Презентация "Применение I-ого закона термодинамики"
презентация к уроку
12.12.2019год.
Первый закон термодинамики представляет из себя обобщение опытных фактов. Если руководствоваться им, то можно заявить, что энергия не возникает и не исчезает бесследно, а передается от одной системы к другой, меняя свои формы.
Невозможность создания вечного двигателя (perpetuum mobile) первого рода, то есть машины, которая может совершать полезную работу, не потребляя энергию извне и не претерпевая каких-либо изменений во внутренней конструкции агрегата, являлась важным следствием первого закона термодинамики.
В подтверждение этого выступает тот факт, что каждая из огромного множества попыток создания такого устройства неизменно заканчивалась неудачей. Реальная машина может совершать положительную работу.
Скачать:
Вложение | Размер |
---|---|
![]() | 2.37 МБ |
Предварительный просмотр:
Подписи к слайдам:
Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. В XVII в. был изобретён тепловой двигатель, который в последующие годы был усовершенствован, но идея осталась той же. Во всех двигателях энергия топлива переходит сначала в энергию газа или пара, а газ (пар) расширяясь, совершает работу и охлаждается,а часть его внутренней энергии при этом превращается в механическую энергию. К сожалению, коэффициент полезного действия не высок.
Двигатель внутреннего сгорания. Паровая турбина. Ракетный двигатель
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск. Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах и др.
В современной технике так же широко применяют и другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами. ПАРОВАЯ ТУРБИНА, турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (напр., на теплоэлектростанции) и транспортные (судовые). Выполняются одно- и многокорпусными (обычно не более 4 корпусов), одновальными (валы всех корпусов на одной оси) и с параллельным расположением 2-3 валов. В Российской Федерации строят паровые турбины мощностью от нескольких кВт до 1200 МВт. В современных турбинах, для увеличения мощности применяют не один, а несколько дисков, насажанных на общий вал. Турбины применяют на тепловых электростанциях и на кораблях.
РАКЕТНЫЙ ДВИГАТЕЛЬ, реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Распространены химические ракетные двигатели (разрабатывают и испытывают электрические, ядерные и другие ракетные двигатели). Простейший ракетный двигатель работает на сжатом газе. По назначению различают разгонные, тормозные, управляющие и др. Применяют на ракетах (отсюда название), самолетах и др. Основной двигатель в космонавтике.
КАРНО ЦИКЛ, обратимый круговой процесс, состоящий из двух изотермических и двух адиабатных процессов; впервые рассмотрен Н. Л. С. Карно (1824) в связи с определением кпд тепловых машин. Кпд Карно цикла n не зависит от свойств рабочего тела (пара, газа и т. п.) и определяется температурами теплоотдатчика Т 1 и теплоприемника Т 2, n = ( Т 1- Т 2)/ Т 1. Кпд любой тепловой машины не может быть больше кпд Карно цикла (при тех же Т 1 и Т 2).
Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу два-три тонн свинца. Выбросы вредных веществ в атмосферу- не единственная сторона воздействия энергетики на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.
Один из путей уменьшения загрязнения окружающей среды- использование в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
По теме: методические разработки, презентации и конспекты
![](/sites/default/files/pictures/2016/05/15/picture-473488-1463305891.jpg)
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «Основы технической термодинамики» (2 курс СПО)
Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее – ФГОС) по специальности среднего профессионал...
![](/sites/default/files/pictures/2014/11/27/picture-460394-1417100439.jpg)
Технологическая карта занятия по ФГОС "Первый закон термодинамики"
ПРИЛОЖЕНИЕ 1Технологическая карта урока Организационная информацияТема урокаПервый закон термодинамикиПредметФизикаКласс10Автор учебникаГ.Я. Мякишев, Б.Б. Буховцев, Н.Н. СотскийМетодическая...
![](/sites/default/files/pictures/2016/12/12/picture-378211-1481566404.jpg)
Урок "Применение первого начала термодинамики к тепловым процессам"
Методическая разработка урока к изучению первого начала термодинамики применительно к тепловым процессам...
![](/sites/default/files/pictures/2014/10/17/picture-500669-1413543961.jpg)
Самостоятельная работа по разделу "Молекулярная физика. Термодинамика"
Примеры и звдвния для выполнения....
![](/sites/default/files/pictures/2017/01/14/picture-877316-1484412911.jpg)
Рабочая программа по дисциплине Термодинамика, теплотехника и гидравлика
Рабочая программа составлена для специальности 15.02.06 Монтаж и эксплатация холодильно-копрессорных машин и установок (по отраслям)...
![](/sites/default/files/pictures/2014/09/21/picture-484649-1411314646.jpg)
Контрольная работа по разделу "Молекулярная физика и термодинамика"
Эта контрольная работа предлагается к выполнению в домашних условиях для подготовки к контрольной работе в аудитории. Студенты смогут ознакомиться с типами заданий, критериями оценки и расчитать время...
Конспект урока. Первый закон термодинамики.
Техническая карта урока по теме "Первый закон термодинамики"...