Реферат выполнен в рамках предметной области «Математика», по курсу «Геометрия 8 класса», раздела «Осевая и центральная симметрия».
Работа состоит из 4 разделов и 12 глав. Общий объем страниц, включая приложение, составляет 41 страница.
Вложение | Размер |
---|---|
referat_po_teme_simmetriya.doc | 887 КБ |
Министерство образования и науки РФ
Муниципальное общеобразовательное учреждение
Парабельская средняя общеобразовательная школа
имени Николая Андреевича Образцова
РЕФЕРАТ
по теме: Симметрия
Выполнила:
ученица 9 «б» класса
Новосельцева Дарья
Руководитель:
Пичугина Е.Г.
учитель математики
2009
Содержание
Введение……………………………………………………………………3 стр.
Раздел I. Симметрия в математике, физике …..…………………………5 стр.
Глава 1. Центральная симметрия………………………………………....7стр.
Глава 2. Симметрия вращения …………………………………..……….9 стр.
Глава 3. Осевая симметрия……………………………………………….10 стр.
Глава 4. Зеркальная симметрия……………………………………. ……11 стр.
Раздел II. Симметрия в живой природе…………………………….……12 стр.
Глава 1. Симметрия растений……………………………………….……13 стр.
Глава 2. Симметрия животных…………………………………….……..14 стр.
Глава 3. Асимметрия живого…………………………………..…….…...16 стр.
Глава 4. Человек – существо симметричное………………………….…20 стр.
Раздел III. Симметрия в неживой природе………………………………22стр.
Глава 1. Симметрия кристаллов…………………………………………..
Глава 2. Симметрия в архитектуре……………………………….………23 стр.
Раздел IV. Симметрия слов и чисел……………………………………...25 стр.
Глава 1. Стилистическая симметрия…………………………………….
Глава 2. Симметрия слов…………………………………………….……26 стр.
Заключение………………………………………………………….……..28 стр.
Список литературы………………………………………………….…….31 стр.
Приложения………………………………………………………….…….32 стр.
Тема моего реферата была выбрана после изучения курса «Геометрия 8 класса», раздела «Осевая и центральная симметрия». Остановилась я именно на этой теме не случайно, мне хотелось узнать принципы симметрии, её виды, разнообразие её в живой и неживой природе.
Как говорил академик А.В. Шубников, посвятивший изучению симметрии всю свою долгую жизнь: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм».
Под симметрией (от греч. symmetria — соразмерность) в широком смысле понимают правильность в строении тела и фигуры. Учение о симметрии представляет собой большую и важную ветвь тесно связанную с науками разных отраслей. С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например, зубчатые колеса.
Замечу также, что симметрия широко используется в искусстве, особенно в европейском. Но в некоторых восточных культурах, например в японской, также широко используется асимметрия. Такая, подчеркнуто асимметричная структура, свойственна, в частности, канону дзэнского сада камней. Аналогичный принцип относится у японцев и к построению изображения на картине, которое должно быть сдвинуто к краю и занимает сравнительно небольшую площадь, уравновешиваясь более значительным свободным полем, символизирующим беспредельность мира.
Мне это было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие области науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей.
Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды — от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.
Мне захотелось узнать побольше не только об особенностях симметрии, но и о том, как она проявляется в тех или иных живых организмах, в неживой природе, как она себя ведет в математике и существует ли асимметрия.
Мне это важно, потому что для многих людей математика – скучная и сложная наука. Я же хочу объяснить на примере симметрии, что математика – не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук от простых до самых сложных.
Цели моего реферата были следующими:
Задачи, которые я ставила перед собой, были такими:
Моя работа состоит из 4-х разделов и 12-ти глав. Мной были изучены и обработаны материалы разных литературных источников, среди которых учебная, справочная, научная литература, периодические издания и ресурсы сети Интернет. Оформлено приложение, в котором содержатся рисунки, чертежи, которые отсканированы из различных источников. А также подготовлена презентация, выполненная в редакторе Power Point.
Раздел I. Симметрия в математике, физике
По справедливому замечанию Германа Вейля (известный математик прошлого столетия), у истоков симметрии лежит математика [4]. Замечательные слова, сказанные им: «Симметрия… есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство» [5]. Понятие симметрии раскрывается в учебнике «Геометрия 8», и для осознания этого понятия в школе данной формулировки я считаю достаточно.
Но вместе с тем симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Математики вкладывают в понятие симметрия точный математический смысл, рассматривают специальные виды симметрии. И в результате симметрия становится мощным средством математических исследований, помогает решать трудные задачи.
Итак, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. И если говорить о геометрических объектах, то симметрию можно будет называть геометрической, если о физических явлениях, то – физическая симметрия.
Например, пятиконечная звезда, будучи повёрнута на 72° (360°: 5), займёт первоначальное положение, а ваш будильник одинаково звенит в любом углу комнаты. Благодаря симметрии все физические приборы (в том числе и будильник) одинаково работают в разных точках пространства, если, конечно, не изменяются окружающие физические условия. Легко вообразить, какая бы царила на Земле неразбериха, если бы эта симметрия была нарушена: вещи бы были непонятной формы, зеркало бы показывало наше отражение задом, а не передом, а мы бы с вами просто не смогли бы ходить, видели одним глазом и ели бы одной рукой.
Таким образом, общим для всех них (геометрических объектов или физических явлений) принципом симметрии пронизаны многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности, начиная от текстильного производства, кончая тонкими вопросами строения вещества.
«Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности»,— писал Вернадский. Действительно, еще Платон заметил, что атомы четырех стихий — земли, воды, огня и воздуха — геометрически симметричