Занимательная химия
Рубрика «Занимательная химия»
Сколько стоит монета?
Этот странный на первый взгляд вопрос когда-то не вызывал недоумения: монета стоила столько, сколько стоил металл, из которого она изготовлена. Так, если в золотой «царской» десятке с портретом Николая II, чеканившейся в 1898-1911 гг. и весившей 8,6 г, было 7,74 г чистого золота, то такое количество золота и стоило тогда 10 рублей. Соответственно серебряные монеты «вмещали» в себя меньше денег, медные − еще меньше. Поэтому из серебра 900-й пробы чеканили (с 1886 г.) только рубли, полтинники и полуполтинники (25 копеек), из низкопробного серебра 500-й пробы − монеты достоинством от 5 до 20 копеек (такие монеты из серебра 900-й пробы были бы слишком маленькими), а из меди − монеты достоинством 1/4, 1/2, 2, 3 и 5 копеек. И если положить рядом крошечный серебряный пятачок и огромный по сравнению с ней медный пятак (обе монеты чеканились с 1867 г.), сразу видна разница между стоимостью серебра и меди. Аналогично за небольшую золотую монету нужно было выложить 10 рублевых общей массой 200 г. Золото дороже серебра и потому, что его в земной коре намного меньше (в 16 раз), и потому, что добывать его, как правило, труднее. Интересно, что в Древней Месопотамии (VIII век до н. э.) золото ценилось дороже серебра в 13 раз. Примерно такое же соотношение было и в Древнем Египте и Греции. В Средние века это соотношение колебалось от 1:10 до 1:13, а в XVII веке увеличилось до 1:16 (после ввоза из Нового Света огромных количеств серебра оно относительно подешевело). Конечно, на это соотношение сильно влияли различные факторы, в основном − добыча этих металлов.
Чтобы медь стала полноценным монетным металлом, ее стоимость в монете когда-то тоже должна была соответствовать номиналу монеты. Так появились огромные медные пластины (их называют также платами); например, в Швеции при королеве Кристине (1632-1654) плата, соответствующая 10-далеровой серебряной монете, весила 19,5 кг. Российские платы были поменьше; так, медный рубль 1725-1726 гг. весил 1,64 кг (1/10 пуда), полтина − 0,82 кг, полуполтина − 0,41 кг и т. д. Это были специальные выпуски, отчеканенные в очень небольшом количестве экземпляров. Однако выпускавшиеся с 1758 по 1810 гг. огромными тиражами пятаки тоже весили немало − более 50 г. Большой вес медных денег приводил к значительным неудобствам. Вот яркий пример. В конце 1747 г. М. В. Ломоносов написал свою самую знаменитую оду, посвященную шестилетию восшествия на престол Елизаветы Петровны. Часто цитируют ее строки о том, что «может собственных Платонов и быстрых разумом Невтонов Российская земля рождать». Безудержные славословия Елизавете (впрочем, соответствующие жанру оды) настолько понравились императрице, что она повелела выдать автору 2000 рублей − огромную по тому времени сумму. Однако в казне в тот момент серебра не оказалось, а ассигнации появились только при Екатерине II; пришлось выдать царский дар медью; Ломоносову доставили две подводы медных денег. Нетрудно подсчитать их вес. По именному указу 1730 г. из 1 пуда меди чеканили монет (деньги и полушки) на 10 рублей. Значит, 2000 «медных» рублей весили 200 пудов, или 3,2 тонны. Если бы Ломоносов жил лет на 150 позже, его награда весила бы «всего» 640 кг, так как с 1867 г. из пуда меди медных монет чеканили уже на 50 рублей.
А вот еще один любопытный факт, касающийся медных монет и успехов химиков XVIII века. Чтобы не возить по российским просторам огромные массы денег, Екатерина II в 1763 г. приказала чеканить медные монеты для Сибири из местной меди, добываемой на Колывано-Воскресенском руднике. Там же располагался медеплавильный завод. Как показали химические анализы, медь из этого рудника содержала естественную примесь серебра (0,81 %) и золота (0,036 %). Их выделение из меди было в те времена малорентабельным, и правительство решило зачислить стоимость золота и серебра в стоимость сибирских медных денег. В результате из одного пуда колыванской меди чеканили «сибирских» монет на 25 рублей, тогда как общероссийские медные монеты чеканили в то время из расчета 16 рублей из пуда. Поэтому обычный российский пятак тех времен весит 51,19 г, а сибирский − «только» 32,76 г − разница существенная. Поскольку у большинства правителей всегда были проблемы с деньгами, они нередко выпускали в обращение монеты, номинал которых был выше истинной стоимости металла в них. Примеры злоупотребления таким способом поправки государственных финансов можно найти уже в Древней Греции. Самый простой способ порчи монеты (кстати, это вполне официальный термин) − ее обрезание. Он особенно практиковался в древности, когда монеты были неправильной формы, а их вес мог существенно различаться. В Афинах достиг совершенства еще один метод: железные, медные или свинцовые кружки обтягивали тонким серебряным или золотым листком. Но чаще всего применяли наиболее простой способ: к драгоценному металлу подмешивали менее ценный, в Риме порча монеты достигла крайних масштабов в III в. н. э., когда «золотые» монеты содержали 82,7 % меди, 16 % серебра и лишь 1,3 % золота. Сильнейшие злоупотребления в монетном деле совершались во многих европейских странах в Средние века. Итог известен − полное расстройство монетной системы. В России попытка насильственно приравнять по стоимости медные деньги к серебряным вылилась в московский Медный бунт 1662 г.
Монетные металлы
Сегодняшний учитель химии редко имеет возможность продемонстрировать устойчивость золотой монеты к азотной кислоте: в последний раз такие монеты («николаевские десятки») выпускались в нашей стране в массовое обращение в 1911 г. Правда, в 1923 г. были отчеканены золотые червонцы (на них изображен крестьянин-сеятель), но их использовал» в основном для расчета с заграницей. Копии таких монет (так называемые новоделы) чеканились у нас также в 1975-1981 гг. Это так называемые инвестиционные монеты − их цена близка к стоимости содержащегося в них золота (7,74 г), и они используются как способ вложения денег. Из драгоценных металлов сейчас чеканят в основном памятные и юбилейные монеты; они выпускаются для коллекционеров и не предназначены для обращения. Очень красивы, например, полированные монеты из серебра, золота и платины, впервые выпущенные у нас в 1977-1980 гг. и посвященные Олимпийским играм в Москве. Замечательно выглядят и монеты из палладия 999-й пробы; впервые их отчеканили у нас в 1988 г. к 1000-летию Крещения Руси. Какие же металлы используются для изготовления монет? С древних времен для чеканки использовали золото, серебро и медь, которые на много веков стали основными монетными металлами. Золото образует самородки, иногда довольно крупные, имеет привлекательный внешний вид, так что неудивительно, что золото было первым металлом, с которым познакомился человек. Серебро также встречается в виде самородков; кроме того, этот благородный металл несложно выплавить из его руд. В природе встречается сплав золота и серебра, который греки называли электроном, а римляне − электрумом. Этот сплав содержит до 30 % серебра и имеет белый или светло-желтый цвет. Считают, что из этого сплава в Лидийском царстве (VII в. до н. э.) были отчеканены первые в истории монеты. Затем появились монеты из золота и серебра. Относительно дешевая медь стала третьим основным монетным металлом.
Золото и серебро химически инертны, не подвержены коррозии и могут сохранятся очень долго. Но в чистом виде эти металлы слишком мягки, легко истираются и потому не годятся ни для каких изделий, в том числе и для монет. Однако уже небольшие добавки других металлов (их называют лигатурными) придают изделиям из золота и серебра достаточную твердость. Чаще всего золото сплавляют с серебром и медью, а серебро − с медью. Такой сплав намного тверже чистого металла.
Содержание драгоценного металла в сплаве называется пробой. Пробы на полотых изделиях появились очень давно. Но Франции, например,− с 1275 г. В России они были введены указом Петра I в 1700 г.; проба выражалась числом долей чистого серебра или золота в 1 золотнике сплава (1 фунт = 96 золотников, 1 золотник = 96 долям − 4,266 г, 1 доля = 0,04443 г).
В 1926 г. в СССР была принята метрическая проба. Ее выражают в граммах драгметалла в 1 кг сплава; например, старой пробе 56 отвечает современная проба (56/96)1000 = 583. Кстати, на современных золотых изделиях обычно стоит проба не 583, а 585. Но это вовсе не значит, что золотя в них стало больше. Разница в пробах 583 и 585 слишком незначительна и укладывается в допустимую погрешность в содержании драгметалла (ремедиум). Дореволюционные золотые монеты достоинством 7,5, 10 и 15 рублей с профилем Николая II имели необычную для нас пробу 86 2/5. Перевод на современную пробу дает (86,4/96)1000 = 900, то есть ЗГИ монеты (как и советские червонцы) содержат ровно 90 % чистого золота. Такая же проба и у советских полтинников и рублей, чеканившихся в 1920-х гг. Более высокая проба встречается редко и только у золотых монет, которые меньше подвергаются истиранию, так как не являются ходовыми. Например, заработная плата рабочего московской мануфактуры в середине XVIII века составляла в зависимости от квалификации 10−20 рублей в год. Понятно, что золотые монеты ему были ни к чему. В качестве примера высокопробных золотых монет можно привести 10-рублевые монеты, чеканившиеся при Елизавете Петровне и Екатерине II (старая проба 88, современная 917) и при Александре I (старая проба 94 2/3, современная 986).
В некоторых странах до сих пор используют так называемую каратную пробу, изобретенную в Англии примерно в 1300 г. Чистое золото соответствует 24 каратам (24 К).
Чтобы узнать содержание золота в сплаве, ювелиры используют пробирный камень − черный камень с отшлифованной матовой поверхностью. Изделием проводят по камню, а оставшийся штрих обрабатывают специальными растворами. Например, концентрированная азотная кислота полностью растворяет след от золотого сплава, если его проба меньше 353. Если штрих окрасился в коричневый цвет, проба золота − от 333 до 500, а если изменений не было − больше 500. Коричневый след − это мелкораздробленное золото, оставшееся после растворения других металлов (меди, серебра) в сплаве. С помощью смесей азотной и соляной кислот можно быстро определить приблизительное содержание золота в сплавах с пробой от 160 до 1000. Для более точного определения пробы используют сравнение цвета штрихов, оставленных испытуемым изделием и специальной пробирной иглой. Таких игл существует множество, и отличаются они содержанием не только золота, но также меди и серебра. Дело в том, что даже при постоянной пробе (например, 585-й) золотые изделия могут сильно отличаться по цвету. Это зависит от вида и содержания лигатурного металла. Так, серебро в зависимости от его содержания придает сплаву белый, желтый или даже зеленоватый оттенок. Медь делает золото красноватым, а если меди в изделии 14,6 %, то оно будет ярко-красным. Сплав, содержащий 9 % серебра и 32,5 % меди, имеет оранжевый цвет. Реже применяются другие лигатуры. Например, кадмий придает золоту зеленоватый оттенок, цинк − белый, а никель − бледно-желтый. Платина при содержании всего 8,4 % делает золотой сплав совершенно белым. Белое золото можно сделать также, сплавляя золото с серебром и палладием или с медью, никелем и цинком. А сплав золота с медью, серебром и цинком может практически не отличаться по цвету от чистого золота.
А что такое червонное золото? Химически чистое золото имеет желтый цвет. Червонный (т. е. красный) цвет придает золоту, например, медь при определенном ее содержании в сплаве. Так, в XX томе изданной в 1905 г. энциклопедии под редакцией Ю. Н. Южакова сказано: «Червонное золото − сплав золота с медью в отношении 9:1, употребляется для чеканки монет». О том же говорит и словарь В. И. Даля: «Красное золото − с медным сплавом; белое золото − с серебряным сплавом». Другие металлы, кроме золота, серебра и меди, использовались для чеканки монет редко. Однако был в истории России период (с 1828 по 1845 гг.), когда были выпущены для обращения платиновые монеты достоинством 3, 6 и 12 рублей, причем большими тиражами − всего было отчеканено почти 1,5 миллиона монет, что является уникальным явлением в мировой практике, Объясняется это добычей на уральских рудниках большого количества платины, которая не находила в те годы промышленного применения и потому стоила относительно недорого (известны случаи подделок золотых монет тяжелой платиной). Владельцы же рудников − Демидовы извлекали большую выгоду от продажи своей платины правительству. В 1845 г. по настоянию нового министра финансов чеканка платиновых монет была прекращена, а все монеты были срочно изъяты из обращения. Причины этой панической меры называют разные. По одной версии, боялись подделки этих монет за границей (где платина была якобы дешевле) и их тайный ввоз в Россию. Однако ни одной поддельной монеты среди изъятых из обращения не обнаружили. По другой версии, более правдоподобной, спрос на платину и ее цена в Европе выросли настолько, что металл в монетах стал дороже их номинала. Но тогда уже следовало бояться другого: тайного вывоза монет из России, их переплавки и продажу слитков... Интересно, что Майкл Фарадей на своей популярной лекции о платине, прочитанной в Лондоне 22 февраля 1861 г., показывал русские платиновые монеты. Проанализировав их состав, он нашел, что в монетах содержится 97 % платины. Фарадей отдал должное российским мастерам, сумевшим отчеканить монеты из недостаточно очищенной и потому довольно хрупкой платины.
Необычный металл может оказаться в монетах по разным причинам. Например, в XVIII веке некоторые мелкие российские монеты были бронзовыми − из сплава меди и олова. Эти монеты чеканились из старых, отслуживших свое бронзовых пушек. Похожая история случилась и в США во время Второй мировой войны, когда одноцентовые монеты чеканили из гильз артиллерийских снарядов. Только они были не бронзовые, а латунные. В древности известны немногочисленные попытки использования для выделки монет других металлов помимо трех основных − золота, серебра и меди. Так, в древней Византии, а также в средневековых Китае и Японии употребляли железные монеты. В последние годы Римской республики, а также в Китае IX−X вв. встречались монеты из свинца, а на островах Сицилии, Яве, Борнео и Суматре − из олова. В древней Бактрии делали монеты из почти современного медно-никелевого сплава, содержащего 20 % никеля. Этот состав был получен, конечно, не в результате целенаправленных исследований, он просто соответствовал естественным рудным залежам.
Никель в качестве четвертого монетного металла появился только в XIX веке в США и Западной Европе. Этот металл был открыт в 1751 г„ и 200-летие этого события было отмечено в Канаде выпуском никелевой пятицентовой монеты. Монеты из никеля красивы, блестят как серебряные, устойчивы к истиранию и коррозии. В 1863 г. в Брюсселе были отчеканены для России образцы двухкопеечных никелевых монет. Однако заказ на массовую чеканку таких монет в Бельгию так и не поступил. Несмотря на достоинства, есть у этого металла и недостатки. Никель дорог − в несколько раз дороже меди, плавится лишь при 1466 ºС (медь − почти на 400 ºС ниже). Со временем обнаружилась еще одна неприятная особенность этого металла; у людей, имеющих дело с большим количеством никелевой монеты, в частности у кассирш, нередко обнаруживалась повышенная чувствительность − никелевая аллергия, которая может появляться, например, в виде кожного заболевания экземы. Интересно, что подвержены такой аллергии чаще всего женщины. Поэтому обычно для чеканки монет используют медно-никелевый сплав. Но до сих пор американцы называют свои блестящие пятицентовые монетки «никелями» (niсkеls), хотя никеля в них только 25 %, остальное − медь.
Очень легки, дешевы и хорошо смотрятся монеты из алюминия − пока они новые. Мягкий алюминий быстро истирается, и монеты становятся довольно неприглядными. Монеты из алюминия чеканили (а кое-где и сейчас чеканятся) в Германии, Польше, Чехии, Албании, Венгрии, Монголии, Австрии, ряде других стран. Из цинка чеканили монеты из Австрии, Швейцарии, Албании, Румынии, Бельгии. В сухом воздухе цинк устойчив, но во влажном плохо сопротивляется коррозии, В этом отношении значительно лучше сталь − сплав железа с небольшим количеством углерода. Из стали чеканили (и продолжают чеканить) монеты во многих странах. Стальные монеты стойки к истиранию, часто они содержат легирующие добавки хрома и никеля (нержавеющая сталь). Так, итальянские монеты достоинством 50 и 100 лир содержали 18,25 % хрома. Столько же хрома было недавно в украинских копейках и пятачках. Хромом были покрыты одно время канадские пяти центовые монеты. Известно, что хромирование не только делает изделие привлекательным, но и предохраняет его от износа (технический хром — один ид самых твердых металлов). Иногда чеканились монеты и из чистого железа, например в Люксембурге и Финляндии (в 1940-1953 гг.). В 1999 г. в Гибралтаре появилась первая в мире монета из титана.
В 1982 г. в Италии придумали делать так называемые биметаллические монеты. Такие монеты в том же году начали чеканить в Ватикане и Сан-Марино. Прошло немного времени, и многие страны, в том числе и Россия, переняли это изобретение. А во Франции в 1992 г. выпустили триметаллическую монету. Внешнее кольцо и центральный диск у нее были светлые, из медно-никелевого сплава, а внутреннее кольцо — бронзовое. Экзотический для монет металл ниобий был использован в Австрии для центральной части биметаллической монеты достоинством 25 евро. Если ниобий погрузить в раствор электролита и сделать анодом, то на нем образуется пленка оксида. В результате интерференции света эта пленка будет окрашена в разные цвета − в зависимости от ее толщины. Этот эффект и был использован для австрийской монеты. Широко используют для чеканки монет и сплавы меди с цинком (латунь и томпак), оловом или алюминием (бронзы), а также тройные сплавы Сu-Ni-А1, Сu-Ni-Zn (нейзильбер) и др. Многие видели привезенные из стран Еврозоны новые монеты. Из чего они сделаны? Мелкие монеты достоинством 1, 2 и 5 центов отчеканены из стали, поэтому они притягиваются магнитом. Красный цвет им придает медь, которой плакированы монеты. Плакировка − способ покрытия одного металла тонким слоем другого путем прокатки двух- или трехслойного пакета, составленного из этих металлов. Массовая доля меди у них составляет примерно 5,5 %. Причин для выбора медного покрытия было несколько. Прежде всего, «медный» вид мелкой монеты привычен европейцам с античных времен, когда в Риме чеканилось множество медных монет разных номиналов. В США и Англии с давних пор наиболее популярные монетки − пенни − чеканились из меди. Медь − единственный металл (кроме золота), цвет которого отличается от обычного серого. Кроме того, медь − очень практичный для монет металл. Она достаточно тверда, легко прокатывается в тонкие листы, хорошо штампуется, что позволяет передавать на монетах самые тонкие детали, противостоит коррозии, имеет хороший внешний вид. Во время штамповки медные монеты приобретают дополнительную твердость, так что, по оценкам специалистов, они проживут лет тридцать. Так как медь не ржавеет, ее легко использовать вторично. Повторное использование меди и ее сплавов практиковалось еще в бронзовом веке. Полагают, что 80 % всей меди, выплавленной в течение многих веков, до сих пор находится в использовании. Так что в новых евромонетах, без сомнения, присутствует медь, побывавшая и в древнеримских монетах, и в монетах викингов, и в монетах германской и французской империй.
Электропроводность меди и некоторые другие ее свойства таковы, что этот металл оставляет свою уникальную «подпись» в торговых автоматах и машинах для подсчета и сортировки монет. Различные добавки в медных сплавах могут изменять электропроводность в широких пределах. Но для каждого сплава, используемого в монетах, эта электропроводность в точности известна, так что автомат легко на нее настроить.
Наконец, при выборе меди учли, что монеты, переходя тысячи раз из рук в руки, могут быть разносчиками болезнетворных бактерий. Медь же обладает антибактериальными свойствами; кроме того, она не вызывает аллергических реакций. Для монет достоинством 10, 20 и 50 центов как альтернативу стандартному медно-никелевому было решено использовать сплав, названный скандинавским золотом. Новый сплав должен был удовлетворять нескольким требованиям: во-первых, быть похожим на золото и не темнеть со временем; во-вторых, быть ковким и пригодным для чеканки монет; в-третьих, быть устойчивым к истиранию при эксплуатации и, наконец, не вызывать аллергических реакций. Было перепробовано несколько различных сплавов; испытывали, насколько они устойчивы к разным материалам и веществам, включая пот. Наконец остановились на комбинации, которая удовлетворяла всем условиям. Действительно, монетки выглядят точь-в-точь как золотые и не теряют своего вида в течение долгого времени. И здесь меди отведена ведущая роль: ее в сплаве 89 %, остальное − алюминий и цинк (по 5 %) с добавкой олова (1 %).
Уже в первый год для выпуска в обращение 80 миллиардов евромонет потребовалось полторы тысячи тонн олова. А меди для них было заготовлено примерно 180 тысяч тонн − 2 % всего потребления этого металла в Европе. Неудивительно, что на ряде заводов была налажена переработка старых монет, изьятых из обращения.
Специалисты позаботились о том, чтобы евромонеты были не только красивыми, но и безопасными — как для здоровья, так и с точки зрения возможных подделок: ведь новые монеты должны ходить на очень обширной территории. До введения евро четверть всего монетного металла в Европе составлял никель, который может вызвать аллергию. Поэтому в новых монетах никеля сравнительно немного.
Технология производства монет в 1 и 2 евро должна была обезопасить их от подделки. Для этого их сделали биметаллическими, причем использовалась особая технология выплавки металлов и засекреченный способ соединения двух компонентов монет и их чеканки. У этих монет центральная часть никелевая: она слабо притягивается даже очень сильным магнитом. Но так как никель может вызвать на руках экзему, он плакирован сплавом, содержащим 75 % меди; остальное − никель (для монет в 1 евро) или 20 % цинка и 5 % никеля (для монет в 2 евро). Внешнее кольцо этих монет по составу «антисимметрично» внутреннему: 75 % меди, 20 % цинка, 5 %никеля для 1 евро, 75 % меди, 25 % никеля для 2 евро. Оба сплава немагнитные.
В заключение − несколько слов о современных российских монетах. Если советские новенькие «медяки» когда-то вполне заменяли химикам разновесы (1, 2, 3 и 5 копеек весили точно 1, 2, 3 и 5 г), то о современных монетах этого не скажешь. Впрочем, и они могут в определенных случаях принести пользу, если под рукой нет ничего кроме аптекарских весов. Так, 1 копейка (новая) весит 1,5 г, 5 копеек − 2,6 г, масса 10 и 50 копеек зависит от металла, 1 рубль − 3,25 г, 2 рубля − 5,1 г, 5 рублей − 6,45 г.
