В работе даётся представление о том, что такое землетрясение, каковы меры защиты.
Вложение | Размер |
---|---|
chto_takoe_zemletryasenie.doc | 328 КБ |
chto_takoe_zemletryasenie.ppt | 1.81 МБ |
МОУ Барандатская СОШ
Что такое землетрясение?
Исследовательская работа по ОБЖ
Выполнил: Баранов Антон, ученик 9 класса Руководитель: Городилов С.А., учитель ОБЖ |
Что такое землетрясение.
Землетрясение – это внезапное высвобождение энергии, накопленной в сжатых или растянутых горных породах. Оно проявляется в подземных толчках и колебаниях земной поверхности. Немногие из грозных явлений природы могут сравниваться по разрушительной силе и опасности с землетрясениями. Их летопись насчитывает миллионы жертв, сотни погибших городов. Каждый человек, живущий на Земле, привык считать земную твердь чет-то прочным и надежным. Когда же она начинает сотрясаться, взрываться, оседать, ускользать из-под ног, человека охватывает ужас. Глагол "трястись" абсолютно точно описывает происходящее с земной поверхностью во время землетрясения: она вздымается, колеблется, вибрирует и даже раскалывается. Эти движения продлжаются несколько секунд, самое большое несколько минут, но тем не менее они могут повлечь за собой катастрофические последствия. Вот как очевидец описывает землетрясение: "Земля вздрогнула; ее первая судорога длилась почти 10 секунд: треск и скрип оконных рам, звон стекол, грохот падающих лестниц разбудили спящих… Как бумажный разрывался потолок… в темноте все казалось падало. Земля глухо гудела… Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины, и стены рассыпались, заваливая улицы и людей среди них тяжелыми грудами острых кусков камня…" Частота колебаний некоторых сейсмических волн бывает такой, что они становятся слышны человеку, животные же могут воспринимать звук в значительно более широком диапазоне. В различных описаниях звуки, сопровождающие землетясение, сравниваются с сильным ветром, шумом скорого поезда, отдаленным орудийным раскатам. Рассказы некоторых очевидцев свидетельствуют, что во время землетрясения бывают вспышки света. Иногда этот яркий свет можно объяснить молниями или замыканиями электроприборов. Но не исключена возможность, что некоторые из этих вспышек связаны с неизвестными явлениями при движениях земной коры.
Землетрясения представляют собой движение земной поверхности, вызванные воздействием сейсмических волн (по-гречески "сейсмос" - землетрясение). Сейсмические волны обычно ощущаются как сильные, интенсивные движения поверхности. Иногда наблюдаются земные волны в буквальном смысле слова: волны движутся по земле как по озеру. Они особенно опасны. Они раскалывают строения, встряхивая их так, что рушатся даже прочные стены. В городских районах здания вибрируют настолько сильно, что распадаются на части. При этом часто возникают пожары, так как разрушаются газовые магистрали и происходят замыкания в электрических цепях.
Если и водопроводная сеть оказывается поврежденной, город сможет сгореть, и предотвратить это почти невозможно. Бывали случаи, когда от подземных толчков люди подлетали так высоко, что, падая, разбивались насмерть. К счастью, такие мощные удары волн случаются редко. Для людей и строений опасны не только сами по себе колебания земли. Для землетрясений характерно множество сопутствующих явлений, которые увеличивают число жертв, - это гигантское цунами, крупные обвалы и снежные лавины, грязевые потоки - сели, оползни. Наиболее широко известным фактором является возникновение в земле трещин, которые согласно некоторым описаниям поглощали людей, животных, дома и даже целые деревни. Во время землетрясений, также бывают резкие опускания больших участков, которые могут сопровождаться мгновенным затоплением. Одним из наиболее разрушительных последствий землетрясения являются оползни, сели, снежные лавины. В прибрежных районах к одним из самых страшных явлений, сопутствующих землетрясениям, относятся цунами. Многие люди впервые задумались над могучим явлением природы, ученые начали изучать землетрясения.
Причины и природа землетрясений.
Верхнюю часть земной коры составляют около десятка огромных блоков - тектонических плит. Эти плиты перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературной мантии. Здесь изображено движение плит навстречу друг другу. Из-за сопротивления пород в месте разлома накапливается напряжение, что изображено увеличивающимися бардовыми стрелками.
Напряжение внутри земной коры растет до тех пор, пока не превысит прочности самих пород. Тогда пласты горных пород разрушаются и резко смещаются. Такое резкое смещение пород называется подвижкой. Вертикальные подвижки приводят к резкому опусканию или поднятию пород. Обычно смещение составляет лишь несколько сантиметров, но энергия, выделяемая при перемещении миллиардов тонн породы даже на малое расстояние, огромна. Накопленное напряжение в месте подвижки снимается.
Хотя землетрясения часто описывают как мгновенные события, что вполне справедливо в масштабе Земли, подвижка продолжается в течение некоторого интервала времени. Так, например, землетрясение 1906 г. в Сан-Франциско длилось около 40 секунд; продолжительность великого землетрясения на Аляске в 1964 г. было более 3 минут. Точка, в которой начинается подвижка, называется очагом, фокусом или гипоцентром землетрясения. Точка на земной поверхности, расположенная непосредственно над очагом, называется эпицентром. Здесь сила подземных толчков достигает наибольшей величины. Фокус землетрясения может находиться на разной глубине, поэтому землетрясения классифицируются на глубокофокусные (очаг землетрясения на глубине 300-700 км), промежуточные (глубина очага 55-300 км) и мелкофокусные (очаг от поверхности менее 55-60 км) землетрясения.
При землетрясении в очаге частицы горных пород перемещаются, колеблются. Они толкают, колеблют соседние частицы, которые передают колебания еще дальше в виде акустической волны. Акустические волны, которые возникают при землетрясении, называются сейсмическими. Различают несколько типов сейсмических волн: волны сжатия, волны сдвига и поверхностные волны.
Причины землетрясений
Большая часть землетрясений связана с процессами горообразования или разломами литосферных плит. Такие землетрясения называются тектоническими.
Верхнюю часть земной коры составляют около десятка огромных блоков - тектонических плит. Эти плиты перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературной мантии. Одни плиты двигаются навстречу друг другу (как, например, в районе Красного моря).
Другие плиты расходятся в стороны, третьи скользят друг относительно друга в противоположных направлениях (это наблюдается, например, в зоне разлома Сан-Андреас в Калифорнии). Породы обладают определенной эластичностью, и в местах разломов - границ плит, где действуют силы сжатия или растяжения, постепенно накапливаются напряжения. Землетрясения возникают не только в местах разломов - границ плит, но и в центре плит под складками - горами, образующимися при выгибании пластов вверх в виде свода (места горообразования). Одна из самых быстрорастущих складок в мире находится в Калифорнии вблизи Вентуры. В этих складках действуют сжимающие силы, которые возникают при столкновении двух движущихся плит. Когда такое напряжение горных пород снимается за счет резкой подвижки, то и возникает землетрясение.
Бывают вулканические землетрясения. Лава и раскаленные газы, бурлящие в недрах вулканов, могут толкать и давить на верхние слои земли, как пары кипящей воды на крышку чайника. Они довольно слабые, но продолжаются долго, иногда месяцами. Сотрясения земли могут быть вызваны обвалами и большими оползнями. Так возникают местные обвальные землетрясения.
За последние десятилетия в числе причин землетрясений появился новый фактор - деятельность человека. Проводя подземные ядерные взрывы, закачивая в недра или извлекая оттуда большое количество воды, нефти или газа, создавая крупные водохранилища, которые своим весом давят на отдельные блоки земной коры, человек, сам того не желая, может вызвать подземные удары.
Тектонические плиты
Новая глобальная тектоника, или тектоника плит, была разработана в конце 60-х годов нашего века и послужила могучим импульсом для развития науки о Земле.
В основе тектоники плит лежит представление, что литосфера разбита на крупные плиты. Таких плит - огромных блоков - около десятка. Эти плиты перемещаются, скользя по пластичной частично расплавленной астеносфере Причиной движение тектонических плит является то, что внутренние слои Земли находятся в почти постоянном, очень медленном движении под воздействием конвекционных потоков, поднимающихся из высокотемпературных глубин мантии. Такое движение литосферных плит приводит к тому, что материки дрейфуют.
Плиты перемещаются относительно друг друга с разными скоростями, от нескольких сантиметров до 20 см в год и больше. Одни плиты двигаются навстречу друг другу и иногда перекрываются, другие расходятся в стороны, третьи скользят вдоль границ в противоположных направлениях. Близ срединно-океанических хребтов литосферные плиты наращиваются за счет вещества, поднимающегося из недр, и раздвигаются (такой процесс называется спредингом). В глубоководных желобах одна плита подвигается под другую и поглощается мантией (такой процесс называется субдукция).
Исследования показали, что в срединно-океаническом хребте, находящимся на дне Атлантического океана, идет процесс образования новой океанической коры. Таким образом, дно Атлантики равномерно расширяется. В других частях земного шара происходит обратный процесс. Так, например, в северо-западной части Тихого океана океаническая кора поддвигается под материк Евразия и погружается в мантию Земли. В результате общая площадь поверхности Земли не изменяется, поскольку расширение дна в Атлантике, которое идет со скоростью около двух сантиметров в год, уравновешивается сокращением Тихого океана.
В некоторых местах два участка земной коры трутся краями друг о друга, но роста или разрушения коры не происходит. Такой процесс сейчас происходит в знаменитом разломе Сан-Андреас в Калифорнии.
Выделяются 3 основных типа границ плит: дивергентные - на них плиты раздвигаются, там образуется новая океаническая кора (на предыдущем рисунке они изображены красным цветом); трансформные - по этим границам плиты скользят друг относительно друга в противоположных направлениях (на рисунке они синего цвета); конвергентные - у этих границ плиты сходятся, причем одна из них поддвигается под другую и погружаются в мантию (на рисунке они желтого цвета). Если на рисунке граница между плитами не раскрашена другим цветом, значит в этих местах характер границы еще не установлен.
Границы между плитами являются геологически активными зонами: тут извергаются вулканы, происходят землетрясения.
Глубокофокусные землетрясения
Большинство землетрясений происходит в литосфере, т.е. на глубине до 200 км. Здесь земная кора растрескивается подобно фарфору. Напряжения накапливаются в ней до тех пор, пока не образуется разрыв и подвижка горных пород. Однако иногда очаги землетрясения находятся на глубинах вплоть до 700 км.
Наиболее разрушительным из глубоких землетрясений в последние годы было землетрясение 1977 года в Румынии с магнитудой 7.2; в 1970 году землетрясение с магнитудой 7.6 произошло в Колумбии на глубине 650 км.
По современным представлениям о внутреннем строении Земли на таких глубинах вещество мантии под действием тепла и давления переходит из хрупкого состояния, при котором оно способно разрушаться, в тягучее, пластическое. Как же могут происходить землетрясения на таких глубинах?
Известно, что везде, где глубокие землетрясения случаются достаточно часто, они "обрисовывают" некоторую наклонную плоскость, начинающуюся вблизи земной поверхности и уходящуую в недра Земли до глубины 700 км. Эти плоскости стали называть зонами Вадати-Беньоффа по имени японского сейсмолога Вадати и американского - Беньоффа, которые впервые открыли это явление. Эти зоны привязаны к местам, гле сталкиваются плиты. Одна плита изгибается и поддвигается под другую, погружаясь в мантию. Зона глубоких землетрясений как раз и связана с такой опускающейся плитой.
Хотя для объяснения глубоких землетрясений выдвинуто множество интересных идей, но в течение 60 лет, прошедших после открытия глубоких землетрясений, они все еще остаются загадкой. До сих пор неясен механизм возникновения очага землетрясения в таких размягченных породах.
Влияние Солнца и Луны на Землю.
Подземные катаклизмы во многом еще загадочны. И не удивительно, ведь в "подготовке" землетрясений участвуют различные силы и факторы. В последнее время уделяют много вниманию изучению влияния, которое оказывает на Землю наше дневное светило. Накоплено уже немало фактов, говорящих о том, что некоторые процессы, происходящие на Солнце, оказывают явное воздействие на природные явления на Земле. Интересно, что в годы, когда на Солнце возрастает количество солнечных пятен (что связано со вспышками на Солнце), на Земле усиливается тектоническая деятельность. Американский геофизик Д.Симпсон, изучавший этот вопрос, пишет, что "если число солнечных пятен достигает 150, то вероятность возникновения землетрясений приблизительно на 31% выше, чем когда число солнечных пятен составляет 50, а если разница в числе солнечных пятен по сравнению с предыдущим днем равняется +20, то вероятность возникновения землетрясений приблизительно на 26% выше, чем когда такого резкого перепада нет". К такому выводу ученый пришел, проанализировав 22 000 землетрясений, происходивших между 1950 и 1963 г. На составленной им диаграмме видно, что землетрясения чаще происходят тогда, когда уровень солнечной активности быстро и резко меняется. Больше всего сильных вспышек на Солнце происходит, как известно, в период, когда солнечная активность (в период 11-летнего цикла) идет на убыль. И в это же время у Земли чаще возникают судороги. Еще одна космическая связь. Ученые, изучив исторические записи различных природных явлений почти за 900 лет, обнаружили, что самые сильные и разрушительные землетрясения связаны с полнолунием. Между тектоническими процессами на Луне и на Земле существует такая тесная связь, словно луна не самостоятельное небесное тело, а один из материков Земли. Например, происходит землетрясение в Японии или Египте, а день спустя в одном из кратеров Луны наблюдается свечение газов. Случайность? Многолетние наблюдения показывают, что чуть ли не каждое землетрясение отзывается необычными явлениями на поверхности Луны. Предположить, что эти события никак между собой не связаны, было бы совершенно неправдоподобно. Число лунных явлений (извержений вулканов, колебаний грунта) резко возрастает как накануне, так и сразу же после землетрясений. А это означает, что наблюдения за Луной могут предсказывать землетрясения. Максимум лунных явлений, который наступает примерно через два дня после сильного землетрясения, показывает, что процессы в коре Земли отзываются какими-то изменениями в наружных слоях Луны.
Турция и Иран
Турция занимает большую территорию в пределах сейсмического пояса Гималаи - Средиземноморье. Эта страна подвергалась землетрясениям на протяжении всей своей истории. В 1939 году во время землетрясения, магнитуда которого составила 7.9, в городе Эрзинджан погибло 40 тысяч человек. С тех пор в Турции произошло более 20 землетрясений, унесших еще 20 тысяч человеческих жизней. Одно из последних землетрясений, происшедшее 24 ноября 1976 года, имело магнитуду 7.6 по шкале Рихтера. Землетрясение произошло в высокогорной части Турции на границе с Советским Союзом и Ираном. Разгулявшаяся стихия смела с лица Земли город Мурадие, почти полностью разрушены 200 деревень. Спасательные работы были затруднены из-за многочисленных повторных толчков. Отдаленность этого района и низкие температуры усугубили бедственное положение тысяч деревенских жителей, оставшихся без крова. Число жертв превысило 5 тысяч человек.
Много землетрясений происходит и в Иране. Только за последние десятилетия в этой стране произошло несколько крупных землетрясений. Так к числу катастрофических землетрясений последних десятилетий относится землетрясение, происшедшее осенью 1962 года в северо-западном Иране. В результате были полностью разрушены несколько крупных городов страны, погибло около 12 тысяч жителей, и более 100 тысяч остались без крова. В 1972 году произошло землетрясение в центральной части Ирана магнитудой М=7.1, погибло 5400 человек, полностью разрушен город Кир. В 1978 году в городе Тебесе произошло землетрясение силой М=7.7 по шкале Рихтера. Погибло 15 тысяч человек, в самом городе Тебесе из 13 тысяч жителей погбило 9 тысяч. Несколько землетрясений было в 1981 году силой 6.9 - 7.3 по шкале Рихтера. Сильно был разрушен город Сирч, 50 тысяч человек остались без крова, погибло 5.5 тысяч человек.
Перу
1 мая 1970 года в Перу произошло сильное землетрясение с магнитудой М=7.8 по шкале Рихтера. Это была величайшая сейсмическая катастроф в Западном полушарии. Землетрясением оказалась охвачена территория размером 100 кв.км. Эпицентр находился в 25 км от берега к западу от Чимботе - морского порта с населением около 120 тысяч жителей. Человеческих жертв в Чимботе, к счастью, было сравнительно немного: как только начались толчки, люди выбежали на улицы, погибло 500 человек. Но в 50 км в глубь материка, в густонаселенной в непосредственной близости от высоких гор, число погибших достигло ужасающей цифры. Менее чем за 30 секунд обрушилась большая часть зданий в городе Уарасе, погибла почти половина его населения - 10 тысяч человек. На крутых склонах молодых гор произошли десятки оползней. Землетрясение вызвало множество снежных лавин. Одна из снежных лавин всего за две минуты достигла города Юнгай. Передняя стена снежной лавины была выше всех зданий в городе. От некогда живописного красивого города с красивой площадью и собором осталась лишь небольшая часть соборной стены и 4 пальмы. Из 18 тысяч жителе города погибло 15 тысяч. Далее лавина промчалась еще 12 км вниз по долине, уничтожив на своем пути другие населенные пункты. В общей сложности во время перуанского землетрясения погибло 70 тысяч человек, 50 тысяч было ранено и 800 тысяч остались без крова.
Мексика
19 сентября 1985 года в Мексики произошло сильное землетрясение с магнитудой 8.2. Эпицентр находился в Тихом океане. Больше всего пострадала столица страны - Мехико, город-гигант с 17-миллионным населением. Под ударами слепых сил стихии превращались в груду развалин целые жилые кварталы, в центральных районах города как карточные домики падали дома небоскребы, отели, банки. Рухнула стометровая телевизионная башня, снеся несколько зданий на своем пути. Образовавшееся в результате разрушений тысяч домов гигантское облако серой цементной пыли закрыло небо над Мехико. Тысячи людей оказались заживо погребенными под развалинами домов, школ и церквей. Не пощадила стихия и крупнейший в Латинской Америке больничный комплекс. Новый сильный толчок последовал 20 сентября силой 7.3. Через 10 дней, утром 30 сентября, в Мехико произошло третье по счету землетрясение. В общей сложности в период с 19 по 30 сентября приборы национальной сейсмической службы зарегистрировали свыше 70 толчков интенсивностью от 4.5 до 7.8 по шкале Рихтера. На этом беды многострадальных мексиканцев не закончились. 10 октября на Мехико обрушились ливневые дожди с градом. Земля оказалсь покрытой слоем града, толщина которого достигала в отдельных районах города 70 см. 21 октября в Мехико вновь ощущались небольшие подземные толчки, а 29 октября произошло новое землетрясение интенсивностью 5.7. По сообщениям мировой печати в результате происшедших землетрясений по всей Мексики погибло более 7.5 тысяч человек. Подземные толчки разрушили и серьезно повредили 7 тысяч зданий, 350 тысяч мексиканцев лишились крова.
Китай.
На территории Китая, в поясе, простирающем от Юнняня до Пекина издавна отмечалось много землетрясений. Возможно там проходит линия какой-нибудь границы плит. Два самых сильных в истории Китая землетрясения, которые одновременно явились и одними из самых разрушительных в мире, наблюдались именно в этих местах. Эпицентр самого разрушительного в Китае землетрясения (М=8.0), произошедшего в 1556 году, находился в провинции Сиань. Сиань расположен на берегу великой реки Хуанхэ, где равнины наполнены рыхлыми осадками. По рассказам очевидцев, целые города погружались в грунт, разжиженный вследствие колебаний, и тысячи жилищ, вырытых в рыхлых холмах, обрушились в считанные секунды. Поскольку землетрясение произошло в 5 часов утра, большинство семей еще находилось дома и с этим, несомненно, связано огромное число жерв - 830 тысяч человек. В нашем столетии одно из самых крупных землетрясений в Китае произошло 28 июля 1976 г. в 3 часа 42 минуты местного времени, прямо под Таншанем, городом с населением около полутора миллиона человек, расположенным в 160 км прямо на восток от Пекина. Землетрясение имело магнитуду 8.2. Масштаб разрушений и число жертв были почти беспрецедентными. Жилые дома, заводы превратились в груду обломков. Весь город практически сравнялся с землей. Некоторые районы покрылись множеством огромных трещин. Одна из таких трещин поглотила здание больницы и переполненный пассажирами поезд. Пострадали не только дома - были обрушены мосты, искривлены железнодорожные пути, перевернуты поезда, повреждены автострады, разорваны трубопроводы, нарушены плотины. Официальных сообщений об этой катастрофе из Китая не поступало, но в достоверном отчете, помещенном в гонконгской газете, сообщалось, что погибло 655 237человек.
ДЕТОНАЦИЯ СЖАТОЙ НЕФТИ:
ОДНА ИЗ ВОЗМОЖНЫХ ПРИЧИН СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ
В качестве рабочей гипотезы для объяснения причин землетрясений, официальная наука использует концепцию “сброса энергии механических деформаций в земной коре”. Эта концепция далеко не бесспорна и, не затрагивает главных причин землетрясений. Слабые, но частые сейсмические события, сопровождающие вулканическую деятельность, мы попытались объяснить действием джоулева тепла от теллурических токов]. Что же касается невулканических и, в особенности, самых сильных землетрясений, то для них требуется иное объяснение. В настоящей статье предлагается качественная модель, согласно которой эти землетрясения обусловлены детонацией, благоприятные условия для которой могут возникать в подземных нефтяных озёрах. Почему мы обратили внимание на природные скопления нефти? Потому что расположения нефтяных месторождений и эпицентров не-вулканических землетрясений неплохо скоррелированы. Кроме того, история нефтеразработок знает случаи, когда искусственный подземный взрыв – например, для закупорки скважины – вызывал сильное землетрясение. Подземная нефть серьёзно не рассматривалась на предмет взрывоопасности лишь из-за предпосылки о том, что для взрыва углеводородов непременно требуется окислитель – например, кислород воздуха – которого нет под землёй. Действительно, для взрыва окислитель требуется; но детонация, согласно ранее изложенной модели – это качественно иное явление: она не имеет ничего общего с окислением, являясь цепной реакцией распада резонирующих (по Полингу) молекул. Напомним, что здесь под резонансом понимается циклическое переключение конфигураций химических связей в молекуле, благодаря которому и обеспечивается стабильность такой молекулы . Остановка резонанса приводит к распаду молекулы, при этом выделяется “энергия резонанса”. Как можно видеть, резонанс возможен в тех молекулах, которые имеют не только одинарные связи, но и двойные и/или тройные. Молекулы насыщенных углеводородов, ради которых добывают нефть, содержат лишь одинарные связи; следовательно, они не резонируют и к детонации не способны. Двойные же связи имеются в молекулах ненасыщенных углеводородов, содержание которых в нефти может достигать 40% . Поэтому не так уж фантастична идея о том, что, при определённых сочетаниях физических параметров, неочищенная нефть представляет собой смесь, которая способна детонировать. Следует оговорить, что вряд ли условия для детонации могут создаваться сразу во всём объёме подземного нефтяного озера. Известно, что, в отсутствие активных процессов перемешивания, в нефтегазовой каверне лёгкие фракции преобладают наверху, а тяжёлые – внизу. Ненасыщенные углеводороды принадлежат к самым тяжёлым фракциям, поэтому их концентрация максимальна в придонной области каверны. Тогда условия для детонации должны создаваться, в первую очередь, именно в этой области. Главный естественный сценарий, по которому эти условия создаются, начинается, на наш взгляд, с относительно быстрого повышения температуры в каверне. Известно, что газоконденсат весьма чувствителен к повышению температуры: если он занимает всю верхнюю часть объёма каверны, так что газовая фаза над ним отсутствует, то повышение температуры приводит к сильному повышению давления в газоконденсате и, соответственно, во всём объёме нефтяного озера. Можно допустить, что повышенное таким образом давление достигает значений, при которых начинается реструктуризация “рыхлых” молекул – в сторону получения более плотной атомной упаковки. При этом молекулы ненасыщенных углеводородов, как можно предположить, ассоциируются в гипермолекулы с большим количеством двойных связей и, соответственно, стабилизированные большим количеством резонансов. Тогда в объёме, где давление и концентрация ненасыщенных углеводородов достаточны для образования таких гипермолекул, образуется “гремучий коктейль”. При понижении внешнего давления он, по-видимому, теряет свои гремучие свойства, но, пока он их не потерял, очаг возможного землетрясения находится в состоянии полной готовности. Детонационная версия происхождения сильных землетрясений имеет, на наш взгляд, явные преимущества перед традиционной версией. Действительно, “сбросы энергии механических напряжений” могут приводить лишь к локальным разрушениям пород – к растрескиванию, крошению. Но никакое растрескивание, происходящее на глубинах в десятки километров, не способно создавать в земной коре тех мощных сферических волн повышения давления, которые возникают при сильных землетрясениях. Такую волну, как можно видеть, способно создать лишь взрывообразное выделение энергии в очаге. Хорошо известно, что искусственно вызвать такую волну удаётся лишь с помощью мощного подземного взрыва. Ещё одним преимуществом детонационной версии является то, что она даёт простое объяснение общего повышения сейсмичности в годы активного Солнца, а также ярко выраженного возрастания сейсмичности спустя несколько суток после отдельных гигантских вспышек на Солнце. Как установлено, при солнечных вспышках в окружающее пространство выбрасываются облака плазмы. Такое облако, достигнув окрестностей Земли, создаёт там избыточные количества заряженных частиц обоих знаков. Это, в свою очередь, приводит к увеличению силы теллурических токов. Соответственно, происходит дополнительное выделение джоулева тепла, которое, как изложено выше, запускает сценарий образования “гремучих коктейлей” на нефтяных месторождениях. Наконец, мы попытаемся объяснить, почему аномальные световые и электрические явления – свечение воздуха и отключенных люминесцентных ламп, коронирование острий, и др. – нередко оказываются предвестниками сильного землетрясения и почти всегда его сопровождают. Если образованию “гремучего коктейля” действительно предшествует значительное повышение давления в нефтегазовой каверне, то это повышение давления увеличивает механические напряжения в окружающих породах. При этом могут работать различные механизмы перераспределения электрических зарядов, например, электризация из-за трения или из-за микроразрушений, а также пьезоэлектрические явления. Всё это может приводить к различным формам электрических разрядов, которые и наблюдаются на поверхности. Если детонации “гремучего коктейля” суждено произойти, то эти разряды оказываются её предвестниками. И ясно, что после того как детонация произошла, вышеназванные электрические явления, по мере продвижения волны сжатия, должны происходить с гораздо большей интенсивностью. Что касается способов инициирования “гремучего коктейля”, то, похоже, они традиционны: детонация может быть вызвана, во-первых, электрическими искрами, например, из-за подвижек или растрескивания прилегающих пород, и, во-вторых, ударной волной – от взрыва тяжёлого фугаса или, что оказывается особенно эффективным, от подземного ядерного взрыва. В открытых источниках информации появлялись сообщения о том, что специалисты, сопоставлявшие статистику ядерных взрывов и статистику землетрясений, приходили к выводу: даже испытательный подземный ядерный взрыв способен не только инициировать землетрясения в радиусе до 1500 км, но и вызывать цепочки последовательных землетрясений, которые продвигаются на гораздо большие расстояния. Так называемое “тектоническое оружие” оказалось плохо управляемым, и это заключение сыграло свою роль в том, что международное соглашение о запрещении подземных ядерных взрывов было, наконец, подписано. Официальная наука не сделала из этого никаких выводов и до сих пор придерживается версии о “сбросах механических напряжений”. Уместно напомнить, что в своё время, руководствуясь этой версией, академик А.Д.Сахаров участвовал в разработке проекта предотвращения землетрясений, предполагавшего заблаговременный сброс механических напряжений с помощью подземных ядерных взрывов. С учётом вышеизложенного, бороться таким способом с вулканическими землетрясениями – бесполезно; применять же его против детонационных землетрясений - это всё равно что пытаться предотвратить взрыв кучки тротиловых шашек, взрывая рядом с ней капсюли-детонаторы. Кстати, существуют регионы, в которых сконцентрированы как вулканические, так и детонационные источники сейсмичности. Например, конгломераты вулканов и нефтяных месторождений имеются в Индонезии. Надо полагать, что в таких конгломератах процессы, приводящие к вулканическим и детонационным землетрясениям, взаимодействуют, усиливая друг друга. И, по-видимому, не случайно именно в Индонезии произошло, как полагают, самое мощное природное сейсмическое событие в обозримой истории – взрыв Кракатау. Итак, мы изложили детонационную модель происхождения не-вулканических землетрясений. Как проиллюстрировано выше, эта модель качественно объясняет целый ряд закономерностей, загадочных для официальной науки, поэтому можно ожидать, что научные прогнозы сильных землетрясений с учётом детонационной модели окажутся более реалистичными. Если детонационная модель верна, то классификация сильных землетрясений в терминах тротилового эквивалента подчёркивала бы сущность этих грозных природных явлений.
Землетрясение у берегов Индонезии было сильнейшим с 1964 года, когда мощнейший подземный толчок (9,2 балла по шкале Рихтера) произошел на Аляске. По своей разрушительной силе (по количеству погибших) это землетрясение стоит на 2-м месте в списке крупнейших землетрясений современности, и входит в десятку самых крупных катастроф за всю историю.
Самым разрушительным стихийным бедствием подобного рода может считаться землетрясение в местечке Шэньси провинции Сиань на берегу реки Хуанхэ в середине XVI века, происшедшее 23 января 1556 года в 5 часов утра – тогда погибли, по данным китайских исторических источников, свыше 830 тысяч человек. Тектонический сдвиг привел к обвалу стен узких долин, зажатых между возвышенностями. И в считанные минуты заживо погребенными оказались сотни сел со всеми своими обитателями. Шеньси принадлежит печальный рекорд человеческих потерь при землетрясениях. Этот рекорд пока еще не побит. И во многом благодаря тому, что современная наука в некоторых случаях умеет предсказывать землетрясения. В том же Китае в 1974 году были спасены тысячи жизней. Ученые вовремя заметили надвигающуюся беду, и люди успели эвакуироваться из опасной зоны.
Тем не менее на втором месте в рейтинге землетрясений и извержений вулканов снова стоит стихийное бедствие в Китае, на этот раз не средневековое, а вполне современное – в 1976 году мощное землетрясение произошло 28 июля в городе Тян-Шань недалеко от Пекина. Сила подземных толчков тогда достигала 7,8 балла по шкале Рихтера, погибшими считаются 242 тысячи человек. Это самое разрушительное землетрясение в мире по числу жертв в двадцатом веке.
Примечательно, что из десяти самых смертоносных стихийных бедствий (землетрясений и извержений вулканов) всех времен и народов ровно половина – пять – приходится на Китай. Видимо, за счет, в основном, двух факторов - того, что значительная часть страны находится в сейсмически опасной зоне, и того, что Китай остается самой густонаселенной страной планеты, и соответственно, во многих районах государства уровень плотности населения значительно превышает аналогичные показатели других регионов мира.
В целом, по данным Национального информационного центра землетрясений при Геологической службе США, в мире в самых разных уголках планеты происходит в среднем в год одно землетрясение катастрофической степени (силой в 8 и более баллов), 18 землетрясений, которые можно квалифицировать как «очень сильные» (7-7,9 балла), 120 просто «сильных» землетрясений (6-6,9 балла), около 800 «умеренных» колебаний почвы (5-5,9 балла), более 6 200 легких землетрясений (4-4,9 балла), почти 50 тысяч «слабых» (3-3,9 балла).
Однако количество человеческих жертв, которыми оборачиваются землетрясения, зависит не только от их силы, расстояния эпицентра от поверхности земли и структуры почв в этом районе, но и в значительной степени от ряда других факторов. Так, сильно влияет на разрушительность землетрясения тип и степень скученности застройки в пострадавшем районе. Например, землетрясение в 5-6 баллов в густонаселенном районе Японии может вообще обойтись без человеческих жертв благодаря относительной приспособленности инженерных конструкций. Аналогичное землетрясение даже в средненаселенном районе, например, Турции или Ирана, может обернуться сотнями, иногда даже тысячами унесенных человеческих жизней. Важно также, попадают ли в зону землетрясения сложные технические сооружения – заводы, или, например, плотины, разрушения которых могут вызвать наводнения.
Как отмечают эксперты, в последнее время наблюдается уменьшение среднегодового количества сильных землетрясений по сравнению с их среднемноголетним числом. А самыми сейсмоопасными районами (не в плане вероятности ощутить подземные толчки, а в плане опасности погибнуть от землетрясения или от его последствий) по-прежнему остаются Китай, Иран, Турция и Филиппины.
Движущие силы.
Первопричиной таких явлений, как землетрясения, дрейф континентов, горообразование, извержения вулканов, в конце концов, является тепло земных недр. Видится несколько основных механизмов превращения этого тепла в механическую энергию, преобразующую земную поверхность:
Здесь перечислены только главные (по нашему мнению) механизмы возникновения движущих сил тектонических процессов. Другие силы или намного меньше, или возникают вследствие действия уже перечисленных сил в различных условиях, и не могут быть затронуты в рамках короткой работы.
А) Средняя температура недр нашей планеты за счет отвода внутреннего тепла через земную поверхность в космос (с геотермическим градиентом порядка 30°С/км) медленно, но неуклонно снижается независимо от природы тепла внутренних областей Земли, будь это остаточное тепло давних процессов, или тепло, генерируемое и сегодня радиационными распадами. Например, генерация тепла за счет распада урана U235 снижается вдвое каждые 0.7 млрд. лет (период полураспада U235). Падение средней температуры недр нашей планеты, скажем, на 100°С, приводит к сокращению линейных размеров (диаметра), объема и площади поверхности планеты. Площадь поверхности жесткой "несжимаемой" земной коры при этом вынуждена уменьшиться примерно на 1 млн. км2, хотя объем вещества коры остается почти неизменным (поскольку температура поверхности планеты (коры) практически не изменилась при уменьшении температуры недр). Поэтому "лишняя" часть вещества оставшейся неизменной по объему коры (вынужденной уменьшить свою поверхность - она не может висеть в воздухе над слегка уменьшившейся планетой) выдавливается в виде гор общим объемом порядка первых млн. км3 за время остывания недр Земли на 100°С в процессе, казалось бы, ничтожного уменьшения размеров планеты. Линейный коэффициент температурного расширения вещества недр Земли принят равным k = 0.0001*(1/1°С).
Отметим, что объем гор, образующихся вследствие уменьшения размеров Земли (обусловленного уменьшением средней температуры недр), очень мал по сравнению со скоростями эрозионных процессов и с возможностями двух других механизмов, описываемых ниже.
Б) Судя по концентрации теплогенерирующих радиоактивных веществ в земной коре (концентрация известна из измерений) и по инструментально найденной неизменности темпа роста температуры по мере углубления в твердую кору ([1]), температура с глубиной растет так быстро, что из-за высокой температуры ниже поверхности Мохо вещество должно находиться уже не в твердом, а в жидком состоянии ([2]). Выше поверхности М глубинное тепло передается за счет теплопроводности в твердой среде (с большим тепловым сопротивлением и термоградиентом), а ниже (из центральных областей Земли к поверхности М) - более эффективным путем переноса тепла конвекционными потоками в жидкой магме (пусть даже в очень вязкой, малоподвижной). Поэтому на поверхности М возможен переход вещества из жидкого состояния в твердое (кристаллизация более легких и тугоплавких составляющих магмы на нижней поверхности коры) и изменение, вследствие этого, плавучести коры. Скорость подъема дневной поверхности за счет этого может достигать долей и единиц миллиметров в год для коры толщиной порядка 30-50 км (для менее толстой коры скорость подъема может быть выше). Скорость подъема верхней поверхности коры, плавающей в мантии, равна скорости увеличения толщины коры, умноженной на отношение разности плотностей вещества мантии и коры и плотности вещества мантии (dмант - dкоры) / dмант. Максимальная скорость изменения толщины коры (скорость кристаллизации вещества мантии на нижней поверхности коры) может быть вычислена, исходя из знания теплового потока через кору и теплоты кристаллизации для случая, когда снизу тепло совершенно не подводится, так что наверх через кору отводится только тепло кристаллизации [2]. На самом же деле, скорости подъема - погружения коры много ниже - скорость кристаллизации далека от максимальной - наверх проводится и тепло кристаллизации, и тепло, подходящее к нижней поверхности коры из глубин. При неравномерном подъеме разных участков коры в ней возникают огромные напряжения изгиба и вертикального сдвига, разряжающиеся в моменты превышения предела прочности пород коры (с землетрясениями [2]). Подъем-опускание коры за счет изменения ее толщины обеспечивает также медленное увеличение-уменьшение ее высоты над уровнем моря за большие промежутки времени, а также восстановление некоторой части объема материковой коры, которого она лишается в процессе эрозии.
Миллиарды лет назад на нижней поверхности более тонкой тогда коры (поток глубинного тепла и геотермический градиент были намного больше) кристаллизовались наиболее тугоплавкие и легкие составляющие тогдашней магмы, в результате чего образовалась гранитная кора (нынешние материки). При этом за счет вымывания из состава магмы более легких составляющих ее состав слегка изменился. Так что в последующее время на нижней поверхности коры из магмы кристаллизовались уже не граниты, а более тяжелые базальты медленно изменяющегося состава (в зависимости от времени их образования).
В) Можем вычислить величину силы вязкого трения, с которой конвекционный мантийный поток увлекает (тянет) плавающую на его поверхности кору и заставляет ее медленно перемещаться вместе с ним - дрейфовать. Для этого нам придется принять некоторую модель потока.
Понятно, что свободная поверхность невязкой жидкости в поле силы тяжести, например, воды в океане, практически горизонтальна - иначе жидкость сразу же стечет сверху вниз, и поверхность станет горизонтальной. Поверхность воды в океане является эквипотенциальной (потенциал гравитационного поля на ней всюду одинаков) и образует геоид. Точно также становится горизонтальной и поверхность вязкой жидкости, долгое время остающейся только под действием силы тяжести, без других воздействий.
Если на поверхности этой жидкости плавает слой более легкого вещества, то, в соответствии с законом Архимеда, горизонтальным будет приведенный уровень поверхности Lp = Lm + Hk * (dk / dm). В рассматриваемом нами случае на поверхности мантии плавает более легкая твердая земная кора (с толщей воды над ее океанической частью). Поэтому для каждой локальной области земной поверхности мы вычислим высоту приведенного уровня мантийного вещества, совпадающую, в среднем, с высотой свободной поверхности мантии (которую она имела бы при отсутствии плавающего на ней слоя). При этом возможны локальные отклонения из-за прочности коры:
Lp = Lm + Hk * (dk / dm) + Hокеана * (dводы / dm).
Здесь:
Lp - высота приведенного уровня,
Lm - высота уровня мант. вещества,
dm - плотность мантии (3.3 г/см3),
Hk - толщина коры,
dk - плотность коры (2.8 г/см3),
Hокеана - глубина океана,
dводы - плотность воды (1.0 г/см3).
Вычисляя приведенные уровни для многих географических точек, мы сразу же увидим, что поверхность приведенного уровня далеко не горизонтальна - так для нас проявятся расположение и интенсивность конвекционных потоков в вязкой мантии под приведенной поверхностью.
Действительно, глубина океана в окрестностях срединно-океанических хребтов (поднятий) составляет порядка 2-3 км. Толщина коры здесь, по данным разных авторов, составляет не более 5 км (скорее, меньше). Так что высота приведенного уровня магмы в области срединно-океанических хребтов составляет порядка - 2150 м (для 2 км) и - 2850 м (для 3 км).
Высота приведенного уровня в зоне Марианской впадины равна -8424 м (полагаем толщину коры здесь 5 км).
Толщина коры под Гималаями по разным данным составляет 70 - 90 км. Примем, что средняя высота земной поверхности здесь составляет порядка +4 км. Тогда высота приведенного уровня мантийного вещества для района Гималайских гор составляет от -6.6 км до -9.64 км для принятых значений плотностей коры и мантии. Конечно, действительные плотности и толщины могут отличаться от принятых нами, но уточнение их значений не изменит сути наших выводов, а только уточнит рельеф приведенного уровня.
Чем обусловлено такое отличие поверхности приведенного уровня от горизонтальной? Оно образуется из-за течения очень вязкой жидкости - мантии. Ее приведенная поверхность просто не успевает стать равновесной горизонтальной, поскольку равновесие непрерывно нарушается за счет подъема из глубин более горячего и потому более легкого вещества. Стремясь к равновесию, вязкое мантийное вещество медленно течет под земной корой от возвышенностей к низинам, от места подъема к месту опускания мантийного вещества, и остывает по ходу движения под корой за счет ее теплопроводности. Так и образуется в мантии самосогласованный квазис тационарный конвекционный поток. Причем разность высот приведенной поверхности (над восходящей и нисходящей частями потока) и является движущей силой конвекционного потока в вязкой мантийной жидкости. Если бы мантийная жидкость имела свободную поверхность, эта поверхность совпадала бы с вычисленной нами приведенной поверхностью, и выглядела бы она как совокупность поднятий над восходящими потоками и впадин над нисходящими.
При этом поднятия поверхности приведенного уровня будут иметь горизонтальные, почти плоские вершины, поскольку на вершине восходящего потока и температура выше, и давление меньше (вязкость мантийного вещества зависит от температуры и давления). Поэтому вязкость мантийного вещества здесь меньше, и поверхность приведенного уровня практически горизонтальна на сравнительно большом участке (почти как у воды). А в зоне погружения вязкость мантийного вещества намного выше - там и температура ниже, и давление выше. Поэтому в зоне погружения вязкость мантийной жидкости может быть так велика, что мантийное вещество в ходе своего погружения не будет успевать плавно принимать равновесную форму, в результате чего в зоне нисходящего мантийного конвекционного потока возможны глубинные землетрясения с быстрым разрушением слишком твердой, хрупкой жидкости, не успевающей в ходе погружения принимать равновесную форму. Вернее, при пластических деформациях - глубинных землетрясениях будет выравниваться квазиупругая деформация сжатия аморфного (очень вязкого жидкого) вещества мантии в различных направлениях.
Мантийные конвекционные потоки самосогласованны и потому устойчивы и по конфигурации и по скоростям в масштабах миллионов и миллиардов лет. Для изменения их конфигурации необходимо изменить геометрию препятствий и размещения источников и стоков тепла. Если скорость потока слишком мала, тепло не успевает отводиться, вещество перегревается, расширяется, увеличивается перепад высот, увеличивается скорость движения и теплопереноса. Если же скорость слишком велика, температура выравнивается, уменьшается перепад высот, поток замедляется.
Сравнивая полученные высоты приведенного уровня, видим, что самую большую высоту приведенная поверхность имеет в окрестностях срединно-океанических поднятий, где велик поток глубинного тепла. То есть, здесь поднимается чуть более горячий восходящий поток мантийного вещества. Отсюда и начинается движение образующейся здесь из жидкой мантии твердой коры (и пока еще очень тонкой в этом месте) в обе стороны от линии спрединга. Такой же результат дают прямые геодезические измерения и палеомагнитные исследования. А самые низкие высоты приведенной поверхности мы обнаруживаем в зонах схождения литосферных плит (в зонах глубочайших впадин и высочайших гор). Понятно, что достаточная прочность огромных участков коры может вносить свои коррективы.
Поверхность приведенного уровня коррелирует с формой геоида - километрам отклонений приведенного уровня от среднего вверх соответствуют десятки метров отклонения геоида (уровня моря) от поверхности эллипсоида вниз. Это хорошо видно при сопоставлении карт движения литосферных плит, изолиний геоида и глубин-высот. Желательно добавить карту толщины коры. Корреляция обусловлена тем, что в зоне восходящего потока равный по высоте столб более горячего мантийного вещества имеет меньшую плотность, чем такой же столб менее горячего вещества в зоне нисходящего потока. Поэтому поверхность одинакового гравитационного потенциала (геоид) в зоне восходящего потока расположена несколько ниже, чем в зоне нисходящего потока.
Мы можем оценить некоторые параметры мантийных конвекционных потоков. Вертикальные столбы мантийного вещества под приведенными поверхностями в зоне восходящего и нисходящего потоков от поверхности до низа слоя конвекции имеют приблизительно равные веса (и массы). Поэтому по толщине слоя конвекции H и по разности высот приведенного уровня H можно вычислить разность температур T в восходящей и нисходящей частях потока, задавшись значением коэффициента температурного расширения:
T = H / (H*k) = 7500м / (2 800 000м * 0.00001/1°С) 270°С.
Здесь
H = 2 800 000 м - толщина конвекционного слоя,
k = 0.00001/1°С - линейный коэффициент температурного расширения.
Исходя из теплоемкости мантийного вещества (для базальта Сq 660 ккал/( кубич.метр * градус С)), величины теплового потока (Q = 800-8000 ккал/(год*м2)) и только что вычисленной разности температур (270°С) в восходящей и нисходящей частях потока, можно вычислить скорость V мантийного конвекционного потока, доставляющего тепло из глубин к коре (которое и наблюдается как поток глубинного тепла через поверхность коры).
Q = (Сq * Т) * V ;
V = Q / ( Т * Сq) = 800-8000 (ккал/(год*м2))/(270*660) = 5-50 мм/год.
Приняв, что горизонтальное сечение конвекционного потока на 1/3 восходящее, на 1/3 нисходящее, на 1/3 неподвижное, получим скорость потока от 15 мм/год до 150 мм/год, что приблизительно совпадает со скоростью смещения литосферных плит в ходе спрединга. Для более точного определения скорости конвекционного мантийного потока нужно уточнить исходные параметры и геометрическую конфигурацию этого потока.
Отметим, что с целью более наглядного раскрытия механизма работы мантийных конвекционных потоков и вязкого увлечения ими литосферных плит (приводящего к их дрейфу) мы оставляем за рамками рассмотрения взаимно компенсирующееся адиабатическое понижение-повышение температуры при понижении-повышении давления в восходящих - нисходящих частях этих потоков и другие детали процессов, фиксируясь на главном. Подчеркнем, что движение литосферных плит обусловлено именно тем, что мантийные потоки увлекают, тянут их. Ведь если бы плиты соскальзывали по наклонной приведенной поверхности опережающими темпами (по сравнению с потоком), то они достаточно быстро заполнили бы и совсем ликвидировали впадину на этой приведенной поверхности.
Силу вязкого трения, действующую со стороны движущейся вязкой магмы на участок твердой коры шириной W = 1м, расположенный на наклонной и нижней частях поверхности приведенного уровня (усилие передается и по твердой коре от более высоко расположенных участков ко всем нижележащим), можно легко подсчитать, опираясь только на геометрию приведенной поверхности. А не на неизвестное пока значение вязкости мантийного вещества. Это возможно, поскольку в форме приведенной поверхности и проявляются вязкие свойства движущегося мантийного вещества. Причем может оказаться, что величина вязкости подкоровой магмы на разных глубинах и в различных частях конвекционного потока различна (вязкость зависит от температуры и давления, т.е., глубины расположения поверхности раздела М). О вязкости магмы под корой можно будет судить по форме поверхности приведенного уровня. Эти уточнения можно будет сделать после более точного определения формы поверхности приведенного уровня:
Рассмотрим рисунок, на котором изображен профиль наклонной части приведенной поверхности мантийного конвекционного потока. Здесь воздействие воображаемого тяжелого верхнего треугольника (с плотностью мантии d) компенсирует вертикальную и горизонтальную составляющие силы, действующей на кору со стороны нижележащей магмы. На самом же деле, горизонтальная составляющая (с которой кора увлекается движущейся магмой) компенсируется не действием воображаемого треугольника, а реакцией жесткой коры справа. Просто эта реакция коры эквивалентна воздействию воображаемого треугольника, а его легко подсчитать. В результате увлечения коры вязким потоком в большей части жесткой коры (почти повсеместно, за исключением вершины купола и других особенных точек, скажем в окрестностях разрыва или щели в коре) возникает напряжение сжатия, которое можно легко подсчитать.
F = g * d * W * (H)2
Правильность этого выражения подтверждается уже тем, что точно такое же выражение мы имеем для силы, действующей на боковую стенку прямоугольного сосуда, наполненного жидкостью до высоты H.
В соответствии с полученным выражением для горизонтального сжатия в зоне нисходящего потока (под Гималаями, считая линию сжатия параллельной линии спрединга) имеем:
F = *9.8 (м/сек2) * 3300(кг/м3) * 1м * (7 500 м)2 = 91 * 1010 н.
Эта горизонтальная сила приложена перпендикулярно к вертикальной полосе, секущей твердую кору сверху донизу. Тогда на каждый 1м2 сечения коры (толщиной 90 км) в среднем приходится сила 1*107 н (=100кгС/см2). Это примерно 1/20 предела прочности монолитного гранита в наилучших условиях (200 МПА для одноосевого сжатия при обычной температуре). Но это в среднем. На практике же, и прочность пород из-за дефектов меньше даже при низкой температуре (в верхних слоях коры), и эффективная толщина коры меньше, и перепад высот приведенных уровней может быть больше. Кроме того, большая часть сечения коры имеет высокую температуру, отчего ее прочность существенно уменьшается. Так что эффективные напряжения одноосевого (в направлении от восходящего потока к нисходящему) сжатия в твердой коре над нисходящими частями вязкого конвекционного потока вполне достаточны для превышения предела прочности пород, составляющих кору, и выдавливания в этих зонах из коры гор (в моменты землетрясений).
Если напряжения сжатия недостаточны для преодоления предела прочности, то пластические деформации не происходят, просто кора несколько напряжена - упруго деформирована. Если же сжатие так велико, что превышается предел прочности, то в результате очередного землетрясения с очагом в некоторой точке (быстрой пластической деформации) вдоль линии сжатия, проходящей через очаг землетрясения, напряжение сжатия разряжается. Тогда как в прилегающих областях (вокруг этой линии) напряжение сжатия скачком возрастает (из-за некоторого смещения коры как целого), в результате чего может иметь место такое явление, как форшоки и афтершоки. Аналогичная картина наблюдается не только при сжатии соседних плит коры, но и при их относительном сдвиге.
Средний темп генерации гор на всей Земле за счет их выдавливания из зоны сжатия составляет:
V = длина растущих гор (=60000км) * выдавливаемая часть толщины коры (=1/6Н=5км) * скорость сближения плит (=2см/год)
V 6 кубических километров в год на всей Земле.
Причем поперечное сечение выдавливаемого горного хребта (S=*B*h) увеличивается, в среднем, с постоянной скоростью (для Гималаев S = (1/6Н=15км) * (=2см/год) 300 м2 в год). Отсюда следует вывод, что высота гор h (при прочих равных условиях) меняется гораздо быстрее у низких гор (когда ширина основания горного хребта B мала). Если для Гималаев мы примем ширину зоны горного хребта, испытывающего поднятие в настоящее время, равной 60 км, то получим скорость роста высоты гор в этой поднимающейся зоне порядка 1 см/год, или 1 метр за 100 лет (без учета их разрушения). Отметим также, что, имея данные о скорости сближения плит, о скорости увеличения высоты гор, зная толщину коры и сечение горного хребта, легко увидеть, какая часть толщины коры выдавливается в виде гор вверх (действительно ли 1/6?), а какая - в виде корней гор вниз в ходе сближения плит.
Высота гор растет до предела, обусловленного прочностью пород (R 200 МПА для одноосевого сжатия гранита и базальта без дефектов) и силой тяжести g на планете. При превышении этого предела начинает выдавливаться новый горный хребет, почти параллельный предыдущему - генерируется целая горная провинция. По этой причине высота гор на Земле (h) ни при каких условиях не может быть больше 14.8 км 2 * 7.4 км (200 МПА > (g * d * h) = (9.8*2800*7400)). Коэффициент 2 появляется из-за того, что горы не параллелепипеды, а, скорее, лежащие на боковой грани треугольные призмы с сечением S=*B*h. Поскольку реально высота гор от подножия до вершины (а не над уровнем моря) не превышают 5 км, мы должны сделать вывод, что эффективная прочность пород коры, по крайней мере, втрое меньше взятой из справочника (для бездефектного образца).
То есть, из-за различных дефектов в теле гор, а также из-за дополнительного сопротивления (сверх преодолеваемого литостатического давления выдавливаемых гор) при их выдавливании из коры, горы на Земле никогда не достигают максимально возможной высоты (соответствующей прочности бездефектных пород). Даже под водой, где часть давления горы компенсируется давлением воды. Кстати, по этой причине подводные горы могут иметь несколько большую крутизну и высоту, чем горы на суше. Еще большую высоту могут иметь горы на небесных телах с меньшей, чем на Земле, силой тяжести. Так, конусообразная (а не призматическая!) гора Олимп на Марсе имеет высоту порядка 24 км.
Отметим, что при выдавливании из материковой коры гор площадь самой материковой плиты (того образования, которое мы сегодня видим как материковую плиту) со временем слегка уменьшается. Это замечание позволяет точнее увидеть баланс площадей материков и океанов в относительно близком геологическом прошлом.
В далеком же прошлом потоки глубинного тепла были в K раз больше нынешних, конвекционные потоки были интенсивнее, а кора была в K раз тоньше [2]. Поскольку непосредственно под тонкой корой и давление было меньше, и температура выше, магма непосредственно под корой в то время была менее вязкой. Менее вязкая магма увлекала кору с меньшей силой. Поэтому в зонах нисходящих мантийных потоков в те времена не развивались такие огромные усилия, как в настоящее время, т.е. вязкое увлечение коры магмой в те времена было недостаточно сильным для интенсивного горообразования в этих зонах (для пластической деформации коры). Кора над нисходящими потоками при относительно малом давлении под ней и тогда была достаточно толстой, чтобы выдержать относительно слабое сжатие. Над нисходящими потоками температура уже слегка остывшего мантийного потока была минимальной, поэтому наиболее тугоплавкие вещества из состава мантии кристаллизовались здесь на нижней поверхности коры более интенсивно, чем в зоне восходящего потока. Равновесие наступало из-за уменьшения скорости отвода тепла (в том числе, тепла кристаллизации) через более толстую кору. Скажем, для теплового потока, большего, чем сегодняшний, в 10 раз, толщина коры составляла 5 км. В итоге приходим к выводу, что во времена более интенсивных потоков тепла из глубин планеты интенсивность тектонических процессов была намного ниже нынешней из-за гораздо меньшей вязкости магмы непосредственно под тонкой корой.
Прямую аналогию, подтверждающую наши выводы, мы видим в Северном ледовитом океане. Площадь здешних льдов сравнима с площадями литосферных плит, скорости течений, увлекающих льды, намного больше скоростей древних мантийных потоков. Вязкость воды лишь немного меньше вязкости жидкой магмы под тонкой древней корой (и высокотемпературной магмы из нынешних вулканов), и на много порядков меньше вязкости нынешней мантии. Поэтому и не наблюдаем мы в Северном ледовитом океане многокилометровые ледяные горы, но зато наблюдаем торосы высотой в несколько метров, для образования которых только и хватило сил сжатия в ледовых полях, увлекаемых водными и воздушными течениями (к тому же, часто торосы образуются лишь после разгона ледяных полей на открытой воде при закрытии трещины), хотя толщина и прочность льдов в тысячи раз меньше толщины и прочности коры.
Прогнозирование.
Поскольку пластическая деформация коры (землетрясение) происходит в момент превышения предела прочности пород коры результирующей (суммарной) силой, то возможен прогноз времени землетрясения - времени превышения этого предела. Для вычисления прогноза землетрясения необходимо знать:
а) текущие напряжения,
б) текущий предел прочности,
в) прогноз изменения напряжений,
г) прогноз изменения прочности.
Воздействие медленно меняющихся главных движущих сил, создающих подавляющую часть (почти 100%) механического напряжения, может быть достаточно легко учтено (хотя бы путем экстраполяции). А вот воздействие намного меньших, но гораздо быстрее меняющихся по величине спусковых сил должно учитываться отдельно. Именно быстро меняющиеся спусковые силы (главные из них - силы атмосферного давления и приливные силы в зависимости от фазы Луны) определяют приход землетрясения с точностью до лет, дней, часов и минут. Тогда как гораздо большие, но медленно меняющиеся главные движущие силы определяют время прихода землетрясения с эпицентром в заданном месте с точностью до столетий и тысячелетий.
Для сильных землетрясений промежуток времени между двумя землетрясениями с эпицентром в одном и том же месте составляет сотни и тысячи лет. За это время механическое напряжение в коре вследствие действия главных сил монотонно вырастает от остаточного напряжения (остающегося от предыдущей разрядки - землетрясения) практически до предела прочности. За это время приливные (и другие) силы успевают измениться от ежедневного минимума до максимума сотни тысяч раз. И хотя амплитуда их изменения в сотни раз меньше амплитуды главных сил, абсолютные скорости их изменения в тысячи раз больше скоростей нарастания главных сил. Поэтому именно быстро меняющаяся добавка к главным силам (сумма спусковых сил) успевает сделать последнее усилие, приводящее к превышению предела прочности (представляет собой последнюю каплю, переполняющую чашу).
Приливные силы изменяются от минимума до максимума дважды в сутки (с полным циклом изменения амплитуды в месяца). Но, вопреки распространенному мнению, они являются не единственной спусковой силой. Более того, они не являются даже главной спусковой силой (особенно в высоких широтах, где приливы малы). Об этом говорит сопоставление фаз Луны и моментов прихода землетрясений.
На секторы новолуния и полнолуния (когда приливы максимальны) приходится в разных выборках 56% - 65% землетрясений, тогда как на секторы первой и третьей четверти Луны (равные по длительности новолунию и полнолунию) приходится, соответственно, 44% - 35% [2]. Эти цифры (65% для катастрофических землетрясений) говорят о несомненной корреляции времени землетрясения и фазы Луны. Но из этих же цифр видно также, что существуют и другие, не менее действенные спусковые силы.
По нашему мнению, главной спусковой силой является быстро меняющаяся сила атмосферного давления. Действительно, вполне возможное изменение атмосферного давления на 3% (23 мм р. ст.) по своему воздействию на земную кору эквивалентно появлению или исчезновению на огромном участке земной поверхности слоя воды толщиной в 30 см, или гранитного слоя толщиной в 10 см. И такие изменения происходят за единицы часов! Тогда как изменение главных сил на такую же величину происходит за сотни лет (100 мм = сотни лет * 1 мм/год,). Поэтому в краткосрочном прогнозе землетрясений, кроме знания текущих напряжений и предела прочности, решающую роль должен играть прогноз погоды в части распределения атмосферного давления по земной поверхности вместе с учетом фазы прилива. Понятно, что повышенное атмосферное давление над участком коры, который опустится в результате землетрясения вниз, и пониженное над поднимающимся участком будет способствовать приходу землетрясения. Точно так же землетрясение может быть спровоцировано добавочной горизонтальной силой трения воздушных потоков - ветров в нужных направлениях. Именно воздействием атмосферных явлений может быть объяснена наблюдаемая корреляция частоты землетрясений и активности Солнца - активизация Солнца вызывает активизацию атмосферных явлений на Земле (увеличение амплитуды перепадов давления), которые и провоцируют большее количество землетрясений.
Но для окончательного доказательства действенности сил атмосферного давления необходимо провести детальный анализ решений больших землетрясений и глобальных синоптических карт на моменты этих землетрясений. А также синоптических карт на моменты начал извержений различных вулканов (поскольку извержение вулкана является частным, довольно редким, случаем плавного, медленно протекающего землетрясения - пластической деформации земной коры с выдавливанием магмы из замкнутого объема магматического очага).
Отметим, что для частых, малых по величине землетрясений, происходящих в очень тонкой коре в зоне спрединга, будет другая статистика зависимости моментов землетрясений от фаз Луны и перепадов атмосферного давления. Это обусловлено тем, что здесь скорости изменения величин главных движущих сил сравнимы со скоростями изменения приливных сил и сил атмосферного давления. Действительно, в зонах спрединга (общей длиной в 60 000 км) происходит до 100 000 мелких землетрясений в год, или 170 землетрясений в год на 100 км линии спрединга, или 6.5 землетрясений на таком отрезке за время цикла приливных сил ( месяца).
Для построения системы прогнозирования разрушительных землетрясений необходимо задаться какой-то моделью процесса подготовки и начала землетрясения. Наглядная механическая модель землетрясения (которая легко превращается в расчетную математическую) может быть представлена следующим образом:
Пусть на шероховатом столе лежит брусок (книга), имеющий массу M и давящий на поверхность стола с силой своего веса P = M * g. На него через длинную пружину с малым коэффициентом жесткости k (динамометр, или просто длинную тонкую резинку) действует крюк лебёдки (твёрдая рука!), движущийся с постоянной, причём очень малой скоростью.
При этом (учитывая, что сила трения покоя бруска по поверхности стола (=P * kr) гораздо выше силы трения скольжения (=P * ks)) мы будем наблюдать картину, которую можно отобразить в следующем рисунке
В ходе медленного движения крюка лебёдки с постоянной скоростью постепенно увеличивается сила, действующая на брусок (растягивается пружина - увеличивается её деформация x (брусок неподвижен, а крюк движется)). Когда сила, действующая на брусок со стороны пружины, превысит силу трения покоя (M * g * kr), брусок начнёт двигаться под действием суммы трёх сил: сила инерции (M * a), сила натяжения пружины (k * x) и сила трения скольжения (М * g * ks). Для этих сил можно записать следующее равенство: M * a = k * x - (М * g) * ks.
При этом брусок (покоившийся до того в положении S0) сначала ускоряется в сторону пружины под действием с её стороны всё уменьшающейся силы (уменьшается растяжение пружины).
По мере уменьшения растяжения пружины, ускорение "а" уменьшается, скорость V достигает максимума (в этот момент ускорение равно нулю, сила натяжения пружины равна силе трения скольжения).
Далее под действием практически постоянной силы трения скольжения и уменьшающейся силы натяжения пружины ускорение становится отрицательным (происходит замедление бруска). Наконец, скорость бруска V уменьшается до нуля, он останавливается.
Сила трения резко (скачком) возрастает (трение покоя намного выше трения скольжения). И брусок остаётся неподвижным (в положении S1) до следующего превышения силы натяжения пружины над силой трения покоя. И так далее отметим, что в представленной простейшей модели спусковой силой может быть малое изменение нагрузки на брусок (сняли с книги карандаш), удар по столу или просто громкий звук.
В нашей простейшей модели превышение силы трения покоя бруска по столу эквивалентно превышению предела прочности пород земных недр. Движение бруска под действием пружины эквивалентно землетрясению - быстрым смещениям огромных масс - пластическим деформациям в очаге землетрясения под действием уменьшающегося в ходе смещения к положению равновесия сжатия или изгиба огромных объемов пород. При этом энергия упругой деформации тысяч и миллионов кубических километров превращается в изменение структуры породы в очаге, в тепло на поверхности трения-скольжения, в энергию распространяющихся сейсмических волн.
Скольжение бруска по столу эквивалентно процессу скольжения пород соседних плит земной коры по разделяющей их поверхности сдвига в очаге землетрясения, а также механическому движению - скольжению - смещению пород в ходе их разрушения.
Что касается аналогии между сдвигом бруска по поверхности стола и сдвигом (вертикальным или горизонтальным) плит земной коры по поверхности сдвига, то её правомерность очевидна. Но точно так же при сжатии соседствующих плит земной коры нижние поверхности выдавливаемых горных хребтов скользят по краям плит, выдавливающих их из зоны сжатия. При этом сами горные хребты в ходе их выдавливания слегка приподнимаются над окрестностями.
В то же самое время несколько большие объёмы пород выдавливаются из зоны сжатия вниз, под кору, образуя при этом так называемые корни гор (см [2]). Одноосевое горизонтальное напряжение сжатия в зоне границы плит приблизительно такое же, как и на небольшом расстоянии от этой зоны, в теле монолитной плиты. Просто прочность массивов пород в зоне границы монолитных плит ниже из-за большего количества дефектов, образовавшихся там в ходе предыдущих пластических деформаций-землетрясений. Поэтому практически всегда пластическая деформация происходит только там, в зоне минимальной прочности коры.
Изменение напряжений в земной коре может измеряться различными способами. Экономически наиболее выгодным в данное время представляется использование спутниковых систем для измерения напряжений в коре путем мониторинга - отслеживания упругих деформаций земной коры (изменений расстояний между точками на ее поверхности). Для получения всесторонней картины должны использоваться и другие, хотя и более дорогие, но уже используемые ныне методы измерений напряжений в земной коре (электрические, акустические, механические). Так что построение системы прогнозирования землетрясений в настоящее время не только возможно принципиально и технически, но и выгодно экономически.
Понятно, что построение системы прогнозирования землетрясений требует какого-то времени на создание измерительной сети, на накопление необходимой информации и на отработку методов (так было и с построением системы прогнозирования погоды). А вот система оповещения об обнаруженных волнах, порожденных только что произошедшими землетрясениями, и уже распространяющихся по поверхности океана (цунами) или по поверхности суши, легко может быть построена уже сегодня. Для этого есть все научные и технические компоненты - спутники уже сейчас фиксируют профили высоты поверхности океана радиолокационными методами (как это и было во время катастрофического цунами в Индийском океане 26.12.2004 [3]). Для обнаружения волн на поверхности океана или суши надо делать со спутников снимки профиля поверхности с необходимой частотой и сравнивать их с помощью компьютера в реальном времени с предыдущими снимками того же участка. При обнаружении в ходе сравнения снимков опасных волн сразу же приводится в действие система предупреждения населения в опасном районе через все доступные средства массовых коммуникаций (TV, радио, телефонная сеть, громкоговорители). Осталось осуществить некоторые организационные и сравнительно небольшие финансовые мероприятия.
Список Литературы:
ЗЕМЛЕТРЯСЕНИЯ, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.
Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых – Геродота, Плиния и Ливия, а также в древних китайских и японских письменных источниках. До 19 в. большинство сообщений о землетрясениях содержало описания, обильно приправленные суевериями, и теории, основанные на скудных и недостоверных наблюдениях. Серию систематических описаний (каталогов) землетрясений в 1840 начал А.Перри (Франция). В 1850-х годах Р.Малле (Ирландия) составил большой каталог землетрясений, а его подробный отчет о землетрясении в Неаполе в 1857 стал одним из первых строго научных описаний сильных землетрясений.
Причины землетрясений. Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.
Тектонические землетрясения возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м. Вулканические землетрясения происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.
Техногенные землетрясения могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.
Землетрясение — быстрые смещения, колебания земной поверхности в результате подземных толчков. Небольшие землетрясения могут быть вызваны сильными взрывами, обрушениями сводов пустот подземных полостей — горных выработок, естественных пустот (карстовых пещер). Небольшие толчки может вызывать также подъём лавы при вулканических извержениях.
Но чаще всего землетрясения (а большие землетрясения всегда) обусловлены быстрым смещением участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли. Само смещение происходит под действием упругих сил за счет разрядки-уменьшения упругих деформаций в объеме всего участка плиты в ходе его смещения к положению равновесия (к состоянию с минимальными упругими деформациями). Другими словами, землетрясение представляет собой быстрый переход потенциальной энергии, накопленной в упруго-деформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих самых недр (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.
Предел прочности пород земной коры превышается в результате роста суммы сил, действующих на нее:
Эти же силы приводят и к возрастанию потенциальной энергии упругой деформации пород в результате смещения плит под их действием. Плотность потенциальной энергии упругих деформаций под действием перечисленных сил нарастает практически во всем объеме плиты (по-разному в разных точках). В момент землетрясения потенциальная энергия упругой деформации в очаге землетрясения быстро (почти мгновенно) снижается до минимальной остаточной (чуть ли не до нуля). Тогда как в окрестностях очага за счет сдвига во время землетрясения плиты как целого упругие деформации несколько увеличиваются. Поэтому и случаются часто в окрестностях главного повторные землетрясения — афтершоки. Точно так же малые «предварительные» землетрясения — форшоки — могут спровоцировать большое в окрестностях первоначального малого землетрясения. Большое землетрясение (с большим сдвигом плиты) может вызвать последующие индуцированные землетрясения даже на удаленных краях плиты.
Из перечисленных сил первые две намного больше 3-ей и 4-й, но скорость их изменения намного меньше, чем скорость изменения приливных и атмосферных сил. Поэтому точное время прихода землетрясения (год, день, минута) определяется изменением атмосферного давления и приливными силами. Тогда как гораздо большие, но медленно меняющиеся силы вязкого трения и Архимедовы силы задают время прихода землетрясения (с очагом в данной точке) с точностью до столетий и тысячелетий.
Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).
Глубокофокусные землетрясения, очаги которых располагаются на глубинах до 700 км от поверхности, происходят на конвергентных границах литосферных плит и связаны с субдукцией.
Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.
Сейсмические волны и их измерение
Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли — землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород и они раскалываются, образуя разлом.
Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом — эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.
Скорости сейсмических волн могут достигать 8 км/с.
Типы сейсмических волн
Сейсмические волны делятся на волны сжатия и волны сдвига.
Существует ещё третий тип упругих волн — длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения. Измерение силы и воздействий землетрясений
Для оценки и сравнения землетрясений используются шкала магнитуд и шкала интенсивности.
Шкала магнитуд
Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).
Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 30-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.
Шкала интенсивности
Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясений на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности: в США — Модифицированная шкала Меркалли (MM), в Европе — Европейская макросейсмическая шкала (EMS), в Японии — шкала Шиндо (Shindo).
Шкала Медведева-Шпонхойера-Карника (МСК-64)
12-бальная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского Союза применяется более современная Европейская макросейсмическая шкала (EMS). МСК-64 лежит в основе СниП-11-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ.
Балл | Сила землетрясения | Краткая характеристика |
1 | Незаметное сотрясение почвы | Отмечается только сейсмическими приборами. |
2 | Очень слабые толчки | Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя. |
3 | Слабое | Ощущается лишь небольшой частью населения. |
4 | Умеренное | Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. |
5 | Довольно сильное | Под открытым небом ощущается многими, внутри домов — всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. |
6 | Сильное | Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются. |
7 | Очень сильное | Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми. |
8 | Разрушительное | Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. |
9 | Опустошительное | Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся. |
10 | Уничтожающее | Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов. |
11 | Катастрофа | Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти совершенно разрушаются. Сильное искривление и выпучивание железнодорожных рельсов. |
12 | Сильная катастрофа | Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Ни одно сооружение не выдерживает. |
Измерительные приборы
Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы — сейсмографы. В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие — к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).
Предсказание землетрясений
Непосредственно перед землетрясением поверхность Земли по обе стороны будущего очага землетрясения (разлома) испытывает упругую деформацию, близкую к предельной и которую можно измерить с помощью теодолита или лазерного луча. Иногда используют также наклономеры, чтобы установить, произошло ли искривление поверхности земли, и в какой степени.
В настоящее время введён в практику мониторинг больших площадей, то есть, непрерывное слежение за сейсмической активностью. Вблизи крупных разломов размещены приборы, информация от которых передаётся через спутники связи в центры, где подвергается обработке. Таким образом, выявляются даже очень малые движения земной поверхности и точно устанавливаются зоны накопления напряжений.
Другой метод основан на определении содержания воды в породах. В напряжённых породах происходит увеличение объёма пор, а тем самым и водосодержания. Поскольку в возникновении землетрясений грунтовые воды играют важную роль, сведения об уровне воды в колодцах на территории сейсмических областей имеют большое значение.
Задача предсказания и, тем более, точного прогнозирования землетрясений (подобного прогнозированию погоды как вычислению на основе адекватной модели) до сих пор не решена — не было работоспособной, физически обоснованной модели подготовки и начала («запуска») землетрясения. Согласно этой модели при вычислении прогноза землетрясений должны быть учтены ВСЕ основные силы, действующие на земную кору. А именно: главные (но медленно меняющиеся) силы и «спусковые» (быстро меняющиеся) силы, «переполняющие чашу» — превышающие предел прочности коры при их «наслоении» на гораздо большие главные силы. То есть, прогнозирование точного времени прихода землетрясения базируется на учете уже достигнутого напряжения в различных точках земной коры (результата действия главных, больших, но медленно меняющихся сил Архимеда и сил вязкого трения мантийных конвекционных потоков) с учетом прогноза погоды (в части распределения атмосферного давления на земную поверхность) и расписания лунно-солнечных приливов.
Техногенные землетрясения
В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность — увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилицах, своим весом увеличивает давление в горных породах, а просачивающаяся вода, понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.
Предупреждение землетрясений
Современные исследования показали, что провоцируя мелкие толчки в зоне разлома, можно ослабить давление, способное вызвать сильное землетрясение. Множество слабых землетрясений, уменьшая напряжения, накапливающиеся со временем, способно освободить столько же энергии, сколько одно разрушительное.
Одним из способов предупреждения сильных землетрясений служит закачка воды в скважины, расположенные вдоль линии разлома, в котором было обнаружено повышенное давление. Вода действует подобно смазке, уменьшая трение между породами в разломе и создавая условия для их плавной подвижки, сопровождаемой серией лёгких толчков.
Другим средством возбуждения мелких землетрясений являются взрывы вдоль поверхности разлома.
Предупреждение о землетрясении с помощью животных
Издавна известно, что люди использовали более чутких животных для предупреждения о возможной опасности.
В недрах нашей планеты непрерывно происходят внутренние процессы, изменяющие лик Земли. Чаще всего эти изменения медленные, постепенные. Точные измерения показывают, что одни участки земной поверхности поднимаются, другие опускаются. Не остаются постоянными даже расстояния между континентами. Иногда внутренние процессы протекают бурно и грозная стихия землетрясений превращает в развалины города, опустошает целые районы.
Под угрозой землетрясений находятся обширные территории, многие густонаселенные области и даже целые страны, например Япония. Наибольшая опасность землетрясений заключается в их неожиданности и неотвратимости. Однако научные достижения последних лет открывают реальные возможности не только предсказывать землетрясения, но и влиять на их ход.
Слово «землетрясение» - русское, и смысл его ясен: землетрясение – это трясение земли. А точнее, землетрясение – это колебание земной поверхности при прохождении волн от подземного источника энергии.
По-гречески землетрясение – seismos, следовательно, сейсмические явления – это те, что связаны с землетрясениями, а именно сейсмические волны, сейсмические приборы (сейсмографы), записи сейсмических колебаний (сейсмограммы), сейсмические станции и т.д.
Землетрясения – важная составная часть окружающей нас среды, и ни один район земного шара нельзя считать полностью от них избавленным. Сейсмологи работают во всех развитых, а также во многих развивающихся странах. Они интересуются, почему и как происходят землетрясения. Изучая волны, проходящие через Землю при землетрясениях, ученые воссоздают существенные детали ее внутреннего строения.
Разработанные для такого изучения методы оказались полезными также при поисках нефти и других полезных ископаемых. В странах, где землетрясения происходят часто, возникают важные социальные и экономические проблемы, специальные задачи должны решать архитекторы и инженеры. Таким образом, сейсмология служит как практической деятельности человека, так и познанию фундаментальных законов природы.
Сейсмология – это часть более широкой науки - геофизики, возникшей как пересечение и связующее звено двух более старых наук – геологии и физики. Геология в широком смысле слова занимается всесторонним изучением Земли, однако в настоящее время ее предметом, как правило, считают преимущественно описательное изучение происхождения и свойств горных пород и содержащихся в них ископаемых, а также преобразований земной поверхности под воздействием высоких температур, давления, электричества и других сил. В сферу действия геофизики попадают, таким образом, разделы геологии, связанные с физическими измерениями и расчетами, и разделы физики, рассматривающие Землю и ее атмосферу.
1. Ранние объяснения причин землетрясений
В поисках причин землетрясений Аристотель обратился к недрам
Земли. Он полагал, что атмосферные вихри внедряются в землю, в которой много пустот и сквозных щелей. Вихри, думал он, усиливаются огнем и ищут себе выхода, вызывая таким образом землетрясения, а иногда извержения вулканов. Эти представления просуществовали много веков, даже не смотря на то, что он не привел никаких аргументов в пользу своих гипотез, а просто дал волю своей бурной фантазии. Аристотель также «несет ответственность» за бытующее и поныне представление об особой «сейсмической погоде». Он говорил, что когда воздух затягивается в землю перед землетрясением, оставшийся над землей воздух становится спокойнее и разреженней, затрудняя дыхание. Четырьмя веками позже Плиний писал: «Сотрясенья земли случаются, лишь когда море спокойно и небо столь недвижно, что птицы не могут парить, потому что нет поддерживающего их дыхания». Поскольку такие условия бывают при жаркой влажной погоде, такую погоду стали называть «сейсмоопасной погодой», полагая, что она сигнализирует о приближении землетрясений.
В мифологии разных народов наблюдается интересное сходство в представлениях о причинах землетрясений. Это будто бы движение некоего реального или мифического животного, гигантского скрытого где-то в глубинах
Земли. У древних индусов это слон, у даяков Суматры – огромный вол. Древние японцы вину за землетрясения возлагали на сома, который сотрясал землю.
Если бы он не был под надзором доброго бога, даймедзина то земля сотрясалась бы постоянно. Однако добрый дух время от времени утрачивал бдительность, и совесть злого сома отягощалась следующим землетрясением.
Землетрясения часто рассматривали как наказание, ниспосланное рассерженными богами. В греческой мифологии землетрясения вызывает разъяренный Посейдон, владыка морей. Нептун, его аналог в римских мифах, мог не только вселять страх в людей, вызывая землетрясение, но и насылать на землю потопы, а на берега – огромные волны. В Европе ХVIII в. духовенство пыталось привить людям моралистический взгляд на землетрясения. Вот что можно прочесть в одной лондонской газете за 1752 год: « Землетрясения обычно случаются в больших городах. Карающий бич направлен туда, где есть жители, т.е. цель для предостережения, а не на голые утесы и необитаемые берега». Знаменитое Лиссабонское землетрясение
1755г. произошло в День Всех Святых, в момент, когда люди были в церкви.
Огромное число жертв было вызвано серией из некоторых толчков и гигантским цунами, обрушившимся на набережную. Положение усугубили пожары, расбушевавшиеся по всему городу. Те, кто верил в божью кару за грехи, видели в этом возмездие.
2.Современные объяснения причин землетрясений
Наука о землетрясениях, сейсмология, хотя и молода, но сделала серьезные успехи в познании объекта своего исследования. Имена А.П. Орлова, И.В. Мушкетова, К.И. Богдановича, В.Н. Вебера, Б.Б. Голицина, Г.А.Гамбурцева, С.В. Медведева, Ю.В. Ризниченко – яркие опорные точки на кривой роста отечественной и мировой сейсмологии.
Ценою усилий нескольких поколений исследователей специалисты теперь неплохо представляют, что происходит при землетрясении и как оно проявляется на поверхности Земли. Но ведь поверхностные явления – это результат того, что происходит в недрах . И основное внимание специалистов теперь сосредоточено на познании глубинных процессов в недрах Земли, процессов, приводящих к землетрясению, его сопровождающих и за ним следующих.
Теория землетрясений как геофизического процесса еще только разрабатывается. Хотя в исследованиях такого рода ныне широко используется физическое и математическое моделирование, познание различных природных феноменов, связанных с землетрясениями, в значительной мере основывается на наблюдениях на земной поверхности.
Научная геология (ее становление относится к ХVIII в.) сделала правильные выводы о том, что сотрясаются главным образом молодые участки земной коры. Во второй половине ХIХ в. уже была выбрана общая теория, согласно которой земная кора была подразделена на древние стабильные щиты и молодые, подвижные горные сооружения. Выяснилось, что молодые горные системы – Альпы, Пиренеи, Карпаты, Гималаи, Анды – подвержены сильным землетрясением, в то время как древние щиты ( к ним относится Чешский массив) являются областями где сильные землетрясения отсутствуют.
К числу наиболее употребительных сейсмологический терминов, связанных с понятием «землетрясение», можно отнести следующие: очаг, гипоцентр, эпицентр, магнитуда, балл.
Под очагом тектонического землетрясения понимается замкнутый объем земного вещества, в котором достаточно короткого, до 1-3 минут, времени произошли разрушения. Как правило, в области очага происходит смещение (подвижка) одной части объема относительно другой. Место, в котором начинается подвижка, именуется гипоцентром. Именно с этой точки начинается процесс генерации сейсмических волн, которые могут привести к разрушениям за пределами очага. Проекция гипоцентра по вертикали на земную поверхность получила название эпицентра.
Понятие балла характеризует интенсивность сотрясения в точке наблюдения. В нашей стране с 1964 года используется 12-бальная шкала MSK – 64. Следует отметить, что несейсмологи в баллах зачастую характеризуют саму силу землетрясения в очаге. Это неверно, однако в газетных сообщениях встречается регулярно. Как правило, это касается шкалы Рихтера, в которой используется безразмерная величина магнитуды М землетрясения, пропорциональная логарифму выделенной в очаге энергии.
Путаница возникла в связи с двумя обстоятельствами: 1) магнитуды известных до сих пор землетрясения не превышает 9 единиц (в каталогах есть только М
(макс.) равна 8,9) ,то есть магнитуда численно близка к значениям баллов сотрясений; 2) мы привыкли к тому, что любой параметр имеет размерность (метры, килограммы, градусы) ,а ведь логарифмы любых параметров всегда безразмерны. Поэтому, если в печати появляется сообщения типа « землетрясение имело 7 баллов по шкале Рихтера», то в действительности это означает, что магнитуда землетрясения М=7. А ощущаться в разных пунктах оно может силой 10 баллов, 8 баллов,5 баллов - это зависит от расстояния до очага. Таким образом если бальность зависит от расстояния до очага, то магнитуда – не зависит.
Шкала MSK-64 составлена применительно к зданиям и сооружениям, не имеющем сейсмостойкого усиления конструкций. Приведу здесь описание первых четырех баллов этой шкалы без изменений а, начиная с пятого, когда возможны повреждения строений, опишу основные отличительные признаки землетрясений и вероятное их воздействие на здания современной застройки на Камчатке. При описании каждого балла в скобках указана частота повторяемости землетрясений данной силы для Петропавловска- Камчатского.
1 балла. Неощутимое землетрясение. Интенсивность колебаний лежит ниже предела чувствительности, сотрясения почвы обнаруживаются и регистрируются только сейсмографами.
2 балла. Слабое землетрясение. Колебания ощущаются только отдельными людьми, находящимися внутри помещения, особенно на верхних этажах.
3 балла. Слабое землетрясение. Ощущается не многими людьми, находящимися внутри помещений, под открытым небом – только в благоприятных условиях. Колебания схожи с сотрясениями, создаваемыми проезжающим легким грузовиком. Внимательные наблюдатели замечают небольшое раскачивание висячих предметов, несколько более сильное на верхних этажах.
4 балла. Заметное сотрясение. Землетрясение ощущается внутри здания многими людьми, под открытым небом – немногими. Кое-где просыпаются, но никто не пугается. Колебания схожи с сотрясением, создаваемым проезжающим тяжелым грузовиком. Дребезжание около дверей, посуды. Скрип стен, полов. Дрожание мебели. Висячие предметы слегка раскачиваются. Жидкость в открытых сосудах слегка колеблется. В стоящих на месте автомашинах толчок заметен.
5 баллов (15-25 раз в 100 лет). Просыпаются почти все спящие, колеблется и частично расплескивается вода в сосудах, могут опрокинуться легкие предметы, разбиться посуда. Здания не повреждаются.
6 баллов (10-15 раз в 100 лет). Многие люди пугаются, колебания мешают ходить. Здания шатаются, сильно раскачиваются подвесные светильники. Падает и бьется посуда, предметы падают с полок. Может сдвигаться мебель. Осыпание побелки, тонкие трещины в штукатурке.
7 баллов (4-6 раз в 100 лет). Сильный испуг, колебания мешают стоять на ногах. Двигается и может упасть мебель. В любых зданиях – трещины в перегородках. Трещины в штукатурке, тонкие трещины в стенах, трещины в швах между блоками и в перегородках, выпадение заделов швов, нередко тонкие трещины в блоках.
8 баллов (1-3 раза в 100 лет). Сбивает с ног. Трещины в грунте на склонах.. В любых зданиях – повреждение, иногда частичное разрушение перегородок. Трещины в несущих стенах, обвалы штукатурки, смещение блоков, трещины в блоках.
9 баллов (приблизительно 1 раз в 300 лет). Повсеместно трещины в грунте. На склонах – оползни грунта. В любых зданиях– обрушение перегородок. Разрушение части несущих стен, повреждение и смещение некоторых панелей.
Рубленные дома из бревен и бруса, как правило, без разрушений переносят 9-балльные толчки.
Причины землетрясений сразу же станут понятны, как только мы представим себе динамичный характер Земли и те медленные движения, которые происходят в ее коре – литосфере. Толщина коры весьма изменчива. Под континентами она равна 30-35км, при чем большим горам, значительно превышающим средний уровень поверхности земли, почти всегда сопутствуют глубокие «корни». Так, в Тибете толщина коры оказалась более 70 км. Основание коры под океанами находится примерно на 10 км ниже уровня моря. Его небольшую толщину хорошо иллюстрирует такой пример: если Землю уменьшить до размера яйца, то твердая кора окажется толщиной со скорлупу.
Этот твердый слой, однако, не цельный: он разбит на несколько больших кусков, называемых плитами.
Под литосферой действуют силы, принуждающие плиты перемещаться со скоростью, как правило, нескольких сантиметров в год. Причина этих глубинных сил не вполне ясна. Они могут быть вызваны, например, медленными течениями горячего пластичного вещества в недрах. Течения возникают в результате тепловой конвекции в сочетании с динамическими эффектами вращения Земли. В некоторых областях новое вещество поднимается наверх из земных недр, оттесняя плиты в стороны (это происходит, например, в Срединно–Атлантическом хребте); в других местах проскальзывают одна вдоль другой (как вдоль разлома Сан-Андреас в Калифорнии); есть области называемые зонами субдукции (поддвига), где одна плита при встрече заталкивается под другую (например, в океане у западных берегов Южной и Центральной Америки, у побережья Аляски и Японии).
Несогласованность в движении плит при любом его направлении заставляет каменную толщу растрескиваться, создавая таким образом землетрясения.
Не удивительно, что большинство землетрясений (почти 95%) происходит по краям плит. Землетрясения, вызванные движением плит, называются тектоническими. Хотя обычно они происходят на границах плит, все же небольшая доля их возникает внутри плит. Некоторые другие землетрясения как, например, на Гавайских островах, имеют вулканическое происхождения и уже совсем редко они бывают вызваны деятельность человека (заполнением водохранилищ, закачкой воды в скважины, горными работами, большими взрывами).
Зона землетрясений окружающая Тихий океан, называется Тихоокеаническим поясом: здесь происходит около 90% всех землетрясений земного шара. Другой район высокой сейсмичности, включающий 5-6% всех землетрясений, - это Альпийский пояс, протягивающийся от Средиземноморья на восток через Турцию, Иран и Северную Индию. Остальные 4-5% землетрясений происходят вдоль срединно-океанических хребтов или внутри плит.
3.Механизм землетрясений и их классификация
Горообразовательные, вулканические и сейсмические процессы географически тяготеют друг к другу. Однако во времени они происходят, как правило, неодновременно и всегда с разной продолжительностью. Кроме того, есть районы с резко выраженной только сейсмической активностью. Например, многие Средней Азии отличаются высокой сейсмичностью, но не имеют вулканов. На Камчатке и в Чили вулканы и землетрясения проявляются на одной и той же территории, но редко одновременно.
Многие из сейсмологов, говоря о механизме землетрясений, придерживаются теории упругого высвобождения или упругой отдачи. Они связывают возникновение землетрясений с внезапным высвобождением энергии упругой деформации. В результате длительных движений в районе разлома и накопления в связи с этим напряжений, достигающих предельных для прочности пород величины, происходит разрыв или срез этих пород с внезапным быстрым смещением – упругой отдачей, вследствие чего и возникают сейсмические волны. Таким образом, очень медленные и длительные тектонические движения при землетрясении переходят в сейсмические движения, отличающиеся большой скоростью, что происходит в результате быстрой « разрядки», накопленной упругой энергии. Это разрядка происходит всего за 10-15 секунд (редко за 40-60 секунд).
При зарождении землетрясения происходит разрушение породы на ограниченном участке, расположенном на определенной глубине от поверхности Земли. В связи с возникшем ослаблением происходит развитие дислокации на очаг или гипоцентральную часть область землетрясения. Разрушение произойдет там, где порода наименее прочна, а это может быть в разломах между блоками. В силу каких-то глубинных процессов отдельные участки коры поднимаются или опускаются. При медленном смещении в земной коре происходят пластические деформации. При более быстрых движениях и при большем их градиенте напряжения, возникающие в коре, не успевая рассасываться, достигают величин, при которых в данных условиях происходит нарушение сплошности – либо по готовому, отчасти уже залечившемуся разрыву, либо с образованием нового. С увеличением глубины возрастают всесторонние сжимающие напряжения, и поэтому возникают большие силы трения, препятствующие быстрому разрушению. Возможно по этой причине глубокофокусные землетрясения отличаются большой энергией и продолжительностью.
В настоящее время наиболее распространены две модели распространения сил, вызывающих разрыв в очаге. Первая основана на предположении действия в очаге пары сил, вызывающих касательные усилия вдоль линии разрыва и момент; согласно второй модели в зоне очага существуют две взаимно перпендикулярных пары сил.
Кроме землетрясений, вызванных тектоническими движениями в земной коре и в верхних слоях мантии, существуют два других типа землетрясений, происходящих вследствие извержения вулканов и карстовых явлений, которые очень локальны, редки и обладают малой силой. Землетрясения могут быть вызваны искусственным путем, например при подземном взрыве. Колебания поверхности могут земли могут быть вызваны и работой промышленного оборудования, движением транспорта и т. д. При использовании чувствительной аппаратуры можно убедиться, что поверхность земли постоянно колеблется; эти колебания очень малы и по этой причине называются микросейсмическими. Наличие микросейсм позволяет извлечь очень полезную информацию как для сейсмологов, так и для инженеров- строителей.
Таким образом, в широком смысле по термином землетрясение можно понимать любые сотрясения поверхности Земли. В более узком смысле под землетрясением понимается кратковременное сотрясение поверхности Земли, вызванное сейсмическими волнами, возникшими при местном нарушении сплошности с внезапным выделением в недрах коры или верхней мантии (на глубину примерно до 700 км) упругой энергии.
В какой-то момент землетрясения возникает препятствие взаимному смещению блоков вдоль образовавшихся швов – частично восстанавливаются связи разорванного шва, которыми могут служить силы трения (их появление возможно на сжатых участках), зацепления на поверхностях. Не освободившаяся часть энергии вызывает в новых связях напряжения, которые через некоторое время преодолеют их сопротивление, возникает новый разрыв и новый толчок, однако меньшей силы, чем в момент основного землетрясения. Этих повторных толчков – афтершоков – после сильного землетрясения бывает обычно до нескольких сотен и происходят они в течение нескольких месяцев, постепенно ослабевая. Процесс ослабления толчков во времени не равномерен. Отдельные афтершоки по силе могут приближаться к силе основного землетрясения. Иногда землетрясениям предшествуют слабые толчки – форшоки.
В тех случаях когда землетрясения или вулканы происходят под дном океанов, они возбуждают морские волны, которые, достигая берегов суши и встречая их сопротивление поднимаются на высоту до нескольких десятков метров. Такие волны – цунами (по японски «цу» – порт, «нами» – волна) – временами приносят прибрежным районам большие беды.
Различают две группы сейсмических волн – объемные и поверхностные. Слагающие Землю горные породы упруги и поэтому могут деформироваться и испытывать колебания при резком приложении давления (нагрузок). Внутри объема горных пород распространяются объемные волны. Они делятся на два типа: продольные и поперечные. Продольные волны в теле Земли, как и привычные нам звуковые в воздухе, попеременно сжимают и растягивают вещество горных пород в направлении своего движения. Волны другого типа колеблют среду, через которую они проходят, поперек пути своего движения. Именно они-то, выходя на поверхность, раскачивают из стороны в сторону и вверз-вниз все на земле находящееся, приводя к наибольшим разрушениям. Именно потому, что поверхность твердой Земли – это граница с гораздо менее плотной средой, воздушной (ее называют свободной поверхностью), на земной поверхности объемные сейсмические волны могут свободнее «разгуляться», что обычно и происходит. Этому способствует и свойства приповерхностных грунтов.
Очень важны свойства разных групп и типов сейсмических волн, особенно скорость их прохождения через горные породы. Обычно она измеряется несколькими километрами в секунду и следовательно, на разных расстояниях от очага( гипоцентра и эпицентра) приход волн и ощущается и регистрируется неодновременно. На этом свойстве основано определение координат эпицентра по записям прихода волн на удаленные сейсмические станции. Не менее важны различие в скоростях отдельных групп и типов волн. Так поверхностные волны распространяются медленнее объемных и, следовательно, приходят в пункты наблюдения позднее. В группе объемных поперечные волны распространяются в среднем в 1,75 раза медленнее продольных. Отсюда понятно, почему оказавшиеся в эпицентральной области сильного землетрясения люди часто попадают во власть волн: их толкает, качает, трясет в разных направлениях с разными ускорениями. Очевидцы нередко «слышат» землетрясения в буквальном смысле слова. Продольные волны сходны со звуковыми. При определенной частоте колебаний (в диапазоне слышимых волн, то есть более 15 герц) они при выходе на поверхность и становятся звуковыми волнами. Если вспомнить, что продольные волны распространяются быстрее, а поперечные нередко несут главные разрушения, легко понять, почему гул может слышаться перед землетрясением. Тут много зависит и от спектров излучения.
Землетрясения классифицируются в зависимости от глубины расположения их очага. Они делятся на следующие три типа:
1)нормальные- с глубиной очага 0-70 км;
2) промежуточные – 70-300 км;
3) глубокофокусные – более 300 км.
4. Перспективы предсказаний
Заинтересованность правительственных учреждений в прогнозе землетрясений исключительно велика – тысячи человеческих жизней могут быть спасены, если предсказания окажутся точными. Целые города могут эвакуированы зря, если оно окажется ложным. Из-за многих неопределенностей, связанных с землетрясениями удачное их предсказание бывает весьма редким. Тем не менее возможность точного предсказания настолько заманчива, что сегодня сотни ученых, в основном в США, Японии, Китае и России, заняты исследованиями по прогнозу землетрясений.
В качестве возможной основы прогноза принят целый ряд признаков. Наиболее важны и надежны из них следующие:
1) статистические методы,
2) выделение сейсмически активных зон, которые долго не испытывали землетрясения,
3) изучение быстрых смещений земной коры,
4) исследование изменений соотношений скорости продольных и поперечных волн,
5) изменения магнитного поля и электропроводности горных пород,
6) изменения в составе газов, поступающих из глубин,
7) регистрация предваряющих толчков «форшоков»,
8) исследование распределения очагов во времени и пространстве.
Статистические методы просты. Они основаны на анализе сейсмологической истории района: данных о числе, размерах и частоте повторения землетрясений. Предполагая, что сейсмичность района не меняется с течением времени, можно по этим данным оценить вероятность будущих землетрясений. Чем длиннее период времени, за который имеем сведения о землетрясениях, тем точнее будет прогноз.
В Калифорнии сведения о землетрясениях собраны примерно за 200 лет, а в
Китае имеются данные более чем за 2000 лет.
Статистическое изучение сейсмического режима позволило ввести понятия сейсмического цикла и так называемых зон затишья – зон в сейсмически активных районах, где в течение длительного времени наблюдается слабая сейсмическая активность. Средняя длительность сейсмического цикла равна примерно 140 годам – время между сильнейшими сейсмическими событиями в одном месте. Зоны затишья – места накопления максимальной упругой энергии, где возможно ожидать сильное землетрясение.Это явилось основой долгосрочного сейсмического прогноза..
Если известна частота, с которой землетрясения происходили в прошлом, можно сделать обобщенный статистический вывод о вероятности землетрясения в будущем.
Статистические прогнозы не помогают предсказать конкретное место и конкретное время землетрясения. Таким образом, они не очень полезны с точки зрения предварительных мероприятий по безопасности. С другой стороны они имеют огромное значение для инженеров, которые должны проектировать сооружения со сроком существования 50-100 лет.
Принцип другого метода – выделение сейсмически активных зон без землетрясений – логичен. В его основе определение в сейсмически активных зонах участков, где долго не было толчков и где, следовательно, долго не происходило разрядки энергии. Именно там можно ожидать катастрофическое землетрясение. Этот метод правилен и проверен, однако для точного прогноза не представляет. Он не позволяет назвать ни день, ни неделю, ни месяц, когда произойдет событие. Но это не означает, что такого рода исследования не имеют значения: это обеспечит в угрожаемых местах своевременную подготовку и должно учитываться во всех нормативах при возведении зданий и промышленных объектов.
О готовящемся землетрясении может свидетельствовать и увеличение скорости движения земной коры. Этот метод исследований используется в России, Японии, Соединенных Штатах Америки. Перед некоторыми землетрясениями земная поверхность быстро поднималась (быстро в геологическом смысле, со скоростью несколько миллиметров в год), затем движения прекращались, и происходило разрушительное землетрясение.
Много внимания уделяют методу исследования соотношения скорости продольных и поперечных волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются, а также от содержания воды и других физических характеристик пород. В той степени, в какой изменения этих физических характеристик являются предвестниками землетрясений, можно рассматривать в качестве предвестников и скорости сейсмических волн. Скорости волн измеряются с помощью небольших взрывов в скважинах; при этом возбуждаются сейсмические волны, которые записываются близлежащими станциями.
Продольные волны распространяются со скоростью приблизительно в 1,75 раза больше, чем поперечные. Перед землетрясением скорость продольных волн уменьшается, и это соотношение выражается цифрой 1,5. Подобное явление отмечается за несколько месяцев до сейсмического события. Непосредственно перед землетрясением указанное соотношение возвращается к «правильной цифре». Этот метод проверен экспериментально.
Перед отдельными землетрясениями повышается напряженность магнитного поля и электропроводимость пород. Земное магнитное поле может испытывать локальные изменения из-за деформации горных пород и движений земной коры. С целью изменения малых вариаций магнитного поля были разработаны специальные магнитометры. Такие изменения наблюдались перед землетрясениями в большинстве районов, где были установлены магнитометры. Измерения электропроводимости пород проводятся с помощью электродов, помещаемых в почву на расстоянии нескольких километров друг от друга. При этом измеряется электрическое сопротивление толщи земли между ними. Электропроводность обеспечивается главным образом присутствием воды. Следовательно, сопротивление меняется, когда изменяется содержание воды.
Многообещающим является метод изучения состава газа в подземных водах. Этот метод был разработан главным образом учеными, ведущими исследования на Камчатке и Средней Азии. Газы, перед землетрясением, оказываются сильно обогащены радоном. Но недавно группа калифорнийских ученых установила, что это газ выделяется в больших количествах и когда нет никакой сейсмической активности. Последние годы этот метод был распространен и на хлор, содержание которого возрастает в
6 раз( максимальная концентрация радона перед землетрясениями превышает нормальную в 2,7 раза). Высказано предположение, что содержание хлора резко возрастает за 3-5 дней до землетрясения. В настоящее время объектом исследования стало и изменения содержания гелия, ртути, серебра и других элементов.
Некоторым сильным землетрясениям предшествуют более слабые толчки, так называемые форштоки. Установлена последовательность событий, предшествовавших нескольким сильным землетрясениям в Новой Зеландии и Калифорнии. Во-первых, это тесно сгруппированная серия толчков примерно равной магнитуды, которая называется «предваряющим роем». За ним следует период, названный «предваряющим перерывом», в течение которого нигде в окрестностях сейсмических толчков не наблюдается. Затем следует «главное землетрясение», сила которого зависит от величины роя землетрясений и продолжительности перерыва. Предполагается, что рой вызывается раскрытием трещин. Возможность прогнозирования землетрясений на основе этих представлений очевидна, однако имеются определенные трудности в выделении предваряющих роев из других сходных по характеру групповых землетрясений, и каких – либо бесспорных успехов в этой области не достигнуто. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. В Японии исследования этого явления признаны заслуживающими доверия, но надежным на 100% этот метод не станет никогда, ибо многие катастрофические землетрясения происходили без каких-либо предварительных толчков.
Известно, что очаги землетрясений не остаются на одном и том же месте, а перемещаются в пределах сейсмической зоны. Зная направления этого перемещения и его скорость, можно было бы предположить будущее землетрясение. К сожалению, такого рода перемещение очагов не происходит равномерно. В Японии скорость миграции очагов определена величиной 100 км в год. В районе Мацуширо в Японии регистрировалось множество слабых толчков – до 8000 в день. Через несколько лет оказалось, что очаги приближаются к поверхности и смещаются в южном направлении.
Было вычислено вероятное место – положение очага следующего землетрясения и непосредственно к нему была пробурена скважина. Толчки прекратились.
Наблюдение за необычным поведением животных перед землетрясением признано очень важным, хотя отдельные специалисты утверждают, что речь идет о случайности. В ответе на вопрос, что же, воспринимают животные ученые не пришли к согласию. Представляются разные возможности: может быть с помощью органов слуха животные слышат подземные шумы или улавливают ультразвуковые сигналы перед толчками, либо организм животных реагирует на незначительные изменения барометрического давления или на слабые изменения магнитного поля. Возможно животные воспринимают слабые продольные волны, в то время как человек ощущает только поперечные.
Уровень грунтовых вод перед землетрясениями часто повышается или понижается, по-видимому, из-за напряженного состояния горных пород. Землетрясения могут влиять на уровень воды. Вода в скважинах может колебаться при прохождении сейсмических волн, даже если скважина находится далеко от эпицентра. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже.
5. Трудности прогноза.
Проблема предсказания землетрясения в настоящее время привлекает и ученых, и общественность как одна из серьезнейших и вместе с тем весьма актуальных. Мнения исследователей о возможности и путях решения проблемы далеко не однозначны.
Принципиальная основа решения проблемы прогноза землетрясений состоит в установленном лишь в последние30 лет фундаментальном факте, что перед землетрясением меняются физические (механические и электрические в первую очередь) свойства горных пород. Возникают аномалии разного рода геофизических полей: сейсмического, поля скоростей упругих волн, электрического, магнитного, аномалии в наклонах и деформациях поверхности, гидрогеологическом и газохимическом режиме и т.д. В сущности, на этом и основано проявление большинства предвестников. Всего сейчас известно свыше 300 предвестников, из них 10-15 неплохо изучены.
Прогноз землетрясения можно считать полным и практически значимым, если заблаговременно предсказываются три элемента будущего события: место, интенсивность (магнитуда) и время толчка. Карта сейсмического районирования, даже самая надежная, в лучшем случае дает сведения о возможной максимальной интенсивности землетрясений и средней частоте их повторения в какой-то зоне. Она содержит необходимые элементы прогноза, но самого прогноза обеспечить не в состоянии, так как не говорит о конкретных ожидаемых событиях. В ней отсутствует главнейший элемент прогноза – предсказания времени события.
Трудности в отношении прогноза времени землетрясения огромны. Да и предвидение места и интенсивности будущих подземных бурь – тоже еще далеко не решенная задача. До сих пор не разработаны принципиальные возможности и конкретные способы предвидения землетрясений в любой части сейсмически опасного региона с заданной точностью места и интенсивности в заданный отрезок времени. Поэтому долгое время идеальной будет, по-видимому, такая схема: в пределах сейсмогенного региона выделяется некая достаточно обширная область, где в течение нескольких лет или десятилетий можно ожидать крупное сейсмическое событие.
Предшествующими исследованиями область ожидаемого события снижается, уточняются возможная сила толчка или его энергетическая характеристика – магнитуда и опасный период времени. На следующей стадии разработок определяется место предстоящего толчка, а время ожидания события сокращается до нескольких дней и часов. В сущности, схема предусматривает три последовательные стадии прогноза – долгосрочный, среднесрочный и краткосрочный.
Заключение
Однако проблема «что делать с прогнозом» остается. Некоторые сейсмологи сочли бы свой долг выполненным, предав свое предупреждение по телеграфу премьер – министру, другие пытаются подключить социологов к исследованию вопроса о том, какова будет наиболее вероятная реакция общества на сделанное предупреждение. Простой гражданин едва ли будет обрадован сообщению, что городской совет предлагает ему посмотреть кинокартину на открытом воздухе в городском сквере, если он будет знать, что его дом по всей вероятности будет разрушен через один или два часа.
Нет сомнений, что социальные и экономические проблемы, которые возникнут в результате предупреждения, будут весьма серьезными, но что произойдет в действительности в большей степени, зависит от содержания предупреждения. В настоящее время представляется вероятным, что сейсмологи вначале будут делать заблаговременные предупреждения, возможно, на несколько лет вперед, а затем постепенно уточнять время, место и возможную магнитуду ожидаемого землетрясения по мере его приближения. Ведь стоит сделать предупреждение, и страховые премии, как и цены на недвижимость резко изменятся, может начаться миграция населения, новые строительные объекты будут заморожены, начнется безработица среди рабочих, занятых ремонтом окраской зданий. С другой стороны может возникнуть повышенный спрос на лагерное оборудование, средства борьбы с огнем, товары первой необходимости, за чем последуют их нехватка и повышение цен.
Нужно четко различать предсказания, источник которого может заслуживать или не заслуживать доверия, и предупреждения, которые должны носить характер официального указания о необходимости осуществления тех или иных практических мероприятий.
Каковы бы ни были перспективы прогноза или контроля, очевидно, что число жертв при землетрясениях и экономические потери могут быть существенно уменьшены, если специалисты направят свою изобретательность и труд в первую очередь на разработку более надежных строительных нормативов и создание более совершенных строительных конструкций.
Каждое землетрясение – это и урок, и экзамен. И не только для сейсмологов, специализирующихся и, может быть, наиболее способных учеников по классу землетрясений в Школе Природы, но и для проектировщиков, землеустроителей и экономистов. Более того, для всех жителей поражаемых подземными бурями областей.
Литература:
1. А.А. Никонов «Землетрясения» Издательство «Знание»
Москва,1984г.
2. Дж.А. Эйби «Землетрясения» Издательство
«Недра»,Москва 1982г.
3. А.В. Викулин, Н.В. Семенец, В.А. Широков «Землетрясение будет завтра»
П-Камчатский, 1989г.
4. С.В. Поляков «Последствия сильных землетрясений»
Издательство «Стройиздат» Москва, 1978г.
5. Зденек Кукал «Природные катастрофы»
Издательство «Знание» Москва, 1985г.
6. Дж. Гир, Х. Шах «Зыбкая твердь»
Издательство «Мир», Москва, 1988г.
7. И.Г. Киссин «Землетрясение и подземные воды»
Издательство «Наука» Москва, 1982г.
9. Шумилов В.Н. Закон Архимеда и землетрясения, Киев, 2005, издательство "Ника-принт".
Самодельный телефон
Акварельные гвоздики
Шум и человек
Соленая снежинка
Вокруг света за 80 дней