятностью клюнут на предложение, исходящее не от безликой компании, а от реального человека, который отвечает за качество. С тех пор портрет Питера Нортона в рубашке и галстуке, пристально смотрящего на пользователя, украшает все продукты, носящие его имя, и стал своеобразным знаком качества.

Сейчас существует очень большое количество утилит. К их числу относятся, например, различные архиваторы, антивирусные программы, программы для диагностики компьютера, программы для обслуживания дисков и многие другие программные средства.

Небольшая программа Norton Commander была главным инструментом повседневного использования и в итоге стала символом DOS-эпохи в куда большей степени, чем собственно текстовый интерфейс DOS.


 

Питер Нортон являлся управляющим фирмы PeterNorton Computing, Inc. Эта фирма широко известна всем пользователям компьютеров великолепными программами, как Norton Commander, Norton Integrator, Norton Utilities, Norton Disc Doctor. В 1983 году Нортон написал книгу, которая была издана под названием Inside IBM PC, она стала подлинным программистским бестселлером и впоследствии подверглась переводу на все основные языки мира.

Журнал "Информатика и образование" Утилиты, утилиты... (Питер Нортон)

В 1990 продал свою компанию фирме Symantec вместе с брэндом «Norton» Чуть позже организовал вместе с женой благотворительный фонд семейства Питера Нортона (Peter Norton Family Foundation) для поддержки художников. Семейство Нортонов — владельцы самой большой в США коллекции современного искусства.

 

Блэз Паскаль – один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его именем названы единица давления (паскаль) и весьма популярный сегодня язык программирования.
Работы Паскаля охватывают самые разные области. Он является одним из создателей математического анализа, проектной геометрии, теории вероятностей, гидростатики (широко известен закон Паскаля, согласно которому изменения давления в покоящейся жидкости передается в остальные точки без изменений), создателем механического счетного устройства – "паскалева колеса", как говорили современники. Философские мысли Паскаля (после его смерти в разных вариантах, под разными названиями издавались материалы в виде книги, которую чаще всего называют "Мысли") оказывали влияние на многих выдающихся людей и, в частности, на великих русских писателей – И.С.Тургенева, Ф.М.Достоевского, Л.Н.Толстого.

Некоторые из практических достижений Паскаля удостоились высшего отличия – сегодня мало кто знает имя их автора. Так, сейчас очень немногие скажут, что самая обыкновенная тачка, это изобретение Блэз Паскаля. Ему принадлежит и идея омнибусов – общедоступных карет с фиксированными маршрутами – первого вида регулярного городского транспорта. Уже в шестнадцатилетнем возрасте Паскаль сформулировал теорему о шестиугольнике, вписанном в коническое сечение (теорема Паскаля). Известно, что позже он получил из своей теоремы около 400 следствий.

Блез Паскаль родился в Клермон-Ферране 19 июня 1623 года. Блез был третьим ребенком в семье хорошо образованного юриста, увлекавшегося математикой. Однако по непонятным причинам отец запретил ему изучать точные науки до 15 лет. Впрочем, вскоре запрет был снят: юный гений поразил родителя, сообщив ему о том, что сумма углов в любом треугольнике равна 180 градусам. Ну как можно после этого не познакомить ребенка с Евклидом? 

Позднее отца молодого Паскаля приняли на должность налогового инспектора. А профессия мытаря предполагает большое количество расчетов, что, конечно, занимает много времени даже у сведущего в математике человека. Блез решил упростить жизнь родителя и занялся конструированием счетной машины. Результатом его труда стал механический калькулятор «Паскалина», «обученный» сложению и вычитанию. 
Но научные интересы Блеза Паскаля не ограничивались созданием калькулятора: он нашёл общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, способ вычисления биномиальных коэффициентов, сформулировал ряд основных положений элементарной теории вероятностей. А в историю физики он вошел, установив основной закон гидростатики и подтвердив предположение о существовании атмосферного давления. 
С годами Паскаль все больше и больше разочаровывался в абстрактном знании. В 50-е годы XVII века он сблизился с представителями янсенизма и вскоре ушел в монастырь. Нет, он не принял постриг, но, обосновавшись в небольшой обители, вступил в полемику с иезуитами. И вышел из нее автором шедевра французской литературы «Письма к провинциалу». 

Блэз Паскаль создал механическое вычислительное устройство – суммирующую машину, которая позволяла складывать числа в десятичной системе счисления. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 году, когда Паскалю было 19 лет, он начал работать над созданием суммирующей машины. Веря, что это изобретение принесет удачу, отец с сыном вложили в создание своего устройства большие деньги. Но против счетного устройства Паскаля выступили клерки - они опасались потерять из-за него работу, а также работодатели, считавшие, что лучше нанять дешевых счетоводов, чем покупать дорогую машину.

Герман Холлерит (Herman Holleit) родился в г.Буффало в семье немецких эмигрантов. Закончив Колумбийский университет, он поступил на работу в контору по переписи населения в Вашингтоне.
Джон Шоу Биллингс, высокопоставленный чиновник в бюро переписи, в будущем тесть Холлерита, высказал мысль, что табуляцию можно производить при помощи перфокарт, и Холлерит провел значительную часть последующего десятилетия в попытках разработать такую систему. К 1890 году Холлерит закончил свою работу и его статический табулятор вышел победителем в соревновании с несколькими другими системами, и с изобретателем был заключен контракт на проведение 11-й американской переписи населения 1890 года.
Как не обычно это казалось некоторым современникам, по принципу действия эта система была очень проста: данные, отмеченные в картах дырочками штампом, наподобие пишущей машинки, снимались машиной и переносились на счетный механизм. Каждое положение дырочки обозначало определенное значение, которое суммировалось на числовых часах.

 

Успех вычислительных машин с перфокартами был феноменален. То, чем за десять лет до этого 500 сотрудников занималось в течение семи лет, Холлерит сделал с 43 помощниками на 43 вычислительных машинах за 4 недели.
Холлерит был удостоен нескольких премий, получил немало похвал и звание профессора в Колумбийском университете.

В 1896 году Холлерит основал фирму по сбыту своих машин. В 1888 году он создает особое устройство - табулятор, в котором информация, нанесенная на перфокарты, расшифровывалась электрическим током. В 1897 году эту машину приобрела Россия для переписи населения в 1911 году, но помешала Первая мировая война.
В 1911 году Холлерит продал свою фирму, которая, объединившись с некоторыми другими, стала называться Computer-Tabulating Recording Co. 14 февраля 1924 года произошла смена названия CTR. Она стала называться 
International Business Machines Corp., сокращенно IBM. 


Эта машина использовалась для подсчета итогов Всероссийской переписи населения в 1897 году. Она долго работала в Центральном статистическом комитете, в 1930-1940 годы демонстрировалась в Москве на Всесоюзной выставке "Социалистический учет". С 1952 года находится в собрании Политехнического музея (Москва).

В этой машине цифры шестизначного числа задавались путем соответствующих поворотов дисков (колесиков) с цифровыми делениями, а результат операции можно было прочитать в шести окошках – по одному на каждую цифру. Диски были механически связаны, при сложении учитывался перенос единицы в следующий разряд. Диск единиц был связан с диском десятков, диск десятков – с диском сотен и т.д. Если при повороте диск проходил через ноль, то следующий диск поворачивался на единицу вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений, и в этом заключался основной недостаток машины. Однако изобретенный Паскалем принцип связанных колес явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трех столетий.

Блэз Паскаль и другой великий француз, Пьер Ферма, стали основателями теории вероятностей, причем годом рождения этой теории часто называют 1654 год, когда Паскаль и Ферма независимо друг от друга дали правильное объяснение так называемого парадокса раздела ставки.

Но, пожалуй, наиболее популярной математической работой Паскаля является трактат об "арифметическом треугольнике", образованном биноминальными коэффициентами (треугольник Паскаля) и имеющем применение в теории вероятностей. А вот замечательная кривая 4-го порядка улитка Паскаля, названа так в честь отца Блэза Паскаля Этьена, который совмещал государственную службу с занятиями математикой.

Грейс Мюррей Хоппер родилась в Нью-Йорке 9 декабря 1906 года в семье страхового агента Уолтера Флетчера. С детства она увлекалась не куклами, а различными механическими устройствами –"машинками", как она их называла.

В 1928 году она закончила с отличием колледж Вассара в Пугкигси и продолжила свое образование в Йельском университете. Здесь она в 1930 году получила степень магистра и в 1934 году – доктора философии по математике. Затем, вернувшись в Вассар, она преподавала математику. В 1941 году Г.Хоппер прослушала несколько курсов в университете Нью-Йорка.

В декабре 1943 года, в самый разгар второй мировой войны, она приняла присягу и в мае 1944 года поступила на службу в ВМФ США. Получив в июне 1944 года звание младшего лейтенанта, Грейс Хоппер была включена в отдел ВМФ, который занимался разработкой программ для компьютера ASCC (Mark-1), детища Говарда Айкена.

При работе на компьютере Mark-1 Грейс Хоппер и ее группой впервые были введены некоторые приемы, которые стали в дальнейшем широко использоваться в программистской практике. В частности, первыми инструментами, которые экономили труд программистов, были подпрограммы. Так вот, в августе 1944 года для Mark-1 была написана первая подпрограмма для вычисления sin(x). Термин подпрограммы был введен позже – Англия, Морис Уилкс.

Еще одно фундаментальное понятие техники программирования впервые ввели Грейс Хоппер и ее группа – отладка. Причем случилось это при курьезных обстоятельствах. Жарким летним днем 1945 года неожиданно произошла остановка компьютера. Обнаружилась неисправность одного реле, контакты которого были заблокированы мотыльком, неизвестно каким образом туда попавшим. Вспоминает Грейс Хоппер: "Когда к нам зашел офицер, чтобы узнать, чем мы занимаемся, мы ответили, что очищаем компьютер от насекомых (debuging). Термин debuging (отладка) с тех пор прижился и стал использоваться для обозначения поиска неисправностей в компьютере, особенно в программном обеспечении".

 

Конрад Цузе (Konrad Zuse) родился 22 июня 1910 года в Берлине. Цузе с детства любил изобретать и строить. Еще школьником он сконструировал действующую модель машины для размена монет. В 1935 г. окончил Берлинский политехнический институт. В 1936 году он устроил на квартире родителей "мастерскую", в которой через два года завершил постройку машины, занимавшую площадь 4 кв.м., названную Z1. Это была полностью механическая программируемая цифровая машина. 

Интересно, что первоначально изобретение Цузе должно было называться V1 («Фау-1»). Но, узнав о том, что «оружие возмездия» Вернера фон Брауна носит такое же название, конструктор переименовал свое детище. Естественно, это произошло уже в 40-е годы XX века. 

Машина Конрада Цузе работала с числами с плавающей запятой, преобразовывала десятичные числа в двоичные и наоборот, а также «понимала» ввод/вывод данных. Ввод данных осуществлялся при помощи перфоленты, изготовленной приятелем Цузе из кинопленки. Z1 была механической и использовалась лишь для опытов. Считается, что она частенько «сбоила» из-за ошибок механической памяти — еще одного изобретения талантливого конструктора. 

Биографы Цузе утверждают, что созданием вычислительных машин он занялся от безысходности: одно время молодой инженер работал на немецкую авиапромышленную компанию Henshel, где рутинные расчеты отнимали большую часть рабочего времени. А тратить свою жизнь на однообразные математические операции Конраду не хотелось. Вероятно, именно в этой связи расчеты действительно значительно ускорились. В пользу данной точки зрения говорит и тот факт, что Конрадом заинтересовались в ведомстве Геринга, отвечавшего за авиацию Третьего Рейха. 


Вскоре молодой инженер получил поддержку руководства Института аэродинамических исследований и начал работу над следующим вычислителем, получившим название Z2. В качестве материальной базы для нового устройства Конрад выбрал электромагнитные телефонные реле. 

Затем Цузе вместе с несколькими друзьями в 1941 г. построил первый в мире электронный программируемый калькулятор, основанный на двоичной системе счисления — Z3. Машина Z3 была значительно меньше машины Марк-1 Эйкена и гораздо дешевле в производстве.  Z3 хранила в оперативной памяти целых 64 машинных слова по 22 бита каждое. А также прообраз современных CAD и язык Plankalkul, компилятор которого планируется создать в память о гениальном изобретателе, и многое-многое другое. 

Весной 1945 г. появилась улучшенная версия — Z4. Однако логическая структура у обеих моделей (Z1 и Z3) была одинакова. 

Восстановленная версия Z1 хранится в музее Verker und Technik в Берлине. Именно Z1 в Германии называют первым в мире компьютером. 

Она очень напоминает архитектуру современных компьютеров: память и процессор были отдельными устройствами, процессор мог обрабатывать числа с плавающей запятой, выполнять арифметические действия и извлекать квадратный корень. Программа хранилась на перфоленте и считывалась последовательно. Конрад Цузе потерял все свои машины, за исключением Z4, во время бомбежек Берлина. Чтобы не попасть в плен в последние дни войны, он присоединился к группе ученых, разработавших ракеты в гитлеровской Германии, которые пытались скрыться в отрогах Альп Баварии.


В последние дни войны Z4 в рискованных обстоятельствах на грузовике и лошадях перевезли из Берлина в Геттинген, а затем в Алги. Спрятанная в конюшне машина не была обнаружена и в 1949 г. ее доставили в Eidgenoessische Technische Hochschule в Цюрих.