А из чего они сделаны? Копейки и пятачки притягиваются магнитом, т. е. они железные (вернее, из низкоуглеродистой стали). Но это − внутри, снаружи же эти блестящие, как серебро, монетки покрыты (плакированы) медно-никелевым сплавом − мельхиором. Конечно, это дорого, зато хорошо предохраняет их от коррозии. Монеты достоинством 10 и 50 копеек − из медно-цинкового сплава (латуни), а с 2006 г. − стальные с покрытием медным сплавом. Рублевые и двухрублевые − из медно-никелевого сплава. А вот пятирублевики − медные, покрытые сверху мельхиором (это видно по красноватому цвету, «выглядывающему» на боковой части монеты − гурте). С 2009 г. и эти монеты станут стальными, с никелевым гальванопокрытием.
Засыплем в баки алюминий?
Ограниченность запасов нефти на планете, неоднократно разражавшиеся «бензиновые кризисы» уже давно поставили перед учеными задачу найти замену традиционному топливу для автомобилей. Первые электромобили появились чуть ли не одновременно с бензиновыми, однако до сих пор подавляющее число водителей заливают в баки своих машин бензин или солярку, намного реже можно встретить автомобили, работающие на газе, а вот электромобилей, вся энергия для которых запасена в аккумуляторах, на улицах до сих пор не видно. Почему так? Все решает экономика; бензин с необыкновенной легкостью побеждает аккумуляторы по количеству энергии, запасенной на единицу массы. Теплота сгорания бензина — около 40000 кДж/кг (примерно такая же, как у природных горючих газов), т. е. в 1 кг жидкого топлива «содержится» более 10 киловатт-часов энергии, тогда как в аккумуляторах — обычно не более 0,2 кВт-ч на 1 кг их массы; 50-кратное превосходство бензина преодолеть исключительно трудно. Тем не менее, появляются все новые, иногда довольно неожиданные предложения. Например, заменить бензин... алюминием! Алюминий — очень активный металл. Если его лишить защитной оксидной пленки (это можно сделать, смочив его поверхность небольшим количеством ртути или галлия), алюминий начнет прямо на глазах окисляться, рассыпаясь в белый порошок: 2А1 + 3O2 = 2А12O3. Если такой «активированный» алюминий внести в воду, он начнет энергично реагировать с ней, вытесняя водород: 2А1 + 6Н2О = 2А1(OН)3 + 3Н2. В щелочной среде реакция идет с образованием растворимого алюмината NаA1(ОН)4 и сопровождается выделением большого количества энергии. Если просто растворять алюминий в щелочи, энергия выделится в виде теплоты, и тогда ее трудно использовать. Но в так называемых топливных элементах можно заставить химическую реакцию вырабатывать электрический ток. Это свойство и решили использовать американские электрохимики Джон Купер и Эрвии Бэрин из Национальной лаборатории имени Лоуренса при Калифорнийском университете (США). Они создала прибор, в котором электрический ток вырабатывается в результате реакции алюминия с кислородом и водой в присутствии щелочи:
4А1 + 6Н2О + 4NаОН + 3O2 = 4NаА1(ОН)4
Анод в топливном элементе, использующем эту реакцию, изготовлен из алюминиевой пластины с добавкой 0,05 % галлия, катод — из пористого графита с катализатором. Образующийся при работе топливного элемента алюминат натрия несложно регенерировать; при этом образуются NаОН и А1(ОН)3. Гидроксид натрия возвращается в раствор, а осадок гидроксида алюминия отфильтровывается и через каждые 500-1000 км пробега извлекается из автомобиля и сдается на приемный пункт, откуда его направляют на завод для получения из него алюминия.
Результаты эксплуатации опытных батарей показали, что при движении электромобиля массой 1,3 тонны со скоростью 90 км/ч 1 кг алюминия будет израсходован через 20 км пробега (для сравнения: 1 кг бензина обычно хватает лишь на 15 км). Правда, батарея топливных элементов (их потребуется несколько десятков) займет значительно больше места, чем бензобак, зато в электромобиле не будет карбюратора, цилиндров, трансмиссии и прочих деталей, без которых не может обойтись автомобиль с двигателем внутреннего сгорания: их заменят небольшие электромоторы, расположенные прямо на ведущих колесах. Заменять алюминиевые пластины в батареях тоже придется намного реже, чем заливать в бак бензин. Вроде бы все хорошо, но есть в этом заманчивом предложении один недостаток, который не позволяет широко внедрить его в жизнь. Алюминий на заводах получают с помощью электричества. Процесс этот очень энергоемкий: на 1 кг алюминия расходуется примерно 15 кВт-ч электроэнергии. Число автомобилей в мире начисляется сотнями миллионов, и простой расчет показывает, что для их исправного снабжения алюминием необходима 10-кратная мощность всех существующих электростанций. Значит, даже если бы новые автомобили работали со 100 %-ным КПД (чего не бывает) и человечество отказалось бы от всех других применений электричества (что также маловероятно), все равно лишь один из 10 «бензиновых» автомобилей удалось бы заменить на «алюминиевый». Вот почему во всем мире огромные количества нефти продолжают перерабатывать на бензин. И все же алюминий нашел практическое применение в качестве топлива. Но не автомобильного, а ракетного. Ведь ракета, в отличие от автомобиля, должна нести в себе не только топливо, но и окислитель. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для сжигания 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сжигании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при его сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Реакцию алюминия с водой можно осуществлять, например, в двигателях ракеты первой ступени. Расчеты показали, что при этом запас топлива, который требуется для предварительного разгона многоступенчатой ракеты, можно уменьшить в 1,5-2 раза по сравнению с традиционными видами топлива. А на Венере можно было бы вообще не брать на ракету запас окислителя, В атмосфере этой планеты 97 % углекислого газа, в котором алюминий сгорает с выделением 15 000 кДж на 1 кг металла:
А1 + 3СО2 = А12О3 + 3СО.
Идея использования алюминия в качестве горючего — не новость. Еще в 1924 г. отечественный ученый и изобретатель Ф. А. Цандер предложил использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время видов твердого ракетного топлива содержат металлический алюминий в виде тонко измельченного порошка. Добавление 15 % алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения этих продуктов из сопла двигателя — главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.
Ракета из балона
Многие газы, используемые в лаборатории, медицине, промышленности, хранят в стальных баллонах. Чтобы в баллон вошло как можно больше вещества, газы закачивают в них под очень высоким давлением. Еще лучше, если газ удается сделать жидким — тогда его в баллон войдет намного больше. Известно, что вещества в жидком состоянии занимают значительно меньший объем, чем в газообразном (при равной массе). Например, 1 кг жидкого пропана С3Н8(при комнатной температуре он сжижается уже при небольшом давлении) занимает объем около 2 л, тогда как объем 1 кг газообразного пропана (при той же температуре и атмосферном давлении) — более 500 л. Однако некоторые газы сжижаются только при очень низких температурах, а при комнатной температуре они не превращаются в жидкость даже при самых высоких давлениях. Когда-то такие газы называли постоянными. Этих газов не так уж много; к ним относятся водород, азот, аргон, водород, гелий, кислород, неон, фтор, оксид азота, оксид углерода (угарный газ), метан и некоторые другие. Температура, выше которой газ не может быть превращен в жидкость, называется критической. Существование такой температуры теоретически открыл Д. И. Менделеев в 1860 г. и экспериментально исследовал ирландский ученый Томас Эндрюс в 1869 г. Например, для метана критическая температура равна минус 82,6 ºС, а для пропана— плюс 96,6 °С Так что пропан при комнатной температуре легко сжижается (при 22 ºС — при повышении давления до 9 атм), а метан сделать при такой температуре жидким невозможно. Поэтому, в качестве бытового баллонного газа используют не метан, а более дорогой пропан. Пропан — хорошее горючее, а главное — его можно хранить в сжиженном виде при невысоком давлении в сравнительно легких баллонах, и помещается его там намного больше, чем метана под давлением. Такие же газы, как метан, кислород, азот, приходится закачивать в толстостенные тяжелые стальные баллоны при очень высоких давлениях— примерно 15 МПа, или 150 атм (при низких давлениях газа в баллон поместится очень мало). Чтобы различить газы, баллоны окрашивают в определенный цвет: с кислородом — в голубой, с ацетиленом — в белый, с азотом — в черный, с гелием — в коричневый, с водородом — в темно-зеленый и т.д. Окрашенные в голубой цвет баллоны со сжатым кислородом можно увидеть в больницах, во время строительных и ремонтных работ.
Баллоны с газами под высоким давлением представляют определенную опасность, поэтому их хранят в строгом соответствии с правилами техники безопасности. Их нарушение может обернуться крупными неприятностями. Например, для смазывания вентилей баллонов с кислородом ни в коем случае нельзя использовать смазки на основе углеводородов: их реакция с кислородом, находящимся под высоким давлением, может привести к взрыву. Опасность представляет и водород, который используют во многих химических лабораториях. Ведь если вентиль плохо закрыть или он испортится, в помещение может попасть много водорода, который с воздухом образует взрывчатую смесь. Баллоны со сжатым водородом для безопасности прикрепляют с помощью специальных хомутов к стене или даже выносят во двор; в последнем случае газ поступает в лабораторию по тонкой металлической трубке.
Что может произойти, если не выполнять строго меры безопасности? Вот какой случай произошел в одной лаборатории в США. Там по халатности баллон с водородом не закрепили, а просто оставили на некоторое время стоять у стены. Проходящий мимо сотрудник случайно задел баллон, и он упал. При падении вентиль на краю тяжелого баллона задел за край стола и отвалился. Из широкого отверстия со свистом стал с огромной скоростью вырываться сжитый газ. К счастью, рядом не было открытого пламени, иначе взрыв был бы неминуем. Но и без этого баллон наделал немало бед. Высокая скорость истечения водорода привела к тому, что лежащий баллон превратился в настоящую ракету. Как тяжелая торпеда, он пробил внутреннюю перегородку лаборатории, затем вторую, с огромной силой ударил во внешнюю кирпичную стену здания, пробил ее и приземлился во дворе в сотне метров от места своего старта.
Магнитом — по опилкам
Казалось бы, все, что касается игрушек для маленьких детей, уже изобретено и ничего принципиально нового создать невозможно. Однако это не так. Возьмем, например, игры, развивающие способность писать, а также создавать простые рисунки. Техническое задание таково: рисунок должен быть четким, легко стираться, а сама игрушка должна быть безопасной, причем — что немаловажно — безопасной именно для детей.
В продаже можно встретить такую конструкцию. В герметичной коробке под пластмассовым прозрачным экраном помещен тонкий алюминиевый порошок (алюминиевая пудра). При встряхивании экран электризуется, и на него налипает слой порошка. С помощью помещенного в коробку штифта и двухкоординатного механизма, управляемого двумя ручками, можно нарисовать довольно сложные фигуры, «процарапывая» слой алюминия, то есть удаляя порошок острием штифта. Встряхивание коробки приводит игрушку в исходное состояние. К ее очевидным недостаткам относится невозможность оторвать штифт от экрана, то есть прервать линию (поэтому буквы и цифры нарисовать практически нельзя), а также сложность создания кривых: каждая ручка по отдельности позволяет проводить линию либо вправо-влево, либо вверх-вниз. Правда, последнее обстоятельство в какой-то мере может служить и достоинством игрушки, которая хорошо развивает координацию движения.
Другой вариант подобной «рисовалки» еще проще, твердый темный лист покрыт гибкой матовой полимерной пленкой. Если с помощью заостренной палочки — стила — провести на пленке черту, то она прилипнет к подложке, и черта станет видна — останется темный след. Так можно нарисовать на пленке все, что угодно. Если же с помощью тонкого стержня, расположенного между пленкой и подложкой, отделить их друг от друга, все изображения исчезнут, и можно начинать с начала.
И вот новая остроумная игрушка. Под прозрачным экраном — светло-серый порошок, сбоку в специальном углублении — «карандаш», Если его тонким металлическим кончиком провести по экрану, слегка его касаясь, под ним останется черный след. Передвинув расположенную снизу рукоятку из одного крайнего положения в другое, можно стереть написанное или нарисованное и вернуть игрушку в исходное положение. Как же она устроена? Даже не ломая изделие, легко установить, что в его основе — магнитное действие: внутри — тонкий железный порошок, а наконечник «карандаша» — магнитик. В исходном положении более тяжелый железный порошок «тонет», и его не видно под слоем чего-то белого. Когда же магнитик подносят к экрану, он вытягивает железные опилки на поверхность, и они оставляют темный след. Длительное сохранение рисунка доказывает, что железному порошку непросто снова утонуть» в вязкой массе. Нижняя ручка прикреплена к намагниченному стержню, расположенному за экраном Проводя этим магнитом вдоль экрана, мы перемещаем все опилки к задней стенке, так что передняя светлеет. Это же можно сделать иначе, просто сильно встряхнув коробку, когда она находится в горизонтальном положении: более тяжелые железные опилки осядут вниз. (Если при этом коробку перевернуть, то опилки осядут на лицевую сторону, так что почернеет эта рабочая сторона.) Если вскрыть герметичный экран, обнаружится вот что. Верхняя и нижняя (она тоже прозрачная) поверхности разделены очень тонкими пластмассовыми перегородками, образующими сетку е ячейками около 1 мм (ее можно заметить на фотографии). Эта сетка разделяет рабочее поле на множество мелких ячеек, и в каждой ячейке перемещается своя небольшая порция магнитного порошка. Попасть из одной ячейки в другую он не может. Порошок смешан вовсе не с мелом или чем-то подобным, как могло показаться вначале; на самом деле он плавает в густой белой жидкости. Жидкость эта негорючая и испаряется очень медленно. Следовательно, это неорганический растворитель, а, скорее всего, вода. После ее испарения остается немного органического вещества, которое можно сжечь, и негорючий белый порошок, похожий на мел. Но мел можно исключить, потому что белый порошок не растворяется в соляной кислоте. Возможный вариант — диоксид титана, ТiO2 — белый пигмент, который широко используется для изготовления белил.
Что же представляет собой эта густая жидкость? Вероятный ответ таков. Один из способов промышленного производства поливинилхлорида — эмульсионная полимеризация. По этому способу инициатор радикальной полимеризации (например, перекись водорода) растворен в водной фазе, а полимеризация органического мономера идет в мицеллах — крошечных капельках, образованных эмульгатором — каким-либо поверхностно-активным веществом наподобие мыла. В результате получается латекс с размерами частиц полимера 0,03-0,5 мкм. Латекс сушат в распыленном виде, получая мелкий порошок полимера. Добавляя к нему растворитель, изготавливают пасты, вязкие коллоидные растворы. Такие растворы, которые называются пластизолем, можно перерабатывать в самые разнообразные изделия. Методом макания или пластизоля можно получить перчатки, которыми пользуются электрики (поливинилхлорид — прекрасный изолятор), изоляционный слой на ручках инструментов, покрытия на стеклянных флаконах с аэрозольной упаковкой медикаментов (например, ингалипта). Заливкой пластизоля в формы изготовляют воздушные и масляные фильтры для автомобилей, обувь, уплотнительные прокладки для крышек банок и бутылок, используемых для пищевых продуктов. Напылением пластизоля можно получить защитное покрытие для днищ и сварных швов автомобилем. А искусственную кожу или моющиеся обои можно получить методом шпредирования. Что означает это странное слово? По-английски tо sрrеаd — «распределять по поверхности», «промалывать», в том число и резиной. Но написание термина показывает, что он пришел в русский язык из немецкого, в котором сочетание sр чаще всего читается как «шп» (кстати, по-немецки Spreadingmaschine — «машина для прорезинивания тканей»). Наконец, из пластизоля можно делать мячи, детские игрушки и т.п. В пластизоль часто вводят значительные количества (до 50% по массе) минеральных наполнителей — мел, каолин, аэросил (мелкодисперсный диоксид кремния SiO2 бентонит, диоксид титана и др. Значит, для изготовления нашей игрушки можно было использовать производимый промышленностью, а потому сравнительно недорогой поливинилхлоридный пластизоль. Остается восхититься изобретательностью тех, кто эту игрушку придумал.
Азид в мешке
Известно, что скорость химической реакции пропорциональна концентрации реагентов; чем она выше, тем чаще сталкиваются молекулы и тем быстрее идет реакция. Аналогично частота дорожно-транспортных происшествий при прочих равных условиях пропорциональна концентрации автомобилей на дорогах, которая неуклонно увели читается. Соответственно растет и число аварий. Самые опасные происходят при лобовом столкновении. Даже если скорость каждого автомобиля не превышает 60 км/ч, суммарная скорость получается такой, что почти не оставляет шансов для находящихся в автомобиле. Можно ли в таких случаях защитить водителя и пассажиров или хотя бы спасти их жизни (о судьбе автомобиля говорить в таких случаях не приходится). Одно из самых простых и надежных изобретений — ремни безопасности, которые спасли множество жизней. Но если скорость машины при лобовом столкновении велика, не спасают и они — ремень задерживает туловище, а голова по инерции продолжает движение вперед, что приводит к повреждению, нередко смертельному, шейного отдела позвоночника.
И тут на помощь автомобилистам пришла химия. В 80-х гг. XX века химики ведущих автомобильных корпораций разработали новый способ защиты автомобилистов — подушку безопасности. Она изготовлена из прочного полиамидного волокна и в сложенном виде занимает так мало места, что ее можно упрятать в стойку рулевого колеса. В случае лобового столкновения мешок почти мгновенно надувается и мягко принимает на себя поступательное движение как корпуса, так и головы водителя, спасая тем самым ему жизнь. И если к концу 80-х годов лишь один из 15 выпускавшихся в США автомобилей снабжался подушкой безопасности, то к 1995 г. их доля превысила 70 %, а еще через несколько лет ими снабжались практически все автомобили, причем каждый имел по два таких устройства — для водителя и для пассажира. Появились также подушки, расположенные сбоку, причем и для пассажиров, сидящих на заднем сиденье.
Как же работает такая подушка? Поскольку счет при аварии идет на тысячные доли секунды (при скорости 108 км/ч машина проходит 10 см всего за 3 миллисекунды), никакие механические компрессора или баллоны с сжатым газом не успеют надуть мешок за нужное время. Остается лишь одна возможность — взрывное разложение химического соединения с выделением большого объема газа. Химикам нужно было найти такое соединение, а остальное было уже делом техники. Вариантов оказалось немного. Остановились на распаде азида натрия — соли очень взрывчатой и очень ядовитой азотистоводородной кислоты НN3. Хотя эта кислота слабая (как уксусная), ее водные растворы обладают настолько сильным окислительным действием, что смесь НN3и НСl растворяет золото и даже платину. Азиды тяжелых металлов (меди, серебра, ртути, свинца и др.) — весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды. Азид свинца Рb(N3)2, используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов этого вещества. Это соединение более взрывчато, чем нитроглицерин, а скорость распространения взрывной волны (детонации) при взрыве в 10 раз больше, чем у тротила, и достигает 45 км/с.
Азид натрия, к счастью, не взрывается, хотя тоже сильно ядовит (его сильно разбавленные водные растворы иногда используют в качестве консерванта биохимических препаратов). При нагреваний до 300 ºС он очень быстро разлагается с выделением азота и мельчайших частиц натрия:
2NaN3 → 2Nа + 3N2
Из 65 г (1 моль) NaN3 получается при обычных условиях около 35 л азота. Чтобы увеличить выход газа, а также связать очень реакционноспособный и легко загорающийся натрий, в смесь добавляют нитрат калия, который реагирует со свободным натрием:
10Nа + 2КNO3 → К2О + 5Nа2O + N2
Кстати, реакция азида щелочного металла с его нитратом давно использовалась химиками для синтеза чистого оксида натрия или калия (которые невозможно получить окислением металлов в кислороде или на воздухе), например:
5NaN3 + NаNО3 → 3Nа2O + N2
Оксиды натрия и калия — тоже не подарок; для их связывания в исходную смесь вводят еще один компонент — мелкораздробленный диоксид кремния. В условиях реакции он связывает оксиды натрия и калия с образованием негорючих и безопасных силикатов:
Nа2О + SiO2 → Na2SiO3
Работает вся система так. В случае столкновения чувствительные датчики, установленные в автомобиле, передают сигнал на микропроцессор, который мгновенно оценивает ситуацию; если скорость автомобиля при ударе превышает определенное значение (обычно 35 км/ч), микропроцессор включает электрический запал, который запускает реакцию разложения азида. В результате перед человеком примерно за 0,04 секунды надувается мешок, содержащий около 70 литров азота, который спасет ему жизнь даже в таких случаях, которые раньше считались безнадежными. В автомобилях последних моделей возможно даже регулирование скорости наполнения мешка азотом в зависимости от массы водителя и его точного расположения в автомобиле.
Однако не все так просто. Подушки безопасности, хотя и доказали свою эффектовность, создают новыеэкологические проблемы. Ведь большинство автомобилей заканчивает свой век, ни разу не испытав серьезного столкновения. Поэтому на свалках вместо сравнительно безопасных груд ржавеющего металла могут образоваться очаги отравляющих веществ. Один из способов борьбы с этим — использование в подушках безопасности вместо порошка таблеток, которые можно было бы при необходимости извлекать и утилизировать. Другой путь — поиск менее опасных химических соединений, которые могли бы заменить азид натрия. Говоря об азиде натрия, нельзя не вспомнить еще одну историю, связанную с этим веществом. Как отмечалось, его разбавленные водные растворы обладают бактерицидным действием и могут служить консервантом биохимических препаратов. И вот в начале 70-х годов XX в. в некоторых американских и английских клиниках наблюдались странные явления. Время от времени из сливной раковины раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто при этом не пострадал. Расследование показало, что виновником всех взрывов был очень слабый (0,01 %) раствор азида натрия, который использовали в качестве консерванта физиологических растворов. Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковину — иногда до двух литров в день. Оказалось, во всех упомянутых случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки очень прочные, легко гнутся, особенно после предварительного прокаливания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковину раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди, а это вещество уже способно взрываться. Пришлось менять медные трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твердым веществом. Специалисты, которые проводили «разминирование» сливной системы, чтобы не рисковать, подорвали эти трубки на месте, поместив их в металлический бак массой 1 т. Взрыв был настолько силен, что сдвинул бак с места на несколько сантиметров. Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. Можно предположить, исходя из сильных окислительных свойств азотистоводородной кислоты, что имела место такая реакция: анион N3-, окисляя медь, восстановился и образовал одну молекулу N2 и атом азота, который пошёл в состав аммиака. Остальная часть азид-анионов соединилась с катионами меди. Это соответствует уравнению реакции:
3NаN3 + Сu + 3Н2O → Сu(N3)2 + 3NаОН + N2 + NН3.
