Рабочая программа учебной дисциплины "Математика: алгебра и начала математического анализа; геометрия" на 234 часа для групп социально-экономического профиля 43.02.02 Парикмахерское искусство, 43.02.11 Гостиничный сервис.
рабочая программа по теме
Рабочая программа рассчитана на 234 часа для групп социально-экономического профиля в учебных заведениях среднего профессионального образования.
Скачать:
Вложение | Размер |
---|---|
rp_matematika_algebra_i_nachala_analiza_geometriya.docx | 125.06 КБ |
Предварительный просмотр:
государственное автономное учреждение
Калининградской области
профессиональная образовательная организация
«Колледж сервиса и туризма»
СОГЛАСОВАНО УТВЕРЖДАЮ
Заместитель директора по УР Директор ГАУ КО ПОО КСТ
ГАУ КО ПОО КСТ
_____________Н.Н. Мясникова ____________ Т.А. Бугакова «___» _________ 2015 г. «___» ___________2015 г.
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ
МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА АНАЛИЗА; ГЕОМЕТРИЯ
социально-экономический профиль
Калининград
Рабочая программа учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» разработана в соответствии с примерной программой учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия», рекомендованной Федеральным государственным автономным учреждением «Федеральный институт развития образования» (ФГАУ «ФИРО») Протокол № 3 от 21 июля 2015 г. с учетом требований ФГОС среднего общего образования, ФГОС среднего профессионального образования (СПО) и профиля профессионального образования.
Для программы подготовки специалистов среднего звена (ППССЗ)
по специальностям СПО социально-экономического профиля:
43.02.02 Парикмахерское искусство;
43.02.11 Гостиничный сервис.
Организация-разработчик: государственное автономное учреждение Калининградской области профессиональная образовательная организация «Колледж сервиса и туризма»
Разработчик:
Пехова Н.Ю., преподаватель математики высшей категории ГАУ КО ПОО КСТ
Рекомендована предметно-цикловой комиссией математических и общих естественно-научных дисциплин.
Протокол ПЦК №________ от «____»__________2015 г
Председатель ПЦК ___________________ Цветаева Л.В.
СОДЕРЖАНИЕ
стр. | |
| 4 |
| 9 |
| 22 |
| 24 |
1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
Математика:
алгебра и начала математического анализа; геометрия
1.1. Область применения программы
Программа учебной дисциплины является частью основной профессиональной образовательной программы (ОПОП) в соответствии с ФГОС на базе основного общего образования с получением среднего общего образования программы подготовки специалистов среднего звена (ППССЗ)
по специальностям СПО социально-экономического профиля:
43.02.02 Парикмахерское искусство;
43.02.11 Гостиничный сервис.
1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы:
дисциплина входит в общеобразовательный цикл.
1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:
Содержание программы «Математика: алгебра и начала математического анализа; геометрия» направлено на достижение следующих целей:
- обеспечение сформированности представлений о социальных, культурных и исторических факторах становления математики;
- обеспечение сформированности логического, алгоритмического и математического мышления;
- обеспечение сформированности умений применять полученные знания при решении различных задач;
- обеспечение сформированности представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.
В результате освоения учебной дисциплины обучающийся должен уметь:
- выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
- находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;
- выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;
- вычислять значение функции по заданному значению аргумента при различных способах задания функции;
- определять основные свойства числовых функций, иллюстрировать их на графиках;
- строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
- использовать понятие функции для описания и анализа зависимостей величин;
- находить производные элементарных функций;
- использовать производную для изучения свойств функций и построения графиков;
- применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
- вычислять в простейших случаях площади и объемы с использованием определенного интеграла;
- решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
- использовать графический метод решения уравнений и неравенств;
- изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
- составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах;
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.
- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
- для построения и исследования простейших математических моделей
- для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
- анализа информации статистического характера.
- для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
В результате освоения учебной дисциплины обучающийся должен знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира.
