Свойства металла
статья на тему
Свойства металла
Металлы являются категорией химических элементов, которым присущи специфические физические, химические, механические, а также технологические свойства.
К физическим свойствам материалов относится плотность, температура плавления, электропроводность, теплопроводность, магнитные свойства, коэффициент температурного расширения и др.
Плотностью называется отношение массы однородного материала к единице его объема.
Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.
Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления при сварке и тем они дешевле.
Электропроводностью называется способность материала хорошо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.
Теплопроводность— это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.
Магнитными свойствами т.е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.
Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т.д.
Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.
Механические свойства металлов
Металлы обладают целым рядом механических свойств:
- твердость металла
Твердость металла представляет собой его способность препятствовать проникновению в материал другого более твердого вещества.
Практически все металлы находятся в твердом состоянии. Исключением являются ртуть, галлий, цезий и франций.
- прочность металла
Это свойство, которое определяет степень разрушения металла при воздействии на него физически или механически. Металлическим сплавом, который почти не деформируется при воздействии и отличается своей прочностью, является сталь. Самым непрочным металлом является ртуть.
- вязкость металла
Считается, что чем больше металл сопротивляется при увеличивающихся ударных нагрузках, тем более он вязок.
- хрупкость металла
Это свойство противоположно вязкости. Определяется в том случае, когда металл можно разрушить с применением силы. Самым хрупким металлом считается чугун.
- пластичность металла
Чем большие нагрузки выдерживает металл, при этом, не разрушаясь и сохраняя придаваемую форму после того, как воздействие на материал прекратилось, тем больше металл пластичен.
- упругость металла
Это свойство превращает собой способность металла возвращать свой первоначальный вид после воздействия на материал внешними силами. Упругость является важным качеством при изготовлении пружин, которые должны возвращать свою форму после их растяжки.
Для того чтобы определить механические свойства металлов, проводят механические испытания. Именно это позволяет выявить твердость, прочность, вязкость металла, а также другие механические свойства этого материала.
При статических испытаниях на растяжение определяют величины, характеризующие прочность, пластичность и упругость материала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:
σ = P/F0,
Деформация характеризует изменение размеров образца под действием нагрузки, %:
ε =[(l1-l0)/l0]·100,
где l1 — длина растянутого образца.
Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).
При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали.
Рис. 1. Статические испытания на растяжение: а – схема испытания;б – диаграмма растяжения
После проведения испытаний определяются следующие характеристики механических свойств.
Предел упругости σу— это максимальное напряжение при котором в образце не возникают пластические деформации.
Предел текучести σт— это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1).
Если на диаграмме нет площадки текучести(что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв— это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.
Относительное удлинение после разрыва δ— отношение приращения длины образца при растяжении к начальной длине l0, %:
δ =[(lk-l0)/l0]·100,
где lк — длина образца после разрыва.
Относительным сужением после разрыва ψ называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:
ψ =[(F0-Fk)/F0]·100,
где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.
Твердость металлов измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы.
Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердости по Бринеллю НВ определяется отношением нагрузки, действующей на шарик, к площади поверхности полученного отпечатка.
Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавливание производится под действием двух нагрузок — предварительной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.
В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.
Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сечения F; Дж/м2:
KC=A/F
Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
Технологические свойства металла
Технологические свойства металла определяются изменениями механических и физических свойств металла. Это происходит в зависимости от обработки металла резанием, литьем, ковкой и другими способами. Каковы же технологические свойства металла?
- ковкость металла
Представляет собой способность металла к деформации.
- прокаливаемость металла
Это свойство определяется во время закалки металла и обуславливается тем, чем глубже металл можно закалить, тем большей прокаливаемостью он обладает.
- текучесть металла
Текучесть представляет собой способность металла в жидком состоянии растекаться, заполняя определенную форму
- свариваемость металла
Это свойство способно выявиться при соединении двух металлических частей посредством их сварки.
Свариваемость — технологическое свойство материалов (металлов) или их сочетаний образовывать в процессе сварки соединения, отвечающие конструкционным и эксплуатационным требованиям к ним. Это определение свариваемости следует отличать от свариваемости как простой возможности получить соединение. В настоящее время принципиально можно соединить сваркой большинство материалов, однако конструктора всегда интересует качество соединений.
Материал в процессе его сварки так или иначе изменяет свои свойства. Эти изменения зависят как от самого материала, его физико-химических свойств, так и от метода и режимов сварки. Причем следует учитывать, что степень воздействия на материал сопутствующих сварке явлений может быть весьма значительной. Поэтому без учета анализа свариваемости того или иного материала, условий, при которых происходит сам процесс сварки, особенностей конструкции сварного изделия или узла конструктор не может выбрать материал для изготовления изделия и рационально проектировать его.
Свариваемость — сложное, комплексное свойство материалов. Его нельзя определить каким-либо одним испытанием, одной методикой. Оценка свариваемости непосредственно связана с характеристикой материала, условиями его эксплуатации. Однако некоторые критерии оценки свариваемости являются достаточно общими для широкого круга металлов и сплавов.
Изменение химического состава и распределение элементов в сварном соединении. Металл при сварке может достаточно сильно нагреваться, а при термических методах происходит его плавление на небольшом локальном участке. В таких условиях химический состав металла изменяется. Степень изменений зависит от химической активности самого металла, состава окружавшей температуры, качества подготовки поверхности металла под сварку, диффузионных процессов в сварочной ванне.
Влияние сварочного нагрева на структуру и механические свойства основного металла. Наиболее заметные изменения структуры и свойств наблюдаются в металлах, имеющих полиморфные превращения. Последние могут протекать с изменением или без изменения объема. Стали перлитного и мартенситного классов, например, относятся к сплавам, обладающим ярко выраженными свойствами полиморфизма с изменением объема структуры в пределах 3—5%. Титановые сплавы претерпевают полиморфные превращения, сопровождающиеся незначительным изменением объема (0,15%); не имеют подобных превращений тугоплавкие металлы и некоторые сплавы цветных металлов. Вне зависимости от наличия и характера полиморфных превращений различают в сварном соединении три основные области: первая — металл нагрет до температуры выше линии солидуса; вторая — металл нагрет до температур, достаточных для протекания фазовых превращений или процессов рекристаллизации; третья — с температурой ниже температуры протекания этих процессов.
Первая область включает в себя собственно шов и зону сплавления; |
вторая представляет собой зону термического влияния;
третья — зону механического или термомеханического влияния. К третьей области примыкает основной металл.
Рис. 2. Схема структур в околошовной зоне при сварке сталей: 1 - зона наплавленного металла; 2 - зона неполного расплавления; 3 - зона перегрева, 4- зона нормализации; 5 - зона неполной перекристаллизации; 6 - зона рекристаллизации и высокого отпуска; 7 - зона низкотемпературного отпуска |
На рис. 2 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закаливающихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.
В зоне частичной перекристаллизации в результате распада закалочных структур отмечается существенное снижение прочности металла, что необходимо учитывать при сварке предварительно термообработанного или наклепанного металла. Аналогичные явления могут наблюдаться в зоне высокотемпературного отпуска. Зона низкотемпературного отпуска и механического влияния характеризуется менее существенными изменениями в металле. В случае сварки металла в отожженном состоянии в этой зоне изменение свойств металла не фиксируется.
Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, называют зоной термического влияния. Величина ее зависит от свойств материала, его толщины, способа и режима сварки, характера источников сварочной теплоты. Чем больше, например, концентрация теплоты источника нагрева, выше его температура, скорость сварки, тем меньше зона влияния. Так, при дуговой сварке она меньше, чем при газовой. Минимальная площадь нагрева достигается при сварке электронным или световым лучами, обеспечивающими высокую концентрацию тепловой энергии.
При снижении прочности материала в зоне высокого отпуска необходимо производить упрочняющую термообработку после сварки. Однако это не всегда возможно. Так, при изготовлении изделий больших габаритов из высокопрочных материалов производить закалку после сварки трудно. Необходимо, кроме того, учитывать большую трудоемкость этой операции, существенные затраты на нее энергии и времени, а также деформацию изделия оттермообработки.
Другим способом повышения конструктивной прочности является физическое упрочнение (нагартовка) шва и зоны термического влияния. Различные варианты упрочняющей механической обработки, однако, применимы далеко не для всех конструкций. Высокая прочность изделий цилиндрической формы обеспечивается применением спиральных швов. При «косом» расположении шва напряжения в нем, как известно, будут ниже, чем при продольном расположении швов.
Местное ослабление механических свойств металла, вызванное сварочным нагревом, компенсируется в ряде случаев утолщением сварных кромок, получаемых методом обработки металлов давлением или химическим фрезерованием. Однако при этом приходится считаться с неизбежным увеличением массы конструкции и расхода металла.
На свойства сварного соединения влияет не только максимальная температура, но и время пребывания металла в области повышенной температуры, так называемый термический цикл.
Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и снижение пластичности в околошовной зоне происходит вследствие физического упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.
В связи с отличием механических свойств сварного соединения и основного металла возникает необходимость в их оценке. Для этого проводят обычные механические испытания, однако образцы часто изготавливают таким образом, чтобы можно было определить механические показатели отдельных зон основного металла, примыкающего к шву, наплавленного металла или сварного соединения.
К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.
Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.
Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.
Теория сплавов
Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обладающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.
Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного расположения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.
Виды сплавов по структуре. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, химические соединения и твердые растворы.
Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.
Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химической формуле АmВn . Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен.
При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы замещения образуются в результате частичного замещения атомов кристаллической решетки одного компонента атомами второго (рис. 6, б).
Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную структуру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определенном соотношении компонентов, а в интервале концентраций. Обозначают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.
Диаграмма состояния. Диаграмма состояния показывает строение сплава в зависимости от соотношения компонентов и от температуры. Она строится экспериментально по кривым охлаждения сплавов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начинается кристаллизация. В нижней критической точке, которая называется точкой солидус (tc), кристаллизация завершается. Кривая охлаждения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики. Эвтектикой называют механическую смесь двух фаз, одновременно кристаллизовавшихся из жидкого сплава. Эвтектика имеет определенный химический состав и образуется при постоянной температуре.
Диаграмму состояния строят в координатах температура-концентрация. Линии диаграммы разграничивают области одинаковых фазовых состояний. Вид диаграммы зависит от того, как взаимодействуют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов различных концентраций. При построении диаграммы критические точки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на которой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.
Виды диаграмм состояния. Диаграмма состояния сплавов, образующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом сплаве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоянной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.
Сплавы, расположенные на диаграмме левее эвтектического, называются доэвтектическими, их структура состоит из зерен А и эвтектики. Те сплавы которые на диаграмме расположены правее эвтектического, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.
Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твердого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.
Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух предыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтектический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вследствие уменьшения растворимости с понижением температуры). Процесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.
Диаграмма состояния сплавов, образующих химическое соединение (рис. 12) характеризуется наличием вертикальной линии, соответствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рассматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изображена диаграмма для случая, когда каждый из компонентов образует с химическим соединением механическую смесь.
Скачать:
Вложение | Размер |
---|---|
svoystva_metalla.doc | 360 КБ |
Предварительный просмотр:
Свойства металла
Металлы являются категорией химических элементов, которым присущи специфические физические, химические, механические, а также технологические свойства.
К физическим свойствам материалов относится плотность, температура плавления, электропроводность, теплопроводность, магнитные свойства, коэффициент температурного расширения и др.
Плотностью называется отношение массы однородного материала к единице его объема.
Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.
Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления при сварке и тем они дешевле.
Электропроводностью называется способность материала хорошо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.
Теплопроводность— это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.
Магнитными свойствами т.е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.
Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т.д.
Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.
Механические свойства металлов
Металлы обладают целым рядом механических свойств:
- твердость металла
Твердость металла представляет собой его способность препятствовать проникновению в материал другого более твердого вещества.
Практически все металлы находятся в твердом состоянии. Исключением являются ртуть, галлий, цезий и франций.
- прочность металла
Это свойство, которое определяет степень разрушения металла при воздействии на него физически или механически. Металлическим сплавом, который почти не деформируется при воздействии и отличается своей прочностью, является сталь. Самым непрочным металлом является ртуть.
- вязкость металла
Считается, что чем больше металл сопротивляется при увеличивающихся ударных нагрузках, тем более он вязок.
- хрупкость металла
Это свойство противоположно вязкости. Определяется в том случае, когда металл можно разрушить с применением силы. Самым хрупким металлом считается чугун.
- пластичность металла
Чем большие нагрузки выдерживает металл, при этом, не разрушаясь и сохраняя придаваемую форму после того, как воздействие на материал прекратилось, тем больше металл пластичен.
- упругость металла
Это свойство превращает собой способность металла возвращать свой первоначальный вид после воздействия на материал внешними силами. Упругость является важным качеством при изготовлении пружин, которые должны возвращать свою форму после их растяжки.
Для того чтобы определить механические свойства металлов, проводят механические испытания. Именно это позволяет выявить твердость, прочность, вязкость металла, а также другие механические свойства этого материала.
При статических испытаниях на растяжение определяют величины, характеризующие прочность, пластичность и упругость материала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:
σ = P/F0,
Деформация характеризует изменение размеров образца под действием нагрузки, %:
ε =[(l1-l0)/l0]·100,
где l1 — длина растянутого образца.
Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).
При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали.
Рис. 1. Статические испытания на растяжение: а – схема испытания;б – диаграмма растяжения
После проведения испытаний определяются следующие характеристики механических свойств.
Предел упругости σу— это максимальное напряжение при котором в образце не возникают пластические деформации.
Предел текучести σт— это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1).
Если на диаграмме нет площадки текучести(что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв— это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.
Относительное удлинение после разрыва δ— отношение приращения длины образца при растяжении к начальной длине l0, %:
δ =[(lk-l0)/l0]·100,
где lк — длина образца после разрыва.
Относительным сужением после разрыва ψ называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:
ψ =[(F0-Fk)/F0]·100,
где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.
Твердость металлов измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы.
Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердости по Бринеллю НВ определяется отношением нагрузки, действующей на шарик, к площади поверхности полученного отпечатка.
Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавливание производится под действием двух нагрузок — предварительной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.
В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.
Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сечения F; Дж/м2:
KC=A/F
Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
Технологические свойства металла
Технологические свойства металла определяются изменениями механических и физических свойств металла. Это происходит в зависимости от обработки металла резанием, литьем, ковкой и другими способами. Каковы же технологические свойства металла?
- ковкость металла
Представляет собой способность металла к деформации.
- прокаливаемость металла
Это свойство определяется во время закалки металла и обуславливается тем, чем глубже металл можно закалить, тем большей прокаливаемостью он обладает.
- текучесть металла
Текучесть представляет собой способность металла в жидком состоянии растекаться, заполняя определенную форму
- свариваемость металла
Это свойство способно выявиться при соединении двух металлических частей посредством их сварки.
Свариваемость — технологическое свойство материалов (металлов) или их сочетаний образовывать в процессе сварки соединения, отвечающие конструкционным и эксплуатационным требованиям к ним. Это определение свариваемости следует отличать от свариваемости как простой возможности получить соединение. В настоящее время принципиально можно соединить сваркой большинство материалов, однако конструктора всегда интересует качество соединений.
Материал в процессе его сварки так или иначе изменяет свои свойства. Эти изменения зависят как от самого материала, его физико-химических свойств, так и от метода и режимов сварки. Причем следует учитывать, что степень воздействия на материал сопутствующих сварке явлений может быть весьма значительной. Поэтому без учета анализа свариваемости того или иного материала, условий, при которых происходит сам процесс сварки, особенностей конструкции сварного изделия или узла конструктор не может выбрать материал для изготовления изделия и рационально проектировать его.
Свариваемость — сложное, комплексное свойство материалов. Его нельзя определить каким-либо одним испытанием, одной методикой. Оценка свариваемости непосредственно связана с характеристикой материала, условиями его эксплуатации. Однако некоторые критерии оценки свариваемости являются достаточно общими для широкого круга металлов и сплавов.
Изменение химического состава и распределение элементов в сварном соединении. Металл при сварке может достаточно сильно нагреваться, а при термических методах происходит его плавление на небольшом локальном участке. В таких условиях химический состав металла изменяется. Степень изменений зависит от химической активности самого металла, состава окружавшей температуры, качества подготовки поверхности металла под сварку, диффузионных процессов в сварочной ванне.
Влияние сварочного нагрева на структуру и механические свойства основного металла. Наиболее заметные изменения структуры и свойств наблюдаются в металлах, имеющих полиморфные превращения. Последние могут протекать с изменением или без изменения объема. Стали перлитного и мартенситного классов, например, относятся к сплавам, обладающим ярко выраженными свойствами полиморфизма с изменением объема структуры в пределах 3—5%. Титановые сплавы претерпевают полиморфные превращения, сопровождающиеся незначительным изменением объема (0,15%); не имеют подобных превращений тугоплавкие металлы и некоторые сплавы цветных металлов. Вне зависимости от наличия и характера полиморфных превращений различают в сварном соединении три основные области: первая — металл нагрет до температуры выше линии солидуса; вторая — металл нагрет до температур, достаточных для протекания фазовых превращений или процессов рекристаллизации; третья — с температурой ниже температуры протекания этих процессов. Первая область включает в себя собственно шов и зону сплавления; |
вторая представляет собой зону термического влияния;
третья — зону механического или термомеханического влияния. К третьей области примыкает основной металл.
Рис. 2. Схема структур в околошовной зоне при сварке сталей: 1 - зона наплавленного металла; 2 - зона неполного расплавления; 3 - зона перегрева, 4- зона нормализации; 5 - зона неполной перекристаллизации; 6 - зона рекристаллизации и высокого отпуска; 7 - зона низкотемпературного отпуска |
На рис. 2 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закаливающихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.
В зоне частичной перекристаллизации в результате распада закалочных структур отмечается существенное снижение прочности металла, что необходимо учитывать при сварке предварительно термообработанного или наклепанного металла. Аналогичные явления могут наблюдаться в зоне высокотемпературного отпуска. Зона низкотемпературного отпуска и механического влияния характеризуется менее существенными изменениями в металле. В случае сварки металла в отожженном состоянии в этой зоне изменение свойств металла не фиксируется.
Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, называют зоной термического влияния. Величина ее зависит от свойств материала, его толщины, способа и режима сварки, характера источников сварочной теплоты. Чем больше, например, концентрация теплоты источника нагрева, выше его температура, скорость сварки, тем меньше зона влияния. Так, при дуговой сварке она меньше, чем при газовой. Минимальная площадь нагрева достигается при сварке электронным или световым лучами, обеспечивающими высокую концентрацию тепловой энергии.
При снижении прочности материала в зоне высокого отпуска необходимо производить упрочняющую термообработку после сварки. Однако это не всегда возможно. Так, при изготовлении изделий больших габаритов из высокопрочных материалов производить закалку после сварки трудно. Необходимо, кроме того, учитывать большую трудоемкость этой операции, существенные затраты на нее энергии и времени, а также деформацию изделия оттермообработки.
Другим способом повышения конструктивной прочности является физическое упрочнение (нагартовка) шва и зоны термического влияния. Различные варианты упрочняющей механической обработки, однако, применимы далеко не для всех конструкций. Высокая прочность изделий цилиндрической формы обеспечивается применением спиральных швов. При «косом» расположении шва напряжения в нем, как известно, будут ниже, чем при продольном расположении швов.
Местное ослабление механических свойств металла, вызванное сварочным нагревом, компенсируется в ряде случаев утолщением сварных кромок, получаемых методом обработки металлов давлением или химическим фрезерованием. Однако при этом приходится считаться с неизбежным увеличением массы конструкции и расхода металла.
На свойства сварного соединения влияет не только максимальная температура, но и время пребывания металла в области повышенной температуры, так называемый термический цикл.
Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и снижение пластичности в околошовной зоне происходит вследствие физического упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.
В связи с отличием механических свойств сварного соединения и основного металла возникает необходимость в их оценке. Для этого проводят обычные механические испытания, однако образцы часто изготавливают таким образом, чтобы можно было определить механические показатели отдельных зон основного металла, примыкающего к шву, наплавленного металла или сварного соединения.
К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.
Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.
Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.
Теория сплавов
Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обладающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.
Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного расположения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.
Виды сплавов по структуре. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, химические соединения и твердые растворы.
Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.
Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химической формуле АmВn . Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен.
При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы замещения образуются в результате частичного замещения атомов кристаллической решетки одного компонента атомами второго (рис. 6, б).
Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную структуру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определенном соотношении компонентов, а в интервале концентраций. Обозначают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.
Диаграмма состояния. Диаграмма состояния показывает строение сплава в зависимости от соотношения компонентов и от температуры. Она строится экспериментально по кривым охлаждения сплавов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начинается кристаллизация. В нижней критической точке, которая называется точкой солидус (tc), кристаллизация завершается. Кривая охлаждения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики. Эвтектикой называют механическую смесь двух фаз, одновременно кристаллизовавшихся из жидкого сплава. Эвтектика имеет определенный химический состав и образуется при постоянной температуре.
Диаграмму состояния строят в координатах температура-концентрация. Линии диаграммы разграничивают области одинаковых фазовых состояний. Вид диаграммы зависит от того, как взаимодействуют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов различных концентраций. При построении диаграммы критические точки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на которой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.
Виды диаграмм состояния. Диаграмма состояния сплавов, образующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом сплаве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоянной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.
Сплавы, расположенные на диаграмме левее эвтектического, называются доэвтектическими, их структура состоит из зерен А и эвтектики. Те сплавы которые на диаграмме расположены правее эвтектического, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.
Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твердого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.
Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух предыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтектический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вследствие уменьшения растворимости с понижением температуры). Процесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.
Диаграмма состояния сплавов, образующих химическое соединение (рис. 12) характеризуется наличием вертикальной линии, соответствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рассматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изображена диаграмма для случая, когда каждый из компонентов образует с химическим соединением механическую смесь.
По теме: методические разработки, презентации и конспекты
«ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ».
Формирование знаний о химических свойствах металлов.Развивают умения пользоваться опорными знаниями. Закрепляют умения и навыки выполнять химический эксперимент. Развивают логическое мышление, умеют а...
Урок химии "Общие химические свойства металлов"
Урок проводился на первом курсе колледжа, но может быть использован учителями средних школ...
Методическая разработка бинарного урока физики и материаловедения по теме «Физические свойства металлов»
Бинарный урок это – учебное занятие, объединяющее содержание двух предметов в одном уроке. Бинарные уроки – одна из форм реализации межпредметных связей и интеграции предметов. Это нетрадиционный ви...
Свойства металлов и сплавов.
Данный материал может быть востребован при изучении спецдисциплины "Материаловедение"...
Свойства металлов
Описание основных свойств металлов...
Презентация по теме "Общие свойства металлов".
Презентация по химии "Общие свойства металлов" может быть использована как вспомогательный материал при изучении данной темы. В презентации рассмотрены вопросы нахождения металлов в природе,...
Открытый урок по теме "Физические и химические свойства металлов""
Открытый урок в 9 классе по теме : "Физические и химические свойства металлов""...