С опасностью образования «бомбы в раковине» приходится считаться всем имеющим дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органических синтезах, в качестве порообразователя — вспенивающего агента для получения газонаполненных материалов: пенопластов, пористой резины и т. д. Во всех подобных случаях надо проследить, чтобы растворы азида не соприкасались с тяжелыми металлами, а сливные трубки были пластмассовыми.
Каково цвета чернила?
Странный вопрос; самого разного! Но ведь само слово «чернила» подразумевает, что они должны быть черными! Действительно, раньше, когда не было ни шариковых ручек, ни синтетических красителей, писали в основном черными чернилами. Как их делали? На нижних сторонах дубовых листьев обычно к концу лета часто встречаются мягкие круглые орешки-галлы. Иногда их бывает так много, что листья тяжело свисают вниз. Сначала галлы зеленые, потом краснеют и выглядят как маленькие яблочки, прилипшие к листу. Самому дубу галлы ни к чему — они образуются на листьях дуба от укуса крохотной мушки — орехотворки. Самка мушки, откладывая яйца, ранит дубовый лист, вызывая образование на нем патологических наростов. Развивающиеся личинки находят внутри этих наростов надежную защиту. Когда орешки-галлы созреют, из них выводятся маленькие крылатые насекомые с четырьмя прозрачными клетчатыми крылышками. Галлы интересны тем, что содержат дубящее вещество — танин.
Танин есть и в чае, и дубовой коре, но там его в несколько раз меньше.
Еще в древности галлы называли чернильными орешками, потому что их использовали для получения чернил. К соку из галлов добавляли железный купорос или другие соли железа. На воздухе полученный раствор приобретал глубокий фиолетово-черный цвет. Реакция эта очень чувствительная: окраска появляется даже с очень малым количеством железа. Если воду, в которой много железа (такая вода имеет обычно специфический запах и оставляет на белой раковине ржавые потеки), налить в стакан и выжать в него сок из нескольких галлов, вода окрасится в темный фиолетово-сиреневый цвет. Еще в XVII веке английский ученый Роберт Бойль установил, что «одна крупинка купороса, растворенная в таком количестве воды, которое в шесть тысяч раз превышает ее вес, способна дать с дубильным орешком пурпурную настойку» (по-английски рurple означает и пурпурный, и багровый, и фиолетовый цвет). Поэтому с помощью чернильных орешков можно проверить, есть ли в питьевой или минеральной воде железо. Если появится окраска, значит, железо есть. И чем ею больше, тем окраска темнее. Когда железа много, раствор получается черным.
К полученным чернилам добавляли камедь — густой сок некоторых деревьев, например, вишни. Камедь придавала чернилам из галлов красивый блеск. Вот один из старинных рецептов приготовления черных чернил: камеди — 3 части, железного купороса — 2 части, чернильных орешков — 3 части, воды — 30 частей. Чернила эти очень устойчивы: сохранились, например, написанные ими средневековые рукописи.
В XIX веке химики научились изготовлять синтетические красители, из которых можно было делать чернила всех цветов радуги — красные, зеленые, синие, фиолетовые. Но название у них осталось старинное, напоминающее о том, что первые чернила действительно были черного цвета. Чтобы чернила не стекали с пера, как чистая вода, в их состав вводили (и сейчас вводят — для тех, кто любит писать перьевыми ручками) загустители, например, глицерин или сахар, а чтобы чернила не портились при хранении, к ним добавляют дезинфицирующее средство, например, фенол. В конце 40-х гг. XX века появилось и вскоре получило широкое распространение новое изобретение — шариковая ручка. Она очень удобна: вместо вечно пачкающихся и медленно сохнущих жидких чернил — трубочка с густой пастой; вместо клякс и неровных линий — тонкий равномерный след, который оставляет маленький стальной шарик. Сначала чернильную пасту для шариковых ручек делали на основе касторового масла. Это было не очень удобно: буквы сохли медленно и легко стиралась. Сейчас пасту делают из синтетической смолы и стойких красителей; написанное такой пастой не смазывается, быстро высыхает и не боится воды. Претерпел изменения и наконечник шариковой ручки — пишущий узел: шарик теперь часто делают из очень твердого вещества — карбида вольфрама, а наконечник изготовляют не из латуни, а из нержавеющей стали. Такой ручкой можно писать целый год.
Пигменты и красители
По определению, пигменты — это тонкоизмельченные порошкообразные красящие вещества, которые, в отличие от красителей, не растворяются ни в воде, ни в органических растворителях. Пигменты бывают природные (как правило, неорганические) и синтетические. Первым пигментом, который использовал человек, была сажа. Сажа в большем или меньшем количестве появляется везде, где горит огонь, поэтому неудивительно, что сажу начали использовать в декоративных целях примерно 20 тысяч лет назад, вскоре после изобретения способов добывать огонь. Сажу и теперь производят в огромных количествах и используют как наполнитель резины, пластмассы, для изготовления типографских красок.
Сажа исключительно устойчива к внешним воздействиям; до сих пор сохранились рисунки человека каменного века, выполненные сажей на стенах пещер. Вероятно, самая знаменитая из них — пещера Ласко во Франции. Ее случайно обнаружили в 1940 г. мальчики под упавшим после бури деревом. На стенах пещеры с помощью сажи, а также красновато-коричневых природных пигментов изображено множество животных: быки, лошади, олени, бараны, медведи, зубры. Теперь в этой пещере — прекрасно оборудованный музей.
Самыми труднодоступными в течение многих тысячелетий были пигменты синего цвета. Вероятно, первое использование синей природной краски произошло примерно 5 тысяч лет назад. Во время раскопок шумерского города Ура Халдейского были найдены золотые и серебряные фигурки животные, украшенные ляпис-лазурью — полудрагоценным камнем, содержащим пигмент ультрамарин. Сравнительно недавно было показано, что синий цвет этого пигмента связан с присутствием в нем анион-радикала [S3]-, в котором имеется неспаренный электрон (он изображен точкой). В Европе синие пигменты были настолько дорогими (их продавали буквально на вес золота), что порой специальные комиссии решали, какие именно участки росписи должны быть синего цвета. В античные времена использовали пигмент египетский синий, это был алюмосиликат меди (медное стекло). С VI-VII веков художники начали использовать природный ультрамарин, который готовили из ляпис-лазури, привозимой из Афганистана, По составу ляпис-лазурь — сложная смесь нескольких минералов, синий цвет которой придает гаюин — алюмосиликат, содержащий хлор и серу. Из килограмма лазури получали после длительной обработки всего 30 г синего пигмента, И лишь в 1704 г, был получен первый искусственный синий пигмент. Это была берлинская лазурь — гексацианоферрат железа-калия, содержащий атомы железа в разных степенях окисления: КFе3+[Fе2+(СN)6]. Синий кобальтовый пигмент— Тенарову синь (алюминат кобальта СоА12О4) впервые получили во Франции в 1802 г., и был он в те времена очень дорогим. Однако известные к началу XIX века искусственные синие пигменты по своим качествам не могли заменить природную лазурь. В 1824 г. во Франции была обещана огромная премия в 6000 франков за способ получения искусственной лазури. Уже через четыре года премию получил Ж. Гиме; почти одновременно и независимо от него то же открытие сделал известный немецкий химик Л. Гмелин. Для получения искусственного ультрамарина прокаливали белую глину (каолин) с сульфатом калия и с углем. С тех пор природный камень перестали переводить на краску. Органический синий пигмент — индиго начали добывать еще несколько тысячелетий назад в Индии, Индиго добывали из листьев различных растений. Наибольший выход получался из растения рода Indigofera, которое произрастает в странах с тропическим влажным климатом. В Европе до середины XVII века, когда голландцы начали ввозить индиго из южных колоний, этот краситель добывали из листьев местного растения — так называемой красильной вайды. Листья замачивали водой, при этом в раствор переходил бесцветный гликозид (соединение с глюкозой) индикан. Затем водный экстракт сбраживался под действием микроорганизмов. В результате ферментативного процесса образуется глюкоза и 3-гидроксииндол (индоксил) — бесцветное соединение, которое при окислении кислородом воздуха (быстрее на прямом солнечном свету) превращается в индиго, оседающее на дно сосуда в виде синих хлопьев.
В начале XIX века Наполеон обратился к французским ученым с предложением найти способ получения индиго из отечественного сырья и предложил за решение этой задачи баснословную по тем временам сумму — 1 млн. франков. Но в те времена химики еще не были готовы взяться за эту проблему: органическая химия находилась в зачаточном состоянии.
Химическое строение индиго было установлено в 1883 г. немецким химиком Адольфом фон Байером — через 18 лет после того, как он начал исследовать этот краситель и спустя 5000 лет после его открытия человеком. Как заявил Байер, он может доказать экспериментально место каждого атома в молекуле индиго. Байеру удалось также синтезировать индиго, исходя из фенилуксусной кислоты С6Н5СH2СООН, однако этот синтез не нашел практического применения. Промышленный синтез индиго начался спустя несколько лет на баденской анилино-содовой фабрике (ВАСФ), которая использовала метод, разработанный Карлом Хейманом. К началу XX века индиго синтезировали уже тысячами тонн, что соответствует сотням тысяч гектаров индиговых плантаций. Производству индиго сильно способствовало правительственное распоряжение, по которому синее сукно германской армии обязательно красилось синтетическим индиго. Выпуск индиго достиг максимума к концу 70-х гг. XX века — около 20 000 тонн в год. В конце XIX века БАСФ на разработку промышленного экономически выгодного синтеза индиго затратила 3 млн марок. А фирма «Людвигсхафен» ассигновала на исследования сумму, намного превосходившую стоимость самой фирмы! Этот рекорд, вероятно, никогда не будет превзойден. Потраченные деньги вернулись сторицей. Достаточно вспомнить Гималаи джинсов, выпущенных за прошедшие годы и окрашенных синтетическим индиго.
А какой был первый синтетический краситель, для которого не существует природных аналогов? В книгах по истории химии пишут, что это был мовеин. В 1856 г. английский химик Уильям Генри Перкин, которому было тогда всего 18 лет, окисляя дихроматом калия неочищенный анилин (он содержал толуидины — метилпроизводные анилина), получил вещество красивого фиолетового цвета, пригодное для окрашивания тканей. Он назвал его мовеином (от англ. mauve — «мальва», травянистое растение с крупными яркими цветами). Перкин работал в домашней лаборатории, и его цель была совершенно иной — он надеялся получить из каменноугольного дегтя хинин — средство от малярии. Вместо лекарства он получил краситель, в результате чего бросил учебу и на деньги своей семьи построил фабрику, работа которой сделала ее хозяина очень богатым человеком.
Следует, однако, сказать, что честь открытия первого синтетического красителя из продуктов перегонки каменного угля принадлежит польскому химику Якубу Натансону. Работая в Тарту (к то время — Дерпт, а после 1893 г. — Юрьев) он почти одновременно с Перкином, но все же чуть раньше, получил нагреванием смеси анилина и дихлорэтана в запаянной трубке вещество кроваво-красного цвета, способное окрашивать ткани. Это был краситель фуксин. Последующие исследования показали, что Натансон получил, вероятно, смесь парарозанилина с его моно- и диметилзамещенными. Сейчас фуксин применяют в основном для окрашивания нетекстильных материалов — бумаги, кожи, дерева; для приготовления чернил, цветных карандашей, типографских красок.
В заключение — сведения о красителях, которые к концу XX века производились в наибольшем количестве. Первые два места делят индиго (его используют для окраски тканей) и так называемый дисперсный синий 19 (им красят полиэфирные волокна)— по 15 000 тонн в год. За ними следуют сернистый черный 1 (краситель для хлопка) — 10 000 т/год, активный черный 5 (краситель для хлопка)— 8000 т/год и кислотный черный 194 (краситель для полиамидных волокон, шерсти и кожи) — 7000 т/год.
Как их сосчитать?
В школьном учебнике по органической химии есть тема «Предельные (насыщенные) углеводороды», которые назывются также алканами. В учебнике говорится, что начиная с бутана С4Н10 для каждого алкана существуют структурные изомеры с разветвленной цепью. Они имеют одинаковый состав, но разное строение. Примером могут служить бутан и изобутан (два изомера С4Н10), пентан, 2-метилбутан и 2,2-диметилпропан (три изомера С5Н12) и т. д. Написав структурные формулы всех изомеров, нетрудно выяснить, что у гексанаС6Н14 пять изомеров, а у гептана С7Н16 − девять. Дальше дело пойдет труднее: с увеличением числа атомов углерода число изомеров растет очень быстро, достигая астрономических величин. Например, у октана С8Н18изомеров уже 18, у нонана С9Н20 − 35, у декана С10Н22 − 75, у эйкозана С20Н42 − 366319, у триаконтана С30Н62 — 4111846763, у тетраконтана С40Н82 − 62481801147341... Эти числа значительно возрастут, если рассматривать также зеркально-симметричные молекулы— стереоизомеры: с 9 до 11 для гептана, с 75 до 136 для декана, с 366319 до 3396844 для эйкозана, с 5,921∙1039 до 1,373∙1045 для гектана С100Н202и т.д. Понятно, что никто эти формулы на бумаге не выписывал и их число вручную не подсчитывал, Как же узнали, что у эйкозана 366319 структурных изомеров, у триаконтана − 4111846763 и т. д.? Интересно также, больше или меньше изомеров у алкенов − углеводородов с одной двойной связью? Для начала рассмотрим названия алканов. Корни этих названий взяты из греческого языка. Разобраться со многими из них не очень сложно даже тем, кто не учил греческий язык в классической гимназии. Ведь в русском языке немало слов, ведущих происхождение от греческих числительных: Пентагон, пентаграмма (средневековый магический знак); гекзаметр (стихотворный размер − шестистопный дактиль), гектар (100 ар или 100 соток); гептахорд (звукоряд из 7 ступеней, а также семиструнная кифара у древних греков); октаэдр (многогранник с 8 вершинами), октант (старинный астрономический инструмент для измерения углов между небесными светилами), октаподы (отряд головоногих моллюсков с 8 щупальцами); декада (десятидневный промежуток времени), декан (в Древнем Риме − начальник 10 солдат, сейчас − руководитель факультета в вузе), декайоды (дословно «десятиногие») − моллюски с 10 щупальцами, к которым относятся каракатица, кальмары и др; от латинского dесеm − десять происходят многие единицы измерения: дециметр, децибел, декалитр и др.); гектограф (печатный аппарат, позволявший получать до 100 копий с листа), гекатомба (жертвоприношение из 100 быков), гекатонхейры (мифические 100-рукие великаны), а также пентод, гексод и гептод (радиолампы с 5, 6 и 7 электродами). Множество таких терминов в музыке: пентатоника (звуковая система из 5 нот в октаве, распространенная в Китае и ряде других стран), додекафония (метод музыкальной композиции, основанный на 12 тонах); октава, нона, децима и ундецима (музыкальные интервалы в 8, 9, 10 и 11 тонов), октет и нонет (ансамбли из 8 и 9 музыкантов) и др.
Мало кто задумывается о том, что похожие корни имеют и названия последних четырех месяцев года: сентябрь (в древнерусском «сентябрь»), октябрь, ноябрь, декабрь (в соответствии с их латинскими и греческими корнями − седьмой, восьмой, девятый и десятый месяцы). Но ведь декабрь − не 10-й, а 12-й месяц года. А дело в том, что в Древнем Риме новый год начинался 1 марта, поэтому месяцы с сентября по декабрь имели номера с седьмого по десятый соответственно. На Руси так называемый церковный год тоже начинался когда-то 1 марта − в соответствии с указаниями Библии: у древних евреев первый месяц года (ниссан) был заповедан Моисею и первосвященнику Аарону: «Месяц сей да будет у вас началом месяцев; первым да будет он у вас между месяцами года» (Исх. 12:2). Гражданский год на Руси до XV века соответствовал церковному. Однако в 1492 г. Иван III своим указом перенес встречу Нового года на 1 сентября, что совпадало со сбором урожая. Петр I в 1699 г. в последний раз праздновал Новый год по древнему обычаю 1 сентября, а уже через 3,5 месяца, 20 декабря того же года, повелел перенести начало года на 1 января 1700 г. (7208 г. «от сотворения мира»). Но вернемся к нашим алканам. Сложнее с названиями первых членов ряда: в них использованы не числительные, а другие греческие слова, причем иногда довольно хитро зашифрованные. Так, название метана происходит от метилового спирта, который раньше называли древесным: его получали сухой перегонкой древесины. Слово «метил» и происходит от греческих mеthу − «вино» и hile − «лес» (так сказать, «древесное вино»). Название лапа, как это ни покажется на первый взгляд странным, этимологически родственно слову «эфир». Оба происходят от греческого аither − так древние греки называли некую небесную субстанцию, которая пронизывает космос. Когда алхимики в XIII веке из винного спирта и серной кислоты получили легко испаряющуюся («улетающую к небесам») жидкость, ее назвали сначала духом эфира, а потом просто эфиром. В XIX веке выяснили, что эфир (по-английски еther) содержит группировку из двух атомов углерода − такую же, как и этиловый спирт (этанол); ее назвали этилом (eтhу1). Таким образом, «диэтиловый эфир» − по сути дела, тавтология, масло масляное... От «этила» произошло и название этана, а также этилового спирта − этанола. Кстати, другое название этанола − алкоголь − того же происхождения, что и слово «алкан». По-арабски «аль-кохль» − «порошок», «пудра», «пыль». От малейшего дуновения они поднимаются в воздух − как и винные пары при нагревании. Со временем термин «винные пары» («алкоголь вина») превратился просто в «алкоголь».
Одна из простейших жирных кислот была названа пронионовой − от греческих слов рrоtоs − «первый» и рion − «жир». Отсюда недалеко и до углеводорода пропана. Названия другой жирной кислоты − бутановой и соответствующего ей углеводорода бутана происходят от греческого butyron − «масло».
Перейдем, наконец, к числу изомеров алканов. Эта задача была решена математиками в XIX веке. Оказалось, что формулы, по которой можно сразу определить число изомеров для углеводорода СnН2n+2, не существует. Подсчет возможен лишь с помощью формул, позволяющих найти число изомеров углеводорода с n атомами углерода, если уже известно число изомеров всех его гомологов − углеводородов с числом атомов углерода от 1 до n−1. Поэтому расчеты для алканов с большими значениями n были получены сравнительно недавно с помощью компьютеров. Они доведены до тетрактана С400Н802, для которого, с учетом стереоизомеров, получено значение, трудно поддающееся воображению: 4,776∙10199! Подсчитано, что начиная с С167Н336, число изомеров уже превышает число элементарных частиц в видимой части Вселенной, которое оценивается как 1080; так, для С200Н402 оно равно примерно 9,430∙1033. Для химиков подобные расчеты мало интересны, и вот почему. Даже для сравнительно простого алкана, содержащего всего полтора десятка атомов углерода, подавляющее число изомеров не получено и вряд ли будет когда-либо синтезировано. Так, в случае декана С10Н22последние из 75 его изомеров были синтезированы лишь сравнительно недавно. И сделано это было лишь для того, чтобы иметь более полный набор стандартных соединений, по которым можно идентифицировать различные углеводороды, например, те, что встречаются в нефти. Кстати, в нефти были обнаружены все 18 возможных изомеров октана. Но самое интересное, что начиная с гептадекана С17Н36 сперва лишь некоторые изомеры, затем − многие из них, а потом практически все являются ярким примером «бумажной химии», т. е. не могут существовать в действительности. Дело в том, что по мере роста числа атомов углерода в молекулах разветвленных изомеров возникают серьезные проблемы пространственной упаковки при замене атомов водорода на метильные группы СН3, в ряду симметричных сферических молекул СН4 → С(СН3)4 → С[С(СН3)3]4 → С{С[С(СН3)3]3}4, и т. д., а также близких по структуре изомеров. Причина в том, что математики рассматривали атомы углерода и водорода как точки, тогда как на самом деле они имеют конечный радиус. Так, метановый «шарик» имеет на «поверхности» 4 атома водорода, которые свободно на ней размещаются. Следующий пентановый «шарик» С(СН3)4 имеет на «поверхности» уже 12 атомов водорода, расположенных значительно ближе друг к другу, Таким образом, при заполнении каждого следующего слоя число метильных групп СН3 на «поверхности» молекул углеводородов увеличивается втрое. Поэтому уже у следующего, после пентанового, гептадеканового «шарика» С17Н36 на «поверхности» становится мало места для размещения всех 36 атомов водорода в 12 метильных группах (это легко проверить, попробовав нарисовать плоское изображение подобных изомеров, соблюдая постоянство длин связей С−С и С−Н и всех углов между ними). С ростом n проблемы возникают и для атомов углерода: для них тоже становится все меньше места. В результате, несмотря на то что число возможных изомеров с ростом n увеличивается очень быстро, число «бумажных» изомеров растет значительно быстрее. Проведенная с помощью компьютеров оценка показала, что с ростом n отношение числа возможных изомеров к числу «бумажных» быстро cтремится к нулю. Именно поэтому расчет точного числа изомеров предельных углеводородов для больших n, которое когда-то вызывало значительный интерес, в настоящее время не имеет для химиков никакого практического значения. То же можно сказать и о числе изомеров непредельных соединений с одной двойной связью − алкенов СnН2n.
Свойства полония
Полоний — один из самых опасных радиоэлементов. Эксперименты с ним требуют соблюдения строжайших мер безопасности. Исследователь должен быть надежно защищен от попадания даже малейших следов этого элемента в дыхательные пути, в пищеварительный тракт. Недопустим также контакт полония или его химических соединений с кожей. Несмотря на все эти трудности, были изучены как физические, так и химические свойства полония и его соединении. Полоний − мягкий серебристо-серый металл, похожий на свинец, с температурой плавления 254 ºС. Это тяжелый металл, его плотность близка к 9,5 г/см3 − почти как у серебра. Плотность полония подсчитана не непосредственным измерением, а путем рентгенографического определения параметров кристаллической решетки. Это − следствие высокой радиоактивности, которая не позволяет получать значительные количества компактного металла. Известно, что препараты радия (t1/2 = 1600 лет) у Марии Кюри светились в темноте. Что уж говорить о полонии-210. Он не только светится, но и очень сильно нагревается за счет поглощения собственных α-частиц, несущих огромную энергию. Ведь при равных массах полоний в тысячи раз активнее радия. Кусочек полония размером с наперсток выделяет около 2 кВт тепловой энергии. Если получить весомые количества полония, от них необходимо непрерывно отводить теплоту. Если этого не делать, металлический полоний почти сразу расплавится, а затем испарится. Но даже если от образца эффективно отводить теплоту, с его поверхности будут выделяться микрочастицы металла. Поэтому металлический полоний способен легко образовывать в воздухе мельчайшие частицы аэрозоля, что резко увеличивает опасность работы с ним. Этот эффект типичен для сильно радиоактивных металлов и объясняется быстрым накоплением на них отрицательных зарядов при вылете в воздух положительно заряженных α-частиц. Кроме того, когда атомы полония оседают на мельчайших частицах пыли, то в результате механической отдачи при вылете α-частиц такие пылинки совершают «прыжки» и потому способны отрываться от поверхностей, на которые они осели. Полоний кипит при сравнительно невысокой температуре − 949 °С, что определяет его летучесть (для сравнения: температура кипения свинца − 1710 ºС, олова − 2360 °С). В парах полоний находится в виде молекул Ро. Летучесть полония облегчает его очистку, а также перемещение микроколичеств металла из одной части аппаратуры в другую путем их нагрева и охлаждения. В то же время летучесть затрудняет работу с ощутимыми количествами полония. По химическим свойствам полоний несколько похож на висмут, а также на свой ближайший аналог − неметалл теллур и проявляет типичные для элемента VI группы степени окисления: -2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании) с образованием красного диоксида РоО2. Сероводород из растворов солей полония осаждает черный сульфид РоS − тот самый, который был в осадке у Марии Кюри. В разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро2+): Ро + 2НС1 = РоС12 + Н2. Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет. С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН2, (он кипит при +35 °С и легко разлагается) и реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета, например N2Р. С галогенами полоний реагирует с образованием тетрагалогенидов. В растворах полоний существует в виде катионов Ро2+, Ро4+, анионов Ро032-, РоО42-, а также разнообразных комплексных ионов.
Сильная радиоактивность полония отражается на свойствах его соединений, которые почти все очень быстро разлагаются. Так, практически невозможно получить полониевые соли органических кислот: они обугливаются уже в момент синтеза Из водных растворов соединений полония медленно выделяются пузырьки газа, а в растворе образуется перекись водорода. И даже в стеклянной посуде с сухим соединением полония из-за α-облучения уже через несколько дней появляются заметные трещины − в тех местах, где вещество соприкасалось со стеклом. Такие стеклянные сосуды становятся очень хрупкими. Если соединение полония содержало воду, она разлагается на кислород и водород, которые в герметичной ампуле повышают давление. Оно повышается также из-за непрерывно образующеюся гелия. В результате маленькая ампулка с полонием уже через неделю может взорваться.
Получение полония
Полоний (речь идет только о его изотопе 210Ро) можно получить из природных источников или синтезировать. Первый способ малопродуктивен, но когда-то он был единственным. При переработке урановых руд 90 % полония остается в отвалах, из которых его очень трудно извлечь. Поэтому используют другой метод: выделяют из руды предыдущие члены радиоактивного ряда и ждут, пока в них в результате распада накопится достаточно полония. Так, если выделить 210Рb, то из него периодически можно «выдаивать»210Ро путем отгонки (в англоязычной литературе в этом контексте используется глагол tо mi1k, буквально — «доить»). Когда-то применяли такой способ: выделяющийся из радия газообразный радон запаивали в стеклянные ампулы, и после полного его распада (на это требовалось чуть больше месяца) в них появлялся тот же 210Рb. Сейчас 210Ро синтезируют путем облучения нейтронами природного висмута в ядерных реакторах (промежуточно образуется β-активный изотоп висмута-210): 209Вi + n → 210Вi → 210Ро + е-. Чтобы получить полоний, нейтронный поток должен быть очень мощным. Так, если на 1 см2 каждую секунду будут попадать даже 500 млрд. нейтронов, то через месяц облучения в 100 г висмута образуется лишь 2 мкг (две миллионные доли грамма) полония. Увеличение плотности нейтронного потока до 100 трлн. в секунду даст в 100 г висмута за месяц 0,4 мг 210Ро; такое количество почти не видно невооруженным глазом. Далее полоний нужно отделить от большой массы висмута; это можно сделать отгонкой в вакууме при нагревании − как это делала Мария Кюри. Чистый полоний получают гальваническим методом, осаждая его из раствора в азотной кислоте на катоде. Можно представить, насколько трудно получить граммовые и даже миллиграммовые количества полония. Первый образец чистого полония-210 был получен только в марте 1944 г. в США. В СССР под научным руководством З. В. Ершовой было создано экологически чистое производство полония, который использовали в качестве источника энергии для луноходов.
Полоний и человек
Полоний при попадании в организм считается одним из самых ядовитых веществ: для 210Ро предельно допустимая концентрация (ПДК) в воздухе составляет количество, при котором в 1 м3 распадается не более одного его атома в секунду. Это соответствует содержанию полония 6∙10-14 г на 1 м3 воздуха. Полоний при вдыхании почти в 170 млн. раз токсичнее синильной кислоты. То есть при гипотетическом распылении в воздухе 1 г полония ПДК будет превышена в 10 000 км3 воздуха − в слое атмосферы высотой 100 м и площадью 100 тыс. км3, что намного больше площади Московской области.
Но может ли природный полоний попасть и организм человека? Попробуем оценить возможность такого события. Причем речь идет о людях, не занятых на урановых рудниках и не работающих с радионуклидами. Среднее содержание урана в земной коре − 3∙10-4 % по массе. В некоторых минералах уран встречается вместе с кальцием, а иногда частично замещает его в кристаллической решетке, так как их ионные радиусы близки. Таким образом, и в известняке, и в доломите, и в апатите могут в принципе содержаться весьма незначительные примеси урана. Все упомянутые минералы прямо или опосредованно применяются в сельском хозяйстве. Известняк и доломит − для раскисления почв, апатит − для получения минеральных удобрений (суперфосфатов). Таким образом, какие-то количества урана могут попасть на поля, а оттуда − в сельскохозяйственные растения. На 1 тонну урана в минералах приходится менее 0,1 мг полония или 1 атом полония на 12 млрд. атомов урана. Это уже не иголка в стоге сена, а иголка в целом поле, заваленном сеном. Значит, в растение, выросшее на почве, куда с удобрениями попало немного урана, могут попасть лишь ничтожные количества полония, и пока они дойдут до потребителя, от них ничего не останется. Можно сделать и такую оценку. В книге Дж. Эмсли «Элементы» сказано, что в организме среднего человека содержится 0,1 мг урана. Значит, даже если бы между ним и 210Ро сохранялось радиоактивное равновесие, в человеке полония было бы в 1010 раз меньше, т. е. 10-11 мг. Но достижению равновесия препятствует, как следует из приведенного ряда, уран-234 (t1/2 = 2,45∙105 лет). Кроме того, продукты превращения 238Uи других членов ряда постоянно выводятся из организма. Так что неудивительно, что в справочнике Эмсли о полонии сказано; «Содержание в человеческом организме: нулевое». Существует ли другой путь попадания полония в организм? Считается, например, что это возможно при курении. Как такое может случиться? Вот что говорит об этом преподаватель химии профессор Рэймонд Чанг из Уильямс-колледжа, штат Массачусетс. Как известно, при выращивании табака в почву вносят много фосфатных удобрений. Если в них попадет один из продуктов распада урана − радий, то он в почве будет медленно преврящаться в радон, как видно из схемы превращений урана. Газообразный радон концентрируется в почве и в приповерхностном слое воздуха под воздушным «куполом», который образован табачными листьями. Дочерние твердые продукты распадающегося радона прочно приклеиваются к поверхности листьев и проникают внутрь них. Радон живет недолго, продукт его распада, 218Ро, − считанные минуты, поэтому довольно быстро образуется радиоактивный свинец-210. Постепенно его количество в листьях растущего табака увеличивается. При курении человек вдыхает с дымом мельчайшие твердые частицы, содержащие 210Рb, которые оседают в дыхательных путях, а затем переносятся в печень, селезенку и в костный мозг. Медленно распадаясь, 210Рb превращается в 210Ро, и это происходит в течение всего периода, когда человек курит. Постоянное облучение упомянутых органов и костного мозга увеличивает вероятность возникновения рака у курильщика. Конечно, чтобы такой механизм сработал, в удобрение должен попасть не сам уран, а радий. Возможность такого события сильно зависит от того, какие именно ископаемые были использованы для получения фосфатных удобрений и какова была технология их переработки.
Полоний в природе
Кларк полония (среднее содержание в земной коре) составляет ничтожную величину: 2∙10-14 %. Образуется полоний в результате радиоактивного распада долгоживущих радиоактивных элементов — тория и урана, являясь промежуточным членом минных цепочек распада (они называются также радиоактивными рядами). В ряду, родоначальником которого является 232Тh (t1/2 = 14 млрд. лет), а конечным продуктом − стабильный изотоп свинца208Рb, появляются в качестве 6-го и 9-го звеньев изотопы полония: 216Ро (t1/2 = 0,15 с) и 212Ро (t1/2 = 3∙10-7 с). Очень малое время жизни этих изотопов означает, что в природе они практически отсутствуют.
В ряду урана-актиния родоначальником является 235U (t1/2 = 700 млн. лет), а конечным стабильным продуктом − 207Рb. В этом ряду изотопов полония тоже два, и они оба тоже короткоживущие: 215Ро (t1/2 = 1,8∙10-3 с) и 211Po (t1/2 = 0,5 с). Урана-235 в природном уране всего 0,72 %, время жизни211Ро и 215Ро малы, так что и этих изотопов полония в природе тоже практически нет. Ощутимые количества полония могут накопиться только в ряду урана − радия, родоначальником которого является 238U, а конечным продуктом − 207Рb. Поэтому природный полоний представлен практически только нуклидом 210Ро. В этом ряду присутствуют также радий и радон. Приведем этот ряд (в несколько упрощенном виде) полностью; над стрелками показан период полураспада и его тип.
Прежде чем перейти к герою повествования − полонию-210, необходимо сказать об одном из его предшественников − радоне. Это благородный (раньше говорили − инертный) газ, поэтому он постепенно, не вступая в химические реакции, просачивается из глубин земного шара к поверхности (в разных географических районах − в разных количествах) и попадает в воздух. На него приходится значительная часть дозы облучения, которую получает средний человек (в некоторых регионах − до 50 %), Основная часть радона, попавшая при вдохе в трахею, бронхи и легкие, при выдохе выделяется обратно. Однако полоний-210, успевший образоваться при распаде радона, оседает в дыхательных путях, откуда разносится по организму. Радон хорошо растворяется в воде (в 22 раза лучше, чем азот), поэтому часть радона, попавшая в легкие при вдохе, может проникнуть через стенки легочных альвеол, раствориться в крови и затем распасться уже внутри организма с образованием полония. Много ли полония может образоваться из радона (а, в конечном счете из урана)? Уран-238 распадается очень медленно − в течение многих миллиардов лет, что сопоставимо с возрастом Земли. Если атомы урана будут находиться в земной коре в составе того или иного минерала достаточно долго − миллионы лет и газообразный радон не будет из минерала улетучиваться, то наступит стационарное состояние (радиохимики называют его равновесием). Это означает, что каждый член ряда образуется из своих предшественников с точно такой же скоростью, с которой распадается сам. При этом его количество в минерале в течение обозримого времени не меняется и зависит от периода полураспада этого нуклида. Очевидно, что чем меньше период полураспада члена ряда, тем меньше его будет в смеси. Нетрудно показать, что отношение числа атомов N материнского элемента (урана-238) и его дочерних атомов равно отношению их периодов полураспада, т. е„ например N(238U):N(226Ra):N(210Po). Сделав небольшую поправку на различие атомных масс этих нуклидов (238, 226 и 210), легко подсчитать, что при равновесии на 1 тонну чистого урана в его рудах приходится примерно 0,34 г радия и лишь около 0,07 мг 210Ро. И если весь полоний из тонны урана выделить (при условии, что радон не улетучивается), то получится шарик радиусом 0,1 мм. Но эта ничтожная крупинка ежесекундно излучает 12 млрд. α-частиц. Неудивительно, что Мария Кюри не смогла получить ощутимые количества полония, но смогла его обнаружить по радиоактивности С радием ей повезло больше: его в урановых рудах по массе почти в 5000 раз больше. Можно отметить, в связи с этим, что дочь Марии Кюри Ирэн в 1925 г. защитила докторскую диссертацию, посвященную α-излучению полония. Она и ее муж Фредерик (в будущем оба − лауреаты Нобелевской премии по химии) располагали мощным для того времени полониевым источником α-частиц.
Зная период полураспада полония-210, нетрудно подсчитать, что каждые сутки распадается примерно 0,5 % имеющегося в наличии полония и образуется столько же свинца. Если с образцом полония не проводили никаких манипуляций, то, проанализировав его на содержание полония и свинца, можно определить, как давно этот образец был получен. Например, через 4,5 месяца количество атомов полония и свинца в образце сравняются, через 9 месяцев свинца будет уже втрое больше и т. д.
Изотопы полония и их излучение
Для полония известно 35 изотопов, включая 8 ядерных изомеров (эти изомеры отличаются строением ядра и имеют разные периоды полураспада) с массовыми числами от 192 до 218. Все они радиоактивны с периодами полураспада (t1/2) от 3∙10-7 секунды для 212Ро до 102 лет для 209Ро. Семь изотопов полония с массовыми числами от 210 до 218 встречаются в природе в очень малых количествах как члены радиоактивных рядов тория, урана − радия, и урана − актиния. Эти изотопы имеют свои исторические названия, принятые еще в начале XX века, когда тех получали а результате цепочки распадов из «родительского» элемента − радия, тория или актиния: RаА (современное обозначение218Ро), RаС (214Ро), RаF (210Ро), ТhА (216Ро), ТhС (212Ро), АсА (215Ро) и АсС (211Ро). Все остальные изотопы полония получены только искусственно. Наиболее долгоживущие из них − 209Ро, 208Ро и 210Ро с периодами полураспада соответственно 102 года, 2,9 года и 138,4 суток. Это значит, что полония-210 (главного нашего «героя») через 4,5 месяца останется лишь половина, через 14 месяцев − около 10 %, через 2 года − менее 3 %, через 3 года − 0,4 %, через 4 года − всего 0,1 %. Легкие изотопы полония − чистые альфа-излучатели; при их распаде из ядра вылетают с огромной скоростью α-частицы (ядра гелия) с энергией от 6 до 7 МэВ (мета электрон-вольт; (для сравнения: энергия самой прочной химической связи в миллион раз меньше). При α-распаде масса ядра уменьшается на 4 единицы, а заряд ядра — на 2 (смещение на две клетки периодической таблицы влево). Начиная с 198Ро к α-распаду добавляется электронный захват (иначе — К-захват), при котором электрон с самой внутренней электронной оболочки атома (К-оболочки) захватывается ядром При этом один протон превращается в нейтрон, масса ядра не меняется, а заряд уменьшается на единицу (смещение на одну клетку в таблице влево). Распад более тяжелых изотопов начиная с 199Ро сопровождается гамма-излучением, энергия которого может составлять от 0,17 до 2,6 МэВ. Два самых тяжелых изотопа, 215Ро и 218Ро, в небольшой степени обладают также бета-активностью. При β-распаде нейтрон в ядре превращается в протон и электрон, последний и вылетает из ядра. При этом, массовое число атома остается неизменным, а заряд увеличивается на единицу (смещение на одну клетку вправо). Так, распад самого тяжелого изотопа полония более чем на 99 % происходит путем α-распада и на 0,018 % − путем β-распада: 218Ро → Аt + е-. Поражающее действие проникающей радиации сильно зависит от ее интенсивности и типа (так, альфа-частицы немного опаснее бета-частиц при той же дозе). У 210Ро почти 100 % излучения приходится на α-частицы с энергией 5,3 МэВ. Такие частицы проходят в воздухе 3,8 см, но полностью задерживаются алюминиевой фольгой толщиной 0,03 мм и даже листком бумаги. В биологических, тканях они проходят менее 0,05 мм, разрушая при этом соседние клетки. При распаде 210Ро возникает γ-излучение с энергией 0,8 МэВ и большой проникающей способностью. Чтобы ослабить его в 10 раз, требуется уже 3 см слоя свинца, а для стократного ослабления понадобится свинцовая плита толщиной 5,5 см или полуметровый слой бетона. Однако γ-излучение 210Ро очень слабое, его интенсивность составляет всего лишь 0,0011 % от общей радиации, поэтому зарегестрировать его трудно. Малый пробег α-частиц в веществе и очень слабое γ-излучение делают обнаружение микроколичеств полония-210 сложной задачей. Даже если этот нуклид находится на поверхности какого-либо предмета, его сможет обнаружить не всякий счетчик Гейгера, потому что α-частицы задерживаются даже очень тонкой фольгой. Для обнаружения 210Ро можно провести анализ с помощью сцинтилляционного счетчика. Сцинтилляция (от лат. scintillatio − «сверкание») − слабая вспышка света, возникающая в некоторых веществах под действием частиц высокой энергии. Другой чувствительный метод обнаружения − масс-спектрометрия. Мы живем в мире радиации, однако важен ее уровень. Вот пример. Природный калий состоит из трех изотопов − двух стабильных (39К, его в природном калии 93,26 % — и 41К, его 6,73 %) и одного радиоактивного, 40К (0,012 %, период полураспада 1,3 млрд. лет). Человек, весящий 70 кг, содержит 140 г калия, из которых около 17 мг приходится на калий-40. Каждую секунду в теле этого человека происходит 4000 актов распада 40К (и еще столько же − из-за распада содержащегося в теле «радиоуглерода» 14С) с выделением частиц высокой энергии. Жизнь на Земле всегда сопровождалась такой «внутренней» радиацией (а также внешней, в том числе от космических лучей), и нельзя исключить, что она играла важную роль в эволюции, вызывая мутации. Но если бы период полураспада40К был не 1,3 млрд лег, а 1,3 года, то те же 17 мг в теле человека убили бы его в считаные часы.
Открытие полония
Открытие полония. Мало кому известно, что существование этого элемента предсказал в 1870 г. Д.И. Менделеев, а в 1889 г. он уточнил свойства не известного тогда элемента с порядковым номером 84. Менделеев назвал его двителлуром (на санскрите — «второй теллур) и предположил, что атомная масса нового элемента будет близка к 212. Конечно, Менделеев не мог предвидеть; что этот элемент окажется неустойчивым; в те времена вера в возможность превращения элементов считалась алхимическим пережитком. Полоний − первый радиоактивный элемент, открытый в 1898 г. супругами Кюри. Когда Мария Склодовская-Кюри обнаружила сильную радиоактивность некоторых минералов, она начала поиски элемента, ответственного за это свойство. Мария тестировала на радиацию одно вещество за другим − все, которые она только могла достать, одолжить в химических лабораториях, выпросить в минералогических музеях (она не только аккуратно возвратила образцы владельцам, но и выразила им благодарность в своей публикации). Из веществ, не содержащих уран, активность проявили только соединения тория. Когда оказалось, что сильную активность проявляет урановая смоляная руда (в основном это оксид U3О8), Мария Кюри, которая была прекрасным химиком, решила выделить из этого соединения источник радиации.
Начала она с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком Карлом Ремигиусом Фрезениусом еще в 1841 г. и по которой многие поколения студентов в течение почти полутора веков определяли катионы металлов так называемым сероводородным методом. Вначале у нее было около 100 г минерала; затем американские геологи подарили ее мужу Пьеру Кюри еще 500 г. Проводя систематический анализ, Мария каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного прибора − электрометра, изобретенного ее мужем. В ходе химического анализа неактивные фракции отбрасывались, активные анализировались дальше. Марии помогал один из руководителей химического практикума в Школе физики и промышленной химии в Париже Густав Бемои. Мария растворила минерал в азотной кислоте, выпарила раствор досуха, остаток вновь растворила в воде и пропустила через раствор ток сероводорода. Выпал черный осадок, который мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов. Осадок был радиоактивным, хотя уран и торий остались в растворе. Это бы первый признак существования нового радиоактивного элемента. Мария обработала осадок сульфидом аммония, чтобы отделить мышьяк и сурьму − они в этих условиях образуют растворимые тиосоли, например (NН4)3AsS4 и (NН4)3SbS3 Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди. Этот осадок Мария снова растворили в азотной кислоте, добавила к раствору серную кислоту и выпарила на пламени горелки до появления густых белых паров SO3. В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты. После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца РbSO4 − активности в нем не было, и он был отброшен. К отфильтрованному раствору добавили концентрированный раствор аммиака. При этом снова выпал осадок, на этот раз − белого цвета; он содержал смесь основного сульфата висмута (ВiO)2SO4 и гидроксида висмута Вi(OН)3. В растворе же остался комплексный аммиакат меди [Сu(NН3)4]SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным. Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента. Мария снова перевела белый осадок в темно-коричневый сульфид Вi2S3 высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685 °С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы. Пленка была сильно радиоактивной и, очевидно, содержала новый химический элемент − аналог висмута в периодической таблице. Это был полоний − в то время третий после урана и тория радиоактивный элемент (в том же 1898 г. был открыт также радий). Как потом выяснилось, сульфид полония при нагревании в вакууме легко разлагается и возгоняется − его летучесть примерно такая же, как у цинка. Этим свойством до сих пор пользуются для получения металлического полония. Супруги Кюри не спешили дать имя новому элементу, ведь черного налета на стекле было так мало, что его невозможно было даже взвесить, а одной радиоактивности для признания вещества новым элементом было недостаточно. Коллега и друг супругов Кюри французский химик Эжен Анатоль Демарсе, специалист в области спектрального анализа (в 1901 г. он открыл этим методом европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии новою элемента. Спектральный анализ − один из самых чувствительных методов, значит, в налете это вещество содержалось в исключительно малых количествах. Поэтому в статье, опубликованной 18 июля 1898 г., супруги Кюри написали осторожно: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута. Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Ро1оniа на латыни − Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже имел название получить весомые количества полония долго не удавалось − его в урановой руде было слишком мало. Лишь в 1910 г. путем переработки больших количеств руды удалось получить образец, содержащий 0,1 мг полония. Но прославило супругов Кюри открытое не полония, а радия.