Результаты освоения учебной дисциплины
Освоение содержания учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» обеспечивает достижение студентами следующих результатов:
личностных:
- сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики;
- понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- готовность и способность к самостоятельной творческой и ответственной деятельности;
- готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
метапредметных:
- умение самостоятельно определять цели деятельности и составлять планы
деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения;
- целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира;
предметных:
- сформированность представлений о математике как части мировой культуры
и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;
- сформированность представлений о математических понятиях как важней- ших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- владение методами доказательств и алгоритмов решения, умение их приме- нять, проводить доказательные рассуждения в ходе решения задач;
- владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для по- иска пути решения и иллюстрации решения уравнений и неравенств;
- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функ- ций, использование полученных знаний для описания и анализа реальных зависимостей;
- владение основными понятиями о плоских и пространственных геометриче- ских фигурах, их основных свойствах; сформированность умения распозна- вать геометрические фигуры на чертежах, моделях и в реальном мире; при- менение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- сформированность представлений о процессах и явлениях, имеющих веро- ятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- владение навыками использования готовых компьютерных программ при решении задач.
1.4. Рекомендуемое количество часов на освоение программы учебной дисциплины:
максимальной учебной нагрузки обучающегося 351 часов, в том числе:
обязательной аудиторной учебной нагрузки обучающегося 234 часов;
самостоятельной работы обучающегося 117 часов.
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
2.1. Объем учебной дисциплины и виды учебной работы
Вид учебной работы | Объем часов |
Максимальная учебная нагрузка (всего) | 351 |
Обязательная аудиторная учебная нагрузка (всего) | 234 |
в том числе: | |
практические занятия | 117 |
контрольные работы и дифференцированный зачёт | 14 |
курсовая работа (проект) (не предусмотрено) | - |
Самостоятельная работа обучающегося (всего) | 117 |
в том числе: | |
тематика внеаудиторной самостоятельной работы:
-поиск литературы и электронных источников информации для создания презентации по заданной теме; - создание моделей пространственных фигур. | 30 10 56 6 5 10 8 2 |
Итоговая аттестация в форме экзамена |
2.2. Тематический план и содержание учебной дисциплины Математика: алгебра и начала математического анализа; геометрия ( социально-экономический профиль) | |||
Наименование разделов и тем | Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся) | Объем часов | Уровень освоения |
1 | 2 | 3 | 4 |
Раздел 1 Повторение базисного материала курса алгебры основной школы | 13 | ||
Тема 1.1Повторение базисного материала курса алгебры основной школы | Содержание учебного материала: | 4 | |
Введение. Математика в науке, технике и практической деятельности. Цели и задачи изучения математики в учреждениях начального и среднего профессионального образования. Вычислительные действия с обыкновенными и десятичными дробями. Проценты. Пропорции. Преобразования алгебраических выражений. Формулы сокращенного умножения. Линейные уравнения и неравенства. Квадратные уравнения и неравенства. | 1 | ||
2 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Вычисление дробей, решение задач на проценты»; «Решение линейных и квадратных уравнений». | 2 | ||
Контрольная работа по теме «Повторение. Входной контроль обучающихся» | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 1. Примерная тематика домашних заданий по разделу 1: Выполнение вычислительных действий с обыкновенными и десятичными дробями. Решение задач на проценты. Преобразование алгебраических выражений и действия с алгебраическими дробями. Решение линейных уравнений и неравенств, пропорций, квадратных уравнений и неравенств. | 5 | ||
Раздел 2 Прямые и плоскости в пространстве | 19 | ||
Тема 2.1 Прямые и плоскости в пространстве | Содержание учебного материала: | 8 | |
Аксиомы стереометрии. Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Скрещивающиеся прямые, угол между двумя прямыми. Параллельность плоскостей. Тетраэдр, параллелепипед. Перпендикулярность прямых в пространстве, перпендикулярность прямой и плоскости. Наклонная к плоскости и её проекция на плоскость. Теорема о трёх перпендикулярах. Угол между прямой и плоскостью. Угол между плоскостями. Перпендикулярность двух плоскостей. | 1 | ||
2 | |||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | |||
Практические занятия: «Решение задач на параллельность и перпендикулярность в пространстве»; «Решение задач на перпендикулярность в пространстве». | 4 | ||
Контрольная работа: (не предусмотрена) | |||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2.Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 2. 4. Выполнение индивидуального проектного задания: создание моделей к задачам, предложенным преподавателем. Примерная тематика домашних заданий по разделу 2: Изучение теорем из §1;3. Решение задач на параллельность прямых, параллельность прямой и плоскости. Решение задач на перпендикулярность прямых, перпендикулярность прямой и плоскости. Решение задач на наклонную к плоскости и её проекцию. | 7 | ||
Раздел 3 Многогранники | 28 | ||
Тема 3.1 Многогранники | Содержание учебного материала: | 4 | |
Многогранник и его элементы. Представление о правильных многогранниках. Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Поверхность призмы. Пирамида. Основные элементы. Правильная пирамида. Поверхность пирамиды. Усеченная пирамида. | 1 | ||
1 | |||
Лабораторные работы: (не предусмотрены) | |||
Практические занятия: «Решение задач на нахождение элементов призм»; «Решение задач на вычисление поверхности призмы»; «Решение задач на нахождение элементов пирамид»; «Решение задач на нахождение поверхности пирамид»; «Решение задач на вычисление элементов многогранников»; «Решение задач на вычисление поверхности многогранников» | 12 | ||
Контрольная работа по разделу: «Многогранники» | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 3. 4. Выполнение индивидуального проектного задания-создание презентаций по темам: «Призмы», «Пирамиды». 5. Создание моделей многогранников. Примерная тематика домашних заданий по разделу 3: Решение задач на нахождение элементов и поверхности призм. Решение задач на нахождение элементов и поверхности пирамид. | 10 | ||
Раздел 4 Тела вращения | 18 | ||
Тема 4.1 Тела вращения | Содержание учебного материала: | 4 | |
Цилиндр. Основание, высота, образующая, развертка. Площадь поверхности цилиндра. Сечения цилиндра: осевое и параллельное основанию. Конус. Основные элементы. Сечения конуса: осевое и параллельное основанию. Площадь поверхности конуса. Усеченный конус. Шар и сфера, их сечения. Площадь поверхности. | 1 | ||
1 | |||
Лабораторные работы: (не предусмотрены) | |||
Практические занятия: «Решение задач на нахождение основных элементов и поверхности цилиндра» «Решение задач на нахождение основных элементов и поверхности конуса и шара» «Решение задач на нахождение элементов и площади поверхности тел вращения». | 6 | ||
Контрольная работа: (не предусмотрена) | - | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение индивидуальных (создание презентаций, моделей) и домашних заданий по разделу. Примерная тематика домашних заданий по разделу 4: Решение задач на нахождение элементов цилиндра. Решение задач на нахождение элементов конуса. Решение задач на нахождение элементов шара и сферы. | 8 | ||
Раздел 5 Измерения в геометрии | 21 | ||
Тема 5.1 Измерения в геометрии | Содержание учебного материала: | 4 | |
1. Объем и его измерение. Интегральная формула объема. Формулы объемов куба, прямоугольного параллелепипеда, призмы, цилиндра. 2. Формулы объемов пирамиды и конуса, шара. | 1 | ||
1 | |||
Лабораторные работы: (не предусмотрены) | |||
Практические занятия: «Решение задач на нахождение объёма куба, прямоугольного параллелепипеда, призмы и цилиндра»; «Решение задач на нахождение объёма цилиндра и конуса»; «Решение задач на нахождение объёма пирамиды, конуса, шара»; «Решение задач на нахождение объёмов и площади поверхности пространственных фигур». | 8 | ||
Контрольная работа по теме: «Измерения в геометрии». | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 5. 4.Создание презентации по теме: «Тела вращения». Примерная тематика домашних заданий по разделу 5: Решение задач на нахождение объёма куба, прямоугольного параллелепипеда, призмы и цилиндра. Решение задач на нахождение объёма пирамиды и конуса. Решение задач на нахождение площадей поверхности цилиндра и конуса. Решение задач на нахождение объёма шара и площади сферы. | 7 | ||
Раздел 6 Корни и степени | 31 | ||
Тема 6.1 Корни, степени, иррациональные уравнения | Содержание учебного материала: | 8 | |
Арифметический корень натуральной степени. Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями и их свойства. Степени с действительными показателями. Преобразование выражений, содержащих степени и корни. Иррациональные уравнения и неравенства. | 2 | ||
2 | |||
2 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Преобразование алгебраических выражений, содержащих корни»; «Преобразование алгебраических выражений, содержащих степени»;«Преобразование алгебраических выражений, содержащих корни и степени»;«Решение иррациональных уравнений»;Решение упражнений по разделу «Корни, степени, иррациональные уравнения». | 10 | ||
Контрольная работа по теме: «Корни, степени, иррациональные уравнения» | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 6. 4. Выполнение индивидуального проектного задания. Примерная тематика домашних заданий по разделу 6:Применение определения арифметического корня натуральной степени при решении задач. Преобразование выражений, содержащих степень с рациональным и действительным показателями. Преобразование выражений, содержащих степени и корни. Преобразования логарифмических выражений. Преобразование алгебраических выражений. Преобразование рациональных и иррациональных выражений. Решение иррациональных уравнений и неравенств. | 11 | ||
Раздел 7 Показательная функция. Показательные уравнения и неравенства | 29 | ||
Тема 7.1 Показательная функция. Показательные уравнения и неравенства | Содержание учебного материала: | 10 | |
Определение показательной функции, её свойства и график. Число е. Показательные уравнения. Основные приемы их решения (приводимые к одному основанию, разложение на множители, введение новых переменных, графический метод). Использование свойств функции при решении уравнений. Показательные неравенства. Использование свойств функции при решении неравенств. Метод интервалов. Системы показательных уравнений и неравенств. | 1 | ||
2 | |||
1 | |||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Решение показательных уравнений, приводимых к одному основанию»; «Решение показательных уравнений»; «Решение показательных неравенств»; «Решение систем показательных уравнений» | 8 | ||
Контрольная работа: (не предусмотрена) | - | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 7. 4. Выполнение индивидуального проектного задания- создание презентаций. Примерная тематика домашних заданий по разделу 7: Решение показательных уравнений и неравенств. Решение неравенств методом интервалов. Изображение на координатной прямой множества решений неравенств и систем. | 11 | ||
Раздел 8 Логарифмическая функция. Логарифмические уравнения и неравенства | 32 | ||
Тема 8.1 Логарифмическая функция. Логарифмические уравнения и неравенства | Содержание учебного материала: | 9 | |
Логарифм числа. Свойства логарифмов. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Переход к новому основанию. Логарифмическая функция, её свойства, график, область определения. Логарифмические уравнения. Основные приемы их решения. Логарифмические неравенства. Использование свойств функции при решении логарифмических уравнений и неравенств. Изображение на координатной прямой множества решений неравенства. | 2 | ||
1 | |||
2 | |||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | |||
Практические занятия: «Вычисление логарифмов»; «Преобразования логарифмических выражений»; «Решение логарифмических уравнений»; «Решение логарифмических неравенств»; «Решение показательных и логарифмических уравнений, неравенств»; «Решение показательных и логарифмических уравнений, систем уравнений, неравенств». | 11 | ||
Контрольная работа по теме: «Показательные и логарифмические уравнения и неравенства» | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 8. 4. Выполнение индивидуального проектного задания- создание презентаций. Примерная тематика домашних заданий по разделу 8: Решение логарифмических уравнений и неравенств. Изображение на координатной прямой множества решений неравенства. | 10 | ||
Раздел 9 Основы тригонометрии | 50 | ||
Тема 9.1 Основные формулы тригонометрии | Содержание учебного материала: | 10 | |
Радианная мера угла. Поворот точки вокруг начала координат. Синус, косинус, тангенс и котангенс числа. Значения и знаки значений. Основные тригонометрические тождества. Тригонометрические функции углов и - . Формулы двойного и половинного угла. Синус, косинус и тангенс суммы и разности двух углов. Сумма и разность синусов и косинусов. Формулы приведения. | 1 | ||
1 | |||
1 | |||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Решение упражнений на основные тригонометрические тождества»; «Решение упражнений на формулы двойного угла; синуса и косинуса суммы и разности двух углов. Формулы сложения»; «Преобразование тригонометрических выражений с использованием формул тригонометрии». | 6 | ||
Контрольная работа: (не предусмотрена) | - | ||
Тема 9.2 Тригонометрические уравнения и неравенства | Содержание учебного материала: | 8 | |
Обратные тригонометрические функции. Уравнения cos x = a, sin x = a, tg x = a. Простейшие тригонометрические уравнения с изменённым аргументом. Изучение способов решения тригонометрических уравнений. Простейшие тригонометрические неравенства. | 1 | ||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Решение уравнений cos x = a; sin x = a; tg x = a»; «Решение простейших тригонометрических уравнений с изменённым аргументом»; «Решение тригонометрических уравнений с разложением на множители»; «Решение тригонометрических уравнений с заменой переменной»; «Решение тригонометрических уравнений»; «Решение тригонометрических уравнений различными способами»; «Решение тригонометрических уравнений и неравенств». | 14 | ||
Контрольная работа по разделу « Основы тригонометрии» | 2 | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2.Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 9. Примерная тематика домашних заданий по разделу 9: Преобразование тригонометрических выражений с использованием основных тригонометрических тождеств, формул приведения, двойного угла и формул сложения. Нахождение арксинуса, арккосинуса, арктангенса и арккотангенса числа. Решение простейших тригонометрических уравнений и неравенств. | 10 | ||
Раздел 10 Функции, их свойства и графики. Тригонометрические функции | 12 | ||
Тема 10.1 Функции, их свойства и графики | Содержание учебного материала: | 6 | |
Функции. Область определения и множество значений; график функции, Свойства функции. Нахождение области определения функций. Графики и свойства тригонометрических функций у = cos x, y = sin x, y = tg x. | 1 | ||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия:(не предусмотрены) | - | ||
Контрольная работа: (не предусмотрена) | - | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Самостоятельная проработка материала по учебнику: Свойства тригонометрических функций у = cos x, y = sin x, y = tg x. 3. Выполнение домашних заданий по разделу 10. Примерная тематика домашних заданий по разделу 10: Нахождение области определения функций. Построение графиков тригонометрических функций и перечисление их свойств. Преобразования графиков. | 6 | ||
Раздел 11 Начала математического анализа | 60 | ||
Тема 11.1 Производная и её применение | Содержание учебного материала: | 16 | |
Производная. Понятие о производной функции, её физический смысл. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Геометрический смысл производной. Угловой коэффициент. Уравнение касательной к графику функции. Применение производной к исследованию функции. Возрастание и убывание. Точки экстремума функции. Наибольшее и наименьшее значения функции. Примеры использования производной для нахождения наилучшего решения в прикладных задачах. | 1 | ||
1 | |||
2 | |||
1 | |||
1 | |||
2 | |||
2 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Нахождение производных функций, используя правила дифференцирования»; «Производная основных элементарных функций»; «Геометрический смысл производной. Нахождение углового коэффициента»; «Составление уравнения касательной к графику функции»; «Нахождение промежутков монотонности»; «Нахождение точек экстремума функции»; «Исследование функций при помощи производной и построение их графиков»; «Нахождение наибольшего и наименьшего значений функции» | 16 | ||
Контрольная работа по теме «Производная и её применение» | 2 | ||
Тема 11.2 Интеграл | Содержание учебного материала: | 6 | |
Первообразная, правила нахождения, основное свойство первообразной. Криволинейная трапеция и её площадь. Интеграл. Формула Ньютона—Лейбница. Вычисление интегралов. Применение определенного интеграла для нахождения площади криволинейной трапеции. | 1 | ||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Нахождение первообразных и задачи на основное свойство»; «Нахождение площади криволинейной трапеции»; «Вычисление интегралов». | 6 | ||
Контрольная работа: (не предусмотрена) | - | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной и специальной экономической литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 11. Примерная тематика домашних заданий по разделу 11: Решение задач на нахождение производных функций используя правила дифференцирования. Решение задач на нахождение производных элементарных функций. Решение задач на нахождение углового коэффициента касательной к графику функции. Решение задач на составление уравнения касательной к графику функции. Решение задач на нахождение промежутков монотонности функций. Решение задач на нахождение экстремумов функций. Решение задач на нахождение наибольшего и наименьшего значений функции. Исследование функций при помощи производной и построение их графиков. Решение задач на нахождение первообразных функций. Вычисление интегралов. Решение задач на нахождение площадей криволинейных трапеций. | 14 | ||
Раздел 12 Комбинаторика и элементы теории вероятностей. | 12 | ||
Тема 12.1 Элементы комбинаторики и теории вероятностей | Содержание учебного материала: | 6 | |
Основные понятия комбинаторики. Размещения, перестановки, сочетания. Элементы теории вероятности. Событие, вероятность события.
Задачи на элементы комбинаторики и вероятность события. Задачи на классическую вероятность. | 1 | ||
1 | |||
1 | |||
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия:(не предусмотрены) | - | ||
Контрольные работы: (не предусмотрены) | - | ||
Самостоятельная работа обучающихся: 1. Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). 2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ. 3. Выполнение домашних заданий по разделу 12. 4. Самостоятельная проработка материала раздела 12 по учебнику. Примерная тематика домашних заданий по разделу 12: Решение задач на подсчёт числа размещений, перестановок, сочетаний. Решение простейших задач по теории вероятностей. | 6 | ||
Раздел 13 Итоговое повторение курса математики | 26 | ||
Тема 13.1 Итоговое повторение курса математики | Содержание учебного материала: | - | |
Лабораторные работы: (не предусмотрены) | - | ||
Практические занятия: «Тождественные преобразования степенных, иррациональных, логарифмических выражений»; «Тождественные преобразования тригонометрических выражений»; «Решение уравнений»; «Решение уравнений и систем уравнений»; «Решение неравенств»; «Решение задач на поверхность и объём многогранники»; «Решение задач на поверхность и объём тел вращения». | 14 | ||
Контрольные работы: (не предусмотрены) | - | ||
Самостоятельная работа обучающихся: Работа с конспектами, учебной литературой (по параграфам, главам учебных пособий, указанным преподавателем). Выполнение домашних заданий по разделу 13. Самоподготовка к итоговой аттестации. | 12 | ||
Всего: 351 |
В программе курсивом выделен материал, который при изучении математики и как базового контролю не подлежит.
Для характеристики уровня освоения учебного материала используются следующие обозначения:
1. – ознакомительный (узнавание ранее изученных объектов, свойств);
2. – репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
3. – продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ
3.1. Требования к минимальному материально-техническому обеспечению
Реализация учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» требует наличия учебного кабинета
«Математика: алгебра и начала математического анализа; геометрия»
Оборудование учебного кабинета:
- рабочее место преподавателя;
- посадочные места по количеству обучающихся;
- учебно-методический комплекс по дисциплинам «Алгебра» и «Геометрия»;
- наглядные пособия: таблицы, карточки с заданиями, портреты математиков.
Технические средства обучения:
- компьютер с лицензионным программным обеспечением,
- мультимедиа-проектор,
- интерактивная доска.
3.2. Информационное обеспечение обучения
Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы
Основные источники:
1. Алимов, Ш.А. Алгебра и начала математического анализа. 10-11 классы [текст] : учеб.для общеобразоват. учреждений: базовый уровень / Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачёва и др. - 16-е изд., перераб., М.:Просвещение, 2010.
2. Атанасян, Л.С. Геометрия, 10-11 [Текст] : учеб.для общеобразоват. учреждений: базовый и профильный уровни / Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др. - 18-е изд. М.: Просвещение, 2009.
Дополнительные источники:
1. Дорофеев, Г.В. Сборник заданий для проведения письменного экзамена по математике ( курс А) и алгебре и началам анализа ( курс В) за курс средней школы. 11 класс [Текст] / Г.В. Дорофеев, Г.К. Муравин, Е.А. Седова. - 9-е изд., стереотип. - М.: Дрофа, 2008.
2. Мордкович, Е.Е. Алгебра и начала анализа.10-11 классы. Контрольные работы для общеобразовательных учреждений [Текст] : учеб. Пособие/ А.Г. Мордкович, Е.Е. Тульчинская. – 6-е изд. – М.:Мнемозина, 2008.
3. Ершова, А.П. Самостоятельные и контрольные работы по геометрии для 10 класса [Текст] / А.П. Ершова, В.В. Голобородько. - М.: Илекса, 2009.
4. Ершова, А.П. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов [Текст] / А.П. Ершова, В.В. Голобородько.-6-е из., испр.-М.:Илекса, -2009.
Интернет – ресурсы:
- http://www.edu.ru Федеральный образовательный портал:
- http://www.kokch.kts.ru/cdo Тестирование online: 5 - 11 классы
- www.fcior.edu.ru Информационные, тренировочные и контрольные материалы
- www.school-collection.edu.ru Единая коллекции цифровых образовательных ресурсов
- http://www.bestlibrary.ru On–line библиотека
- http://www.lib.msu.su/ научная библиотека МГУ
- http://www.vavilon.ru/ Государственная публичная научно–техническая библиотека России
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ
Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.
Содержание обучения | Характеристика основных видов деятельности студентов (на уровне учебных действий) | Формы и методы контроля и оценки результатов обучения |
Введение | Ознакомление с ролью математики в науке, технике, экономике, информационных технологиях и практической деятельности. Ознакомление с целями и задачами изученияматематики при освоении профессий СПО и специальностей СПО | Экспертная оценка результатов самостоятельных работ |
АЛГЕБРА | ||
Корни, степени, лога- рифмы | Ознакомление с понятием корня n-й степени, свойствами ради- калов и правилами сравнения корней. Формулирование определения корня и свойств корней. Вычисление и сравнение корней, выполнение прикидки значения корня. Преобразование числовых и буквенных выражений, содержащих радикалы. Выполнение расчетов по формулам, содержащим радикалы, осуществляя необходимые подстановки и преобразования. Решение иррациональных уравнений. Ознакомление с понятием степени с действительным показателем. Записывание корня n-й степени в виде степени с дробным показателем и наоборот. Формулирование свойств степеней. Вычисление степеней с рациональным показателем, выполнение прикидки значения степени, сравнение степеней. Преобразование числовых и буквенных выражений, содержащих степени, применяя свойства. Решение показательных уравнений. | Экспертная оценка в рамках текущего контроля на практических занятиях. Экспертная оценка выполнения домашних заданий. Экспертная оценка выполнения контрольной работы. |
Преобразование алгебраических выражений | Выполнение преобразований выражений, применение формул, связанных со свойствами степеней и логарифмов. Определение области допустимых значений логарифмического выражения. Решение логарифмических уравнений. | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. |
ОСНОВЫ ТРИГОНОМЕТРИИ | ||
Основные понятия | Изучение радианного метода измерения углов вращения и их связи с градусной мерой. Изображение углов вращения на окружности, соотнесение величины угла с его расположением. | Экспертная оценка в рамках текущего контроля на практических занятиях, |
Формулирование определений тригонометрических функций для углов поворота и острых углов прямоугольного треугольника и объяснение их взаимосвязи | Экспертная оценка в рамках текущего контроля на практических занятиях, | |
Основные тригонометрические тождества | Применение основных тригонометрических тождеств для вычисления значений тригонометрических функций по одной из них | Экспертная оценка в рамках текущего контроля на практических занятиях, самостоятельных работ |
Преобразования простейших тригонометри- ческих выражений | Изучение основных формул тригонометрии: формулы сложения, удвоения, преобразования суммы тригонометрических функций в произведение, формул приведения и применение их при вычислении значения тригонометрического выражения и упрощения его. | Экспертная оценка в рамках текущего контроля на практических занятиях, самостоятельных работ |
Простейшие тригонометрические уравне- ния и неравенства | Решение по формулам и тригонометрическому кругу простейших тригонометрических уравнений. Применение общих методов решения уравнений (приведение к линейному, квадратному, метод разложения на множители, замены переменной) при решении тригонометрических уравнений. Умение отмечать на круге решения простейших тригонометри- ческих неравенств. | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, |
Арксинус, арккосинус, арктангенс числа | Ознакомление с понятием обратных тригонометрических функций, применение при решении уравнений | Экспертная оценка в рамках текущего контроля на практических занятиях, |
ФУНКЦИИ, ИХ СВОЙСТВА И ГРАФИКИ | ||
Функции, свойства, график | Ознакомление с понятием переменной, примерами зависимостей между переменными. Ознакомление с понятием графика. Ознакомление с определением функции. Нахождение области определения и области значений функции | Экспертная оценка в рамках текущего контроля на практических занятиях, |
Степенные, показа- тельные, логарифми- ческие и тригономе- трические функции. | Вычисление значений функций по значению аргумента. Определение положения точки на графике по ее координатам и наоборот. Использование свойств функций для сравнения значений степеней и логарифмов. Построение графиков степенных, логарифмических и тригонометрических функций. Решение показательных, логарифмических и тригонометрических уравнений и неравенств по известным алгоритмам. | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. |
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА | ||
Производная и ее при- менение | Ознакомление с понятием производной. Изучение и формулирование ее механического и геометрического смысла, изучение алгоритма вычисления производной на примере вычисления мгновенной скорости и углового коэффициента касательной. Составление уравнения касательной в общем виде. Усвоение правил дифференцирования, таблицы производных элементарных функций, применение для дифференцирования функций, составления уравнения касательной. Проведение с помощью производной исследования функции, заданной формулой. Применение производной для решения задач на нахождение наибольшего, наименьшего значения и на нахождение экстремума | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. |
Первообразная и интеграл | Ознакомление с понятием интеграла и первообразной. Изучение правила вычисления первообразной и теоремы Ньютона— Лейбница. Вычисление первообразной для данной функции. Решение задач на применение интеграла для вычисления физических величин и площадей | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, самостоятельных работ |
УРАВНЕНИЯ И НЕРАВЕНСТВА | ||
Уравнения и системы уравнений Неравенства и системы неравенств с двумя переменными | Ознакомление с простейшими сведениями о корнях алгебраических уравнений, понятиями исследования уравнений и систем уравнений. Изучение теории равносильности уравнений и ее применения. Повторение записи решения стандартных уравнений, приемов преобразования уравнений для сведения к стандартному уравнению. | Экспертная оценка в рамках текущего контроля на практических занятиях, |
Решение рациональных, иррациональных, показательных и тригонометрических уравнений и систем. Использование свойств и графиков функций для решения уравнений. Повторение основных приемов решения систем. Решение уравнений с применением всех приемов (разложения на множители, введения новых неизвестных, подстановки, графического метода). Решение систем уравнений с применением различных способов. Ознакомление с общими вопросами решения неравенств. Решение неравенств с применением различных способов. | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. | |
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ | ||
Основные понятия комбинаторики | Ознакомление с понятиями комбинаторики: размещениями, сочетаниями, перестановками и формулами для их вычисления. Применение формул для вычисления размещений, перестановок и сочетаний при решении задач. | Экспертная оценка в рамках текущего контроля на практических занятиях, |
Элементы теории вероятностей | Изучение классического определения вероятности, свойств вероятности, теоремы о сумме вероятностей. Рассмотрение примеров вычисления вероятностей. Решение задач на вычисление вероятностей событий | Экспертная оценка в рамках текущего контроля на практических занятиях, |
ГЕОМЕТРИЯ | ||
Прямые и плоскости в пространстве | Формулировка признаков взаимного расположения прямых и плоскостей. Распознавание на чертежах и моделях различных случаев взаимного расположения прямых и плоскостей, аргументирование своих суждений. Формулирование определений и свойств параллельных и перпендикулярных плоскостей, двугранных и линейных углов. Выполнение построения углов между прямыми, прямой и плоскостью, между плоскостями по описанию и распознавание их на моделях. Изображение на рисунках и конструирование на моделях перпендикуляров и наклонных к плоскости, прямых, параллельных плоскостей, углов между прямой и плоскостью и обоснование построения. Решение задач на вычисление геометрических величин. Описывание расстояния от точки до плоскости, между скрещивающимися прямыми. | Экспертная оценка в рамках текущего контроля на практических занятиях, самостоятельных работ |
Многогранники | Описание и характеристика различных видов многогранников, перечисление их элементов и свойств. Изображение многогранников и выполнение построения на изображениях и моделях многогранников. Ввычисление площадей поверхностей. Построение простейших сечений куба, призмы, пирамиды. Использование приобретенных знаний для исследования и моделирования несложных задач. Изображение основных многогранников и выполнение рисунков по условиям задач | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. |
Тела и поверхности вращения | Ознакомление с видами тел вращения, формулирование их определений и свойств. Формулирование теорем о сечении шара плоскостью. Решение задач на построение сечений, вычисление длин, площадей. Проведение доказательных рассуждений при решении задач. Изображение основных круглых тел и выполнение рисунка по условию задачи | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения самостоятельных работ |
Ознакомление с понятиями площади и объема, свойствами. Решение задач на вычисление площадей плоских фигур с применением соответствующих формул и фактов из планиметрии. Решение задач на применение формул вычисления объемов. Изучение формул для вычисления площадей поверхностей многогранников и тел вращения. Ознакомление с формулой вычисления площади поверхности сферы. Решение задач на вычисление площадей поверхности пространственных тел Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. | Экспертная оценка в рамках текущего контроля на практических занятиях, выполнения домашних заданий, выполнения контрольной работы. |
По теме: методические разработки, презентации и конспекты
Рабочая программа дисциплины "Математика:алгебра и начала математического анализа, геометрия" для специальности 46.02.01 "Документационное обеспечение"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 46.02.01 Документационное обеспечение ...
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » для специальности 43.02.11 "Гостиничный сервис"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 43.02.11 ...
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » для специальности 44.02.01 "Дошкольное образование"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 44.02.01 Дошкольное образовани...
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » для специальности 44.02.02 "Преподавание в начальных классах"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 44.02.02 Преподавание в началь...
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » по специальности 49.02.01 " Физическая культура"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 49.02.01 Физическая культура....
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » для специальности 38.02.02 "Страховое дело"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 38.02.02...
Рабочая программа дисциплины «Математика: алгебра и начала математического анализа, геометрия » для специальности 38.02.01 "Экономика и бухгалтерский учет (по отраслям)"
Аннотация рабочей программы дисциплины «Математика: алгебра и начала математического анализа, геометрия »по специальности 38.02.01 Экономика и бухгалтер...