ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ
методическая разработка на тему
ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ
Скачать:
Вложение | Размер |
---|---|
matem._mosidr17-18.doc | 585 КБ |
Предварительный просмотр:
ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ИРКУТСКОЙ ОБЛАСТИ
«АНГАРСКИЙ ТЕХНИКУМ СТРОИТЕЛЬНЫХ ТЕХНОЛОГИЙ»
УТВЕРЖДАЮ:
Директор _________ В.Н. Леснов
«____»_____________2017г.
ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ
ОУД.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО
АНАЛИЗА, ГЕОМЕТРИЯ
Ангарск, 2017
Предметно - цикловая комиссия естественно – научного цикла Протокол № _____ Председатель Е.Г. Дорош «___»___________2017г. |
Разработала:
Кезля С.В., преподаватель ГАПОУ ИО АТСТ, на основании примерной основной образовательной программы среднего общего образования учебной дисциплины «Математика: алгебра, начала математического анализа, геометрия» для образовательных организаций (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з)
СОДЕРЖАНИЕ
стр. | |
| 4 |
| 11 |
| 25 |
| 26 |
1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ
1.1. Область применения программы
Программа учебной дисциплины является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по профессии СПО, входящей в состав укрупненной группы профессий 08.00.00 Техника и технологии строительства: 08.01.25 Мастер отделочных строительных и декоративных работ
1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: входит в общеобразовательные дисциплины.
1.3. В результате изучения учебной дисциплины “Математика: алгебра, начала математического анализа, геометрия” на уровне среднего общего образования обучающийся на углубленном уровне научится:
- свободно оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- задавать множества перечислением и характеристическим свойством; оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- проводить доказательные рассуждения для обоснования истинности утверждений.
- В повседневной жизни и при изучении других предметов:
- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов
- свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
- находить НОД и НОК разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;
- владеть основными понятиями комбинаторики и уметь выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.
В повседневной жизни и при изучении других предметов:
- выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов ;
- свободно оперировать понятиями: уравнение, неравенство , равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, дробно-рациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать; - владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;
- свободно использовать тождественные преобразования при решении уравнений и систем уравнений.
В повседневной жизни и при изучении других предметов:
- составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
- составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов; составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
- использовать программные средства при решении отдельных классов уравнений и неравенств;
-владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;
- владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач; владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
- владеть понятием обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: четность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий.
В повседневной жизни и при изучении других учебных предметов:
- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации;
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
- владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач; - применять для решения задач теорию пределов;
- владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;
- владеть понятиями: производная функции в точке, производная функции;
- вычислять производные элементарных функций и их комбинаций;
- исследовать функции на монотонность и экстремумы;
- строить графики и применять к решению задач, в том числе с параметром;
- владеть понятием касательная к графику функции и уметь применять его при решении задач;
- владеть понятиями первообразная функция, определенный интеграл;
- применять теорему Ньютона–Лейбница и ее следствия для решения задач.
В повседневной жизни и при изучении других учебных предметов: решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов; интерпретировать полученные результаты
-оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее; -
В повседневной жизни и при изучении других предметов: решать практические задачи и задачи из других предметов:
- иметь представление об основах теории вероятностей;
- иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
- иметь представление о совместных распределениях случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин.
В повседневной жизни и при изучении других предметов: вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных;
-решать разные задачи повышенной трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
- владеть геометрическими понятиями при решении задач и проведении математических рассуждений; самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям; исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
- уметь формулировать и доказывать геометрические утверждения;
- владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;
- иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;
- уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов; иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними; - применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;
- уметь применять параллельное проектирование для изображения фигур;
- уметь применять перпендикулярности прямой и плоскости при решении задач;
- владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;
- владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;
- владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач; владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;
- владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач; владеть понятием прямоугольный параллелепипед и применять его при решении задач;
- владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;
- использовать теоретико множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов ;
- свободно оперировать числовыми множествами при решении задач;
- пользовать скалярное произведение векторов при решении задач;
- иметь представление о теореме Эйлера, правильных многогранниках;
- владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;
- владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;
- владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;
- иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;
- владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;
- иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;
- иметь представление о площади сферы и уметь применять его при решении задач;
- уметь решать задачи на комбинации многогранников и тел вращения;
- иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.
В повседневной жизни и при изучении других предметов: составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат
- владеть понятиями векторы и их координаты;
- уметь выполнять операции над векторами;
- иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии науки;
- использовать основные методы доказательства проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусств;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
. пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов.
