Правила построения электрических схем. Монтаж электрических схем
учебно-методический материал на тему
Правила построения электрических схем. Монтаж электрических схем
Скачать:
Вложение | Размер |
---|---|
montazh_elektricheskih_shem.doc | 360 КБ |
Предварительный просмотр:
Правила построения электрических схем
Электрическая схема — это графическое изображение связей между электрическими элементами установки, позволяющее понять принцип действия электротехнического устройства. Условным графическим изображением показывают электрические элементы схемы устройства, на которых происходит получение, преобразование и управление электроэнергией. Элементами схемы являются: обмотки электрических машин, катушки контакторов и реле, контакты электрических аппаратов, резисторы и др. Электрические связи на схемах показывают провода и кабели электротехнической установки.
В зависимости от назначения схемы подразделяются на структурные, функциональные, принципиальные (полные), схемы соединений (монтажные). В упрощенных однолинейных схемах провода или связи изображают одной линией. При помощи отрезков, пересекающих эти линии под углом 45°, указывают число проводов или число токопроводящих жил кабеля.
Структурные схемы позволяют иметь упрощенное изображение основных элементов в виде прямоугольников и линии связи между элементами. Внутри прямоугольников вписывают наименование элементов, а также основные параметры (мощность, напряжение), позволяющие создать общее представление об установке.
Функциональные схемы являются дальнейшим развитием структурных схем и служат для более углубленного ознакомления с электроустановками. При помощи условных графических обозначений изображены все элементы каждого прямоугольника. Связи между отдельными элементами конкретизируются и расшифровываются. Функциональные схемы имеют подробную характеристику всех элементов.
Принципиальные схемы изображают все электрические элементы и связи между ними для пояснения принципов работы электрифицированной установки. Все элементы вычерчивают в отключенном положении. Каждый элемент, входящий в схему, должен иметь буквенно-цифровое обозначение по государственному стандарту.
Все элементы электрических схем разделены на виды, каждому из которых присвоен буквенный код в виде заглавной латинской буквы, являющийся обязательным в обозначении. Для уточнения вида элемента к первой букве кода может добавляться вторая буква, образуя двухбуквенный код. После одно- или двухбуквенного кода ставится номер элемента в виде одной или нескольких цифр. Вид и номер элемента являются обязательной частью обозначения.
Цифры порядковых номеров, которые указывают на нумерацию одинаковых элементов, должны быть выполнены одним размером шрифта с буквенными обозначениями элемента. Например, на схеме имеется два контактора с двумя и тремя контактами. Электромагнитные катушки контакторов обозначаются К1, К2, их контакты К 1.1, К 1.2 и К2.1, К2.2, К2.3.
В принципиальных схемах условные графические обозначения элементов устройств выполняют совмещенным или разнесенным способом. При совмещенном способе электрические элементы устройства размещают на схеме с учетом их конструкционных связей (например, втягивающие катушки контактора рядом с графическим изображением его контактов). При разнесенном способе условные графические изображения электрических элементов устройства располагают в разных местах схемы, не принимая во внимание конструктивного исполнения этого устройства. Элементы на схеме располагают с учетом прохождения по ним тока. Цепи токов в разнесенной схеме размещают параллельно одна под другой, образуя строчный способ выполнения схемы. Для облегчения чтения схемы при строчном способе рекомендуется параллельные цепи (строки) нумеровать. В зависимости от назначения цепей на принципиальных схемах выделяют: силовую цепь, цепи управления, сигнализации, возбуждения, электрических измерений.
Силовой цепью называется электрическая цепь с устройствами, вырабатывающими, передающими и распределяющими электрическую энергию, а также преобразующими ее в энергию другого вида или в электрическую энергию с другими параметрами. Силовая цепь содержит элементы, по которым протекают токи якоря машины постоянного тока, статора и ротора асинхронной машины и т.д.
Цепью управления называется электрическая цепь с устройствами, назначение которых состоит в приведении в действие электрооборудования и отдельных электротехнических устройств или в изменении значений их параметров.
Цепью сигнализации называется электрическая цепь с устройствами, приводящими в действие сигнальные устройства.
Цепь возбуждения — электрическая цепь, содержащая обычно параллельную обмотку возбуждения.
Цепь электрических измерений — электрическая цепь с электроизмерительными приборами.
Электрические схемы раскрывают способы управления электродвигателем, которые слагаются из следующих этапов: пуска, изменения частоты вращения, реверса, торможения и выключения. Пуск двигателя, например, может быть прямым, т. е. непосредственным включением его в сеть, или происходить по заданному режиму.
В установках, где мощность питающей сети во много раз превышает мощность включаемого электродвигателя, можно непосредственно включать электродвигатели больших мощностей, нежели , где мощности электростанций ограничены.
Способы управления зависят от многих факторов (типа двигателя, мощности, требований к эксплуатации). Поэтому в электроприводе применяется большое число разнообразных систем управления. Основными из них являются контроллерная, реостатная, контакторная, Г — Д, с использованием управляемых магнитных усилителей и др.
В зависимости от условий эксплуатации используют ручную, дистанционную и автоматическую системы управления двигателем.
При ручной системе все этапы управления могут значительно отличаться от расчетных, особенно при переходных режимах электродвигателя. Для ручных операций по управлению двигателями всегда требуется больше времени, чем при наличии автоматизации, и производительность выполняемых работ всегда меньше. Ручные системы встречаются редко.
При дистанционной системе управление двигателем может осуществляться автоматически, с помощью релейно-контактной аппаратуры, однако сигнал для включения элементов автоматического управления подается вручную с помощью кнопочных командоаппаратов или командоконтроллеров.
Схемы прямого пуска двигателей постоянного и переменного тока с контакторным управлением показаны на рис. 3.1. Цепь управления для обоих электродвигателей строится одинаково и включается к выводам X1 и Х2. Отличие состоит в том, что для управления электродвигателем постоянного тока (рис. 3.1, а) применяется контактор постоянного тока с двумя замыкающими главными контактами, а для управления асинхронным двигателем (рис. 3.1, б) — трехполюсный контактор переменного тока.
Включение электродвигателей осуществляется нажатием на кнопочный выключатель «Пуск» S2 (рис. 3.1, в). Катушка контактора К1 получает питание, и контактор, сработав, подключает своими замыкающими контактами электродвигатель к сети. Если кнопочный выключатель S2 отпустить, то его замыкающий контакт разомкнётся. Однако двигатель остается включенным, так как питание катушки контактора сохраняется через вспомогательный контакт К1.3, шунтирующий контакт S2. Для отключения электродвигателя необходимо нажать кнопочный выключатель «Стоп» S1. Катушка контактора теряет питание, и он отключает электродвигатель от сети.
При выключении питающего напряжения вследствие значительной индуктивности параллельной обмотки возбуждения в ней возникают значительные э. д. с. самоиндукции и перенапряжения, которые могут привести к повреждению изоляции обмотки. Для уменьшения перенапряжений параллельно этой обмотке подключают разрядный (гасящий) резистор R. Во избежание лишних потерь энергии в разрядном резисторе последовательно с ним иногда включают полупроводниковый вентиль V. При выключении цепи возбуждения создается замкнутый контур, замедляющий уменьшение тока в обмотке возбуждения, способствующий снижению э. д. с. самоиндукции и перенапряжения в ней.
Рис. 3.1. Схемы прямого пуска двигателя с контакторным управлением.
На рис. 3.2 приведены принципиальные схемы управления электродвигателями постоянного и переменного тока, которые обеспечивают изменение направления их вращения (реверс).
Рис. 3.2. Схемы пуска и реверсирования двигателей с контакторным управлением.
В зависимости от того, какая будет нажата кнопка, сработает контактор К1 или К2, и двигатель начнет вращаться в ту или иную сторону.
Реверсирование двигателя постоянного тока (рис. 3.2, а) осуществляется изменением направления тока в обмотке якоря, а асинхронного двигателя (3.2, б) — переключением двух фаз.
Весьма важным в реверсивных электроприводах является исключение возможности одновременного включения контакторов К1 и К2, так как это приводит к короткому замыканию силовой сети главными контактами. Такое явление может возникнуть вследствие, например, одновременного нажатия на кнопочный выключатель «Пуск вперед» и «Пуск назад» (S2 и S3) или нажатия на кнопочный выключатель S2 (S3) в то время, когда главные контакты контакторов приварились. Для устранения этого явления в цепях управления предусматривают специальные блокировки. В схеме на рис. 3.2, в блокирование осуществляется применением кнопок с замыкающими и размыкающими контактами. При одновременном нажатии на обе кнопки цепи катушек обоих контакторов оказываются разомкнутыми и ни один контактор сработать не сможет. При сваривании контактов силовой цепи у одного из контакторов предпочтительным является блокирование с помощью размыкающих вспомогательных контактов К1.3 и К2.3 (рис. 3.2, г). В ответственных электроприводах, помимо электрического блокирования, применяют механическое, которое исключает возможность втягивания якоря одного контактора, если втянут якорь другого.
Управление электродвигателем в электроприводах грузовых механизмов осуществляется при помощи контроллеров.
Контроллерная система позволяет иметь все виды управления электродвигателями: пуск, регулирование частоты вращения, реверс, торможение, остановку и, кроме того, защиту двигателей от перегрузки и понижения или исчезновения напряжения в питающей сети. Защита осуществляется с помощью релейно-контактной аппаратуры.
В двигателях постоянного тока частоту вращения регулируют с помощью резисторов, установленных в цепи якоря. Для получения малой частоты вращения дополнительно включается еще один резистор параллельно цепи якоря.
Реверсирование достигается переключением тока в цепи якоря двигателя. Электрическое торможение осуществляется всеми тремя способами: рекуперативным, электродинамическим и противотоком.
Наряду с силовыми контроллерами применяются командоконтроллеры в контакторных схемах управления грузоподъемных механизмов (лебедки, краны). Все разновидности систем контроллерного управления, как правило, характеризуются ступенчатым регулированием режимов работы электродвигателя.
Электрическая схема с применением командоконтроллера для управления электродвигателями трехфазного асинхронного и постоянного тока приведена на рис. 3.3.
Рис. 3.3. Управление двигателем с помощью командоконтроллера.
Рукоятка командоконтроллера имеет семь положений: нулевое и по три положения «Вперед» и «Назад». Точками на соответствующих положениях помечают, какие контакты командоконтроллера замкнуты. Так, например, если рукоятка командоконтроллера установлена на первое положение «Вперед», то замкнется контакт 1-2 и включится катушка контактора К1. Якорь (ротор) двигателя начнет вращаться «Вперед» с малой частотой вращения, так как в цепь включены ступени реостатов R1 и R2.
Перемещение рукоятки командоконтроллера в том же направлении на следующие положения (второе и третье) приведет к последовательному замыканию контактов 5-6 и 7-8 и срабатыванию контакторов К3 и К4, к выключению ступеней реостатов и Я2 и последовательному увеличению угловой скорости двигателя.
При перемещении рукоятки командоконтроллера «Назад» от нулевого положения вместо контакта 1-2 замкнется контакт 3-4, сработает контактор К2 и включит двигатель на обратное направление вращения. Второе и третье положения командоконтроллера дадут ту же угловую скорость, что и в направлении «Вперед». Установка рукоятки командоконтроллера в нулевое положение приводит к отключению всех контакторов и двигателя от сети.
Размыкающими контактами К 1.2 и К2.2 осуществляется блокирование, устраняющее включение обоих контакторов при сваривании их контактов или контактов командоконтроллера.
Схемы соединений (монтажные) изображают расположение составных частей электрифицированного устройства в деталях с указанием метода прокладки проводов и кабелей. Схемы соединений входят в состав технической документации и являются документом, по которому выполняют монтаж установки, а также эксплуатацию и ремонт. Схемы учитывают технологию монтажа электрических аппаратов и приборов, а также возможность прокладки кабельных трасс. Чертежи панелей с размещенными на них аппаратами и приборами изображают в масштабе.
Монтажная схема содержит схемы внутренних соединений, на которых указаны все соединения внутри отдельных сборочных единиц, и схемы внешних соединений, на которых показывают прокладку кабельных трасс между отдельными сборочными единицами. Для возможности контроля схемы все электрические выводы аппаратов и концы токопроводящих жил проводов должны иметь маркировку (цифру или букву).
Схема подключения нереверсивного магнитного пускателя
На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.
Рис. 1. Схема включения нереверсивного магнитного пускателя: а - монтажная схема включения пускателя, электрическая принципиальная схема включения пускателяНа принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Методические указания по чтению электрических схем заключаются в рекомендациях по принятому порядку последовательности изучения электрифицированной установки. Чтение электрической схемы следует начинать с ее типа и вида по названию из углового штампа. Затем следует ознакомиться со схемой силовой цепи, начиная с источника тока. Схемы управления надо изучать поэлементно.
При наличии цепей с элементами электроники необходимо изучить работу отдельных электронных элементов, обратив внимание на прохождение электрических зарядов через полупроводниковые элементы. Следует помнить, что питание основных цепей в электронных устройствах принято однопроводное, поэтому окончание электрических цепей показано присоединением к корпусу аппарата.
При эксплуатации электродвигателей в них по разным причинам возникают неисправности, которые могут привести к перерывам в работе станков и других производственных механизмов. Для того чтобы такие перерывы возможно меньше сказывались на выполнении предприятием производственных планов, необходимо уметь быстро найти причину неисправности и устранить ее. Необходимость в быстрейшем устранении повреждений обусловливается также и тем, что работа электродвигателя, имеющего небольшое повреждение, может привести к развитию повреждения и необходимости более сложного ремонта. Чтобы определить объем ремонта асинхронного электродвигателя, необходимо выявить характер его неисправностей. Неисправности асинхронного двигателя разделяют на внешние и внутренние. К внешним неисправностям относятся:
Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими. Механические повреждения:
Электрические повреждения:
Наиболее распространенные неисправности асинхронных электродвигателей:
Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения. Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки. К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора. В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы. Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения. Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом. Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора. Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%. У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают. Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора. Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение. Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток. Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора. При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение. При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных. Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом. Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором. Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя. Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д. Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей. Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током. Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции. Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром. Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению. |
Системы защиты, способные увеличить срок службы электродвигателя
Наиболее частые и основные причины возникновения аварийной работы асинхронных электродвигателей:
1. Однофазные и межфазные короткие замыкания – в кабеле, клемной коробке электродвигателя, обмотке статора (на корпус, межвитковые замыкания).
Внимание! КЗ(короткое замыкание) – наиболее опасный и частый вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.
2. Тепловые перегрузки электродвигателя –возникают, когда вращение вала сильно затруднено (выход из строя подшипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка).
Наиболее частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это вызывает значительное увеличение тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.
В результате тепловой перегрузки электродвигателя –происходит очень сильный перегрев и разрушение общей изоляции обмоток статора, приводящий к замыканию обмоток и полной неработоспособности электродвигателя.
Итак как же защитить электродвигатель от токовых перегрузок?
Главный секрет заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. когда возникают короткие замыкания.
Чтобы защитить электродвигателей от коротких замыканий наиболее часто применяют плавкие вставки(предохранители), электромагнитные реле, автоматические выключатели с электромагнитным разрывом, подобранные так, чтобы они могли выдерживать высокие пусковые токи, но при этом незамедлительно срабатывали при появлении токов короткого замыкания.
Если стоит задача защитить электродвигатель от тепловых перегрузок в схему подключения электродвигателя применяют тепловое реле, имеющее в своём исполнении контакты цепи управления – посредством которых подаётся питающее напряжение на катушку магнитного пускателя.
Если возникнут тепловые перегрузки - эти контакты разомкнуться и прервут питание катушки, что приведёт к возврату группы силовых контактов в первоначальное положение – электродвигатель обесточен.
Самым простым и безотказном способом защиты электродвигателя от пропадания фаз будет добавление в схему подключения электродвигателя дополнительно магнитного пускателя:
При включение автоматического выключателя 1 происходит замыкание цепи питания катушки магнитного пускателя 2 (при этом рабочее напряжение указанной катушки должно составлять ~380 вольт) и замыкание силовых контактов 3 пускателя, посредством которого (используется только один контакт) подаётся питание катушки магнитного пускателя 4.
Включение кнопки «Пуск» 6 непосредственно через кнопку «Стоп» 8 вызывает замыкание цепи питания катушки 4, следующего магнитного пускателя (её рабочее напряжение имеет значение как 380 так и 220 в), замыкает его силовые контакты 5, и на двигатель подаётся напряжение.
Если отжать кнопку «Пуск» 6, напряжение с силовых контактов 3 будет проходить через нормально разомкнутый блок-контакт 7, при этом обеспечивая неразрывность цепи питания катушки магнитного пускателя.
Как можно увидеть из этой схемы защиты электродвигателя, отсутствие(по каким-либо причинам) любой из фаз напряжение подаваемых на электродвигатель – обесточит электродвигатель, что сохранит его от тепловых перегрузок и преждевременного выхода его из строя.
По теме: методические разработки, презентации и конспекты
Построение логической схема компаратора
Материал представляет собой практическую работу для учебной дисциплины ОП.03 "Основы электроники и цифровой схемотехники"....
Урок по теме "Работа привода автостопа и электрическая схема управления приводом автостопа."
Данный урок проводится при изучении автостопов применяемых на железных дорогах и метрополитенах. Работа привода автостопа, его взаимодействие с электрической схемой и процессами происходящими при этом...
Разработка урока по теме "Работа привода автостопа и электрическая схема управления приводом автостопа."
Данный урок проводится при изучении автостопов применяемых на железных дорогах и метрополитенах. Работа привода автостопа, его взаимодействие с электрической схемой и процессами происходящими при этом...
Комплект практических работ для построения и минимизации логических функциональных схем
Комплект состоит из четырех практических работ. Каждая практическая работа имеет теоретический материал и задания для выполнения. Логические схемы строятся по таблице истинности с выделением минт...
Рабочая программа ПМ 01. ПМ 01. ВЫПОЛНЕНИЕ МОНТАЖА ПРИБОРОВ И ЭЛЕКТРИЧЕСКИХ СХЕМ СИСТЕМ АВТОМАТИКИ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ ОХРАНЫ ТРУДА И ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ
Рабочая программа ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.01 Выполнение монтажа приборов и электрических схем систем автоматики в соответствии с требованиями охраны труда и экологической безопасности...
Основные принципы построения и чтения ПЭС (принципиальных электрических схем) управления электроприводом
Данная методическая разработка предназначена для широкой аудитории преподавателей и студентов технических специальностей, а также для мотивации технического творчества обучающихся....
РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.01.Монтаж приборов и электрических схем систем автоматики для профессии среднего профессионального образования «профессиональный цикл» основной профессиональной образовательной программы СПО подготовки кв
Рабочая программа профессионального модуля (далее программа) - является частью основной образовательной программы (далее - ПООП) в соответствии с федеральным государственным стандартом (далее - ФГОС) ...