Другим экстраординарным достижением К.Цузе был первый алгоритмический язык программирования Планкалкюль (Plankalkuel — от plan calculus), разработанный им в 1945–1946 гг.
Оказалось, что на Z4 история работы Конрада Цузе не заканчивается. В 1949 г. на основал фирму Zuse KG в городе Нойкирхене (Neukirchen). Она разрабатывала программно-управляемые электромеханические компьютеры. В 1956-м фирма была куплена концерном Siemens AG. К этому моменту у Цузе работало уже 1500 сотрудников.


В Siemens Цузе был тем, что теперь называют ведущим научным сотрудником. В свободное время ученый любил рисовать. Его работы были показаны на многочисленных выставках. Несколько лет Цузе пользовался псевдонимом Kuno See. Он успел написать книгу (“H. Zuse. History of Computing”), которая издана на немецком и английском языках.


Злосчастный мотылек - BUG

В 1949 году Грейс Хоппер перешла на работу старшим математиком во вновь образовавшуюся фирму Маучли-Эккперта (создатели электронного компьютера ENIAC), где приняла участие в разработке программных средств коммерческого компьютера UNIVAC-1.

Для облегчения процесса составления программ на машинном языке, вместо записи команд в двоичной системе счисления в то время использовалась восьмеричная система счисления. Грейс Хоппер тоже освоила эту систему: научилась складывать, вычитать, умножать и делить в ней. Однажды даже заполнила баланс своего банковского счета в восьмеричной системе счисления. Выручил брат-банкир, напомнив ей, что банки все-таки работают в десятичной системе счисления. "Я столкнулась с проблемой жизни в двух мирах, - вспоминала Грейс Хоппер, - вероятно, это было одной из причин, побудивших меня по возможности избавиться от восьмеричных чисел".

В 1949 году Джон Моучли создал систему под названием Short Code, которая являлась примитивным языком программирования высокого уровня. В ней программист записывал решаемую задачу в виде математических формул, а затем, используя таблицу перевода символ за символом, преобразовывал эти формулы в двухлитерные коды. В дальнейшем специальная программа компьютера превращала эти коды в двоичный машинный код. Система, разработанная Джоном Маучли, была по существу одним из первых примитивных интерпретаторов, т.е. в последующие годы одним из двух типов трансляторов. Эта система оказала большое влияние на Грейс Хоппер. "Short Code был первым шагом к чему-то такому, что давало программисту возможность писать программы на языке, отличном от машинного", - писала Грейс Хоппер. Второй шаг предстояло сделать ей.

В 1951 году Грейс Хоппер создала первый компилятор и ею же был введен сам этот термин. Компилятор Грейс Хоппер осуществлял функцию объединения и в ходе трансляции производил организацию подпрограмм, выделение памяти компьютера, преобразование команд высокого уровня (в то время псевдокодов) в машинные команды. Конечно, между компилятором, созданным Грейс Хоппер, и сегодняшними сходство небольшое, но начало было положено.


Свой первый компилятор Грейс Хоппер назвала А-0, затем по мере его расширения и улучшения в последующие годы появились его версии А-1, А-2, А-3.

В 1954 году группа под руководством Грейс Хоппер разработала систему АТ-3, включающую язык программирования и компилятор, которая в дальнейшем получила название MATH-MATIC и продавалась компанией Remington Rand вместе с компьютером UNIVAC-1.

Приступив к созданию нового языка и компилятора, Грейс Хоппер со своей группой, выбрали около 30 английских слов типа: add (сложить), compare (сравнить), transfer (переслать) и т.п., а затем разработали компилятор, который транслировал программы, написанные на этом языке, в машинный код.
Для адекватного распознания компилятором выбранных слов Грейс Хоппер придумала способ, который сохранился в операторах будущих языков: каждое слово (название оператора) содержит неповторимую комбинацию из первой и третьей букв, поэтому компилятор при генерации машинного кода может игнорировать все остальные буквы в слове. Создание "необычного" (по тем временам) языка и компилятора, который получил название В-0, было завершено в 1956 году. В 1958 году система В-0 поступила на рынок под новым названием FLOW-MATIC. В отличие от ФОРТРАНа – языка для научных приложений, FLOW-MATIC был первым языком для задач обработки коммерческих данных.

Создание универсального, машинно-независимого языка высокого уровня для деловых применений и бизнеса стало очередной задачей, за разрешение которой в начале 1959 года взялась энергичная Грейс Хоппер. Она обратилась за поддержкой в Министерство обороны США, которое вскоре организовало конференцию по языкам программирования. Эта конференция, получившая в дальнейшем название CODASYL (Conference on Data Systems Language), организовала три группы по разработке нового универсального языка. К осени 1959 года создание языка было завершено, и он получил имя COBOL (Common Business Oriented Language). Одним из основных консультантов при создании языка была Грейс Мюррей Хоппер.

В 1967 году Хоппер вернулась на действительную службу в ВМФ и к 1980 году стала капитаном Управления вычислительной техники в Вашингтоне. В 1983 году она получила звание капитана первого ранга, а в ноябре 1985 года – звание контр-адмирала. В 1982-1986 годах она была старейшим действующим офицером американской армии. После отставки из армии в 1986 году она еще некоторое время работала консультантом фирмы DEC.

В 1967 году Хоппер вернулась на действительную службу в ВМФ и к 1980 году стала капитаном Управления вычислительной техники в Вашингтоне. В 1983 году она получила звание капитана первого ранга, а в ноябре 1985 года – звание контр-адмирала. В 1982-1986 годах она была старейшим действующим офицером американской армии. После отставки из армии в 1986 году она еще некоторое время работала консультантом фирмы DEC.

Заслуги Грейс Хоппер в программировании оценены по достоинству. Более 40 университетов и колледжей присвоили ей различные звания. Грейс Хоппер была обладательницей первой награды по информатике "Человек года", присуждаемой Ассоциацией управления и обработки данных.

Клод Шеннон родился в 1916 году. Вырос в городе Гэйлорде, в штате Мичиган. Уже в детстве Шеннон проявлял интерес как к технике и ее детальному исследованию, так и к общим математическим принципам. Он копался в первых детекторных приемниках, которые приносил ему отец, и одновременно решал математические задачки и головоломки, которыми снабжала его старшая сестра Кэтрин, ставшая впоследствии профессором математики.

В 1936 году выпускник Мичиганского университета Клод Шеннон, которому было тогда 21 год, сумел ликвидировать разрыв между алгебраической теорией логики и ее практическим приложением.
Шеннон, имея два диплома бакалавра - по электротехнике и по математике, выполнял обязанности оператора на неуклюжем механическом вычислительном устройстве под названием "дифференциальный анализатор", который построил в 1930 году научный руководитель Шеннона профессор
Вэннивер Буш. В качестве темы диссертации Буш предложил Шеннону изучить логическую организацию своей машины. Постепенно у Шеннона стали вырисовываться контуры устройства компьютера. Если построить электрические цепи в соответствии с принципами булевой алгебры, то они могли бы выражать логические отношения, определять истинность утверждений, а также выполнять сложные вычисления.

Электрические схемы, очевидно, были бы гораздо удобнее шестеренок и валиков, щедро смазанных машинным маслом у "дифференциального анализатора". Свои идеи относительно связи между двоичным исчислением, булевой алгеброй и электрическими схемами Шеннон развил в докторской диссертации, опубликованной в 1938 году.

В 1941 году 25-летний Клод Шеннон поступил на работу в Bell Laboratories, где, помимо всего прочего, прославился тем, что катался на одноколесном велосипеде по коридорам лаборатории, одновременно жонглируя мячиками.

В то время применение к технике методов английского ученого Джорджа Буля (1815-1864), который в 1847 году опубликовал работу с характерным названием "Математический анализ логики, являющийся опытом исчисления дедуктивного рассуждения" было делом почти революционным. Сам же Шеннон лишь скромно заметил на это: "Просто случилось так, что никто другой не был знаком с обеими областями одновременно".

Большую ценность представляет другая работа — Communication Theory of Secrecy Systems (1949), в которой сформулированы математические основы криптографии.

В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. Кстати, в те же сороковые годы Шеннон, например, занимался конструированием летающего диска на ракетном двигателе.

Одновременно Клод Элвуд Шеннон начал развивать идеи, которые впоследствии легли в основу прославившей его теории информации. Целью Шеннона была оптимизация передачи информации по телефонным и телеграфным линиям. И для того, чтобы решить эту проблему, ему пришлось сформулировать, что такое информация и чем определяется ее количество. В своих работах 1948-49 годов он определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии было названо "битом", то есть выбор одного из двух равновероятных вариантов.

C 1956 - член Национальной академии наук США и Американской академии искусств и наук.

В своих работах Клод Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили "битом", то есть выбор одного из двух равновероятных вариантов. На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-1961 годов и теперь носит его имя. В чем суть теоремы Шеннона? Всякий зашумленный канал связи характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Зато снизу к этому пределу можно подойти сколь угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала.

Помимо этого Шеннон неустанно занимался различными проектами: от конструирования электронной мышки, способной находить выход из лабиринта, до конструирования жонглирующих машин и создания теории жонглирования, которая, впрочем, не помогла ему побить его личный рекорд - жонглирование четырьмя мячиками.