В результате изучения учебного предмета “Математика: алгебра, начала математического анализа, геометрия” на уровне среднего общего образования обучающийся получит возможность научится:
- оперировать понятием определения, основными видами определений, основными видами теорем;
- понимать суть косвенного доказательства;
- оперировать понятиями счетного и несчетного множества;
- применять метод математической индукции для проведения рассуждений и доказательств и при решении задач. В повседневной жизни и при изучении других предметов:
- применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач; применять векторы и метод координат в пространстве при решении задач ;
-иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии России;
-использовать основные методы доказательства, проводить доказательство и выполнять опровержение; применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов.
- понимать причины и основные идеи расширения числовых множеств;
- владеть основными понятиями теории делимости при решении стандартных задач;
- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
- применять при решении задач теорему о линейном представлении НОД;
- применять при решении задач многочлены с действительными и целыми коэффициентами;
- метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- свободно решать системы линейных уравнений;
- владеть понятием асимптоты и уметь его применять при решении задач;
- применять методы решения простейших дифференциальных уравнений первого и второго порядков;
- свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;
- свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
- оперировать понятием первообразной функции для решения задач;
- овладеть основными сведениями об интеграле Ньютона– Лейбница и его простейших применениях;
- уметь применять при решении задач свойства непрерывных функций;
- уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);
- уметь применять приложение производной и определенного интеграла к решению задач естествознания; владеть понятиями вторая производная выпуклость графика функции и уметь исследовать функцию на выпуклость иметь представление о центральной предельной теореме;
- иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;
- иметь представление о связи эмпирических и теоретических распределений;
- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
- владеть понятием связность и уметь применять компоненты связности при решении задач;
- владеть понятиями конечные и счетные множества и уметь их применять при решении задач;
- уметь применять метод математической индукции;
- владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач; - владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;
- иметь представление о двойственности правильных многогранников;
- владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;
- иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;
- иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;
- применять при решении задач формулу расстояния от точки до плоскости;
- владеть разными способами задания прямой уравнениями и уметь применять при решении задач;
- иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;
- применять теоремы об отношениях объемов при решении задач;
- применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;
- иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;
- иметь представление о площади ортогональной проекции;
- иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;
- уметь решать задачи на плоскости методами стереометрии;
- уметь применять формулы объемов при решении задач находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;
- задавать прямую в пространстве;
- находить расстояние от точки до плоскости в системе координат;
- находить расстояние между скрещивающимися прямыми, заданными в системе координат ;
- применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики.
1.4. Количество часов на освоение рабочей программы учебной дисциплины:
максимальной учебной нагрузки обучающегося: 345 часов, в том числе:
обязательной аудиторной учебной нагрузки обучающегося 345 часов;
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
2.1. Объем учебной дисциплины и виды учебной работы
Вид учебной работы | Количество часов |
Максимальная учебная нагрузка (всего) | 345 |
Обязательная аудиторная учебная нагрузка (всего) | 345 |
в том числе: | |
практические занятия | 288 |
контрольные работы | 17 |
исследовательские работы | 30 |
Промежуточная аттестация в форме экзамена |
2.2. Тематический план и содержание учебной дисциплины «Математика: алгебра, начала математического анализа, геометрия»
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ
3.1. Требования к минимальному материально-техническому обеспечению
Реализация учебной дисциплины требует наличия учебного кабинета «Математика»
Оборудование учебного кабинета:
- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплект учебно-наглядных пособий по математике.
Технические средства обучения:
- интерактивная доска с лицензионным программным обеспечением и мультимедиа проектор.
3.2. Информационное обеспечение обучения
Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы
Основные источники:
- Математика: учебник для студ. учреждений сред. проф. образ. / И.Д.Пехлецкий. – 9-е изд., стер. - М.: Издательский центр «Академия», 2012. – 304 с.
- Алгебра и начала анализа: учеб. для 10-11 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. – 13 –е изд. – М.: Просвещение, 2005.- 384
- Математика: учебник для студ. образоват. учреждений сред. проф. образования / С.Г.Григорьев, С.В. Иволгина; под ред. В.А. Гусева. – 6-е изд., перераб. и доп.. – М.: Издательский центр «Академия», 2011. – 416с.
Дополнительные источники
1. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия (базовый и профильный уровни). 10—11 кл. 2007.
2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия (базовый и профильный уровни). 10-11. – М., 2007.
3. Колягин Ю.М., Ткачева М.В, Федерова Н.Е. и др. под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл. – М., 2008.
4. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра и начала математического анализа (базовый и профильный уровни). 11 кл. – М., 2010.
5. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл. – М., 2010.
6. Шарыгин И.Ф. Геометрия (базовый уровень) 10—11 кл. – 2009.
- КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ
Группа результатов «Обучающийся научится» представляет собой результаты, достижение которых обеспечивается преподавателем в отношении всех обучающихся. Группа результатов «Обучающийся получит возможность научиться» обеспечивается преподавателем в отношении части наиболее мотивированных и способных обучающихся. Предметные результаты раздела «Выпускник получит возможность научиться» не выносятся на промежуточную аттестацию, но при этом возможность их достижения должна быть предоставлена каждому обучающемуся.
Промежуточная аттестация - экзамен, проходит в форме контрольной работы на два варианта
по темам:
1. Числа и преобразование выражений.
2. Основы теории вероятностей и математической статистики.
3.Степенная функция
4.Показательная функция
5.Логарифмическая функция
6.Тригонометрические уравнения .
7. Комплексные числа.
8.Применение производной к исследованию функции.
9.Интеграл.
10.Многогранники.
11.Тела и поверхности вращения.
12.Измерения в геометрии.
По учебной дисциплине предусмотрена исследовательская работа.
Тематика исследовательских работ:
1.Площади многоугольников.
2.Площади поверхности многогранников.
3.Площади поверхности тел вращения.
4.Объем параллелепипеда. Призмы.
5.Пирамида. Объем пирамиды.
6.Геометрия вокруг нас.
7.Основные виды многогранников.
8.Объемы тел вращения.
9.Замечательные точки и линии в треугольниках.
10. Сечения многогранников.
11. Производная. Применение производной в прикладных задачах.
12.Линейная функция и ее свойства. Практическое применение.
13.Математика в задачах строительного характера.
14. Применение математике в строительстве.
15. Площади и объемы деталей строительных конструкций.
16. Объем земляных работ.
17. Усеченная пирамида. Ее объем и площадь поверхности.
18. Усеченный конус. Его объем и площадь поверхности.
19. Прямые и плоскости в пространстве.
20. Степенная функция ит ее свойства. Связь с жизнью.
21. Логарифмы и их свойства. Использование в практической жизни.
22. Виды движения.
23.Многоугольники. Их свойства.
24. Использование геометрических форм.
25. Площади многоугольников.
26. История развития геометрии .
27. История развития математики .
28. Применение треугольников и многоугольников в различных сферах жизни .
29. Применение сложных процентов в экономических расчетах.
30. Параллельное проектирование Правильные и полуправильные многогранники
31. Сложные проценты в реальной жизни.
32. Тригонометрия вокруг нас.
33. Математика в архитектуре.
34. Платоновы тела.
35. Симметрия и гармония окружающего мира.
36. Развертки пространственных фигур.
37. Отделка помещений без лишних затрат.
38. Ремонт и математика.
39. Математика в профессии строителя.
По теме: методические разработки, презентации и конспекты
Рабочая программа учебной дисциплины ОУД.03 Математика: Алгебра, начала математического анализа, геометрия. Технический профиль. 285 часов
Программа общеобразовательной учебной дисциплина Математика: Алгебра, начала математического анализа, геометрия (далее – «Математика») предназначена для изучения математики в профессиональных образова...
Рабочая программа учебной дисциплины ОУД.03 Математика: Алгебра, начала математического анализа, геометрия. Естественнонаучный профиль. 228 часов
Программа общеобразовательной учебной дисциплина Математика: Алгебра, начала математического анализа, геометрия (далее – «Математика») предназначена для изучения математики в профессиональных образова...
Рабочая программа учебной дисциплины ОУД.03 Математика: Алгебра, начала математического анализа, геометрия. Технический профиль. 234 часа
Программа общеобразовательной учебной дисциплина Математика: Алгебра, начала математического анализа, геометрия (далее – «Математика») предназначена для изучения математики в профессиональных образова...
Рабочая программа ОУД 04. Математика: алгебра, начала математического анализа, геометрия для ОП "Повар, кондитер"
Рабочая программа учебной дисциплины Математика: алгебра, начала математического анализа, геометрия для ОП "Повар, кондитер"...
Комплект контрольно-оценочных средств учебной дисциплины ОУД.03.П Математика: алгебра, начала математического анализа, геометрия
Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОУД.03.П Математика: алгебра, начала математическ...
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОДУ.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОДУ.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ...
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.07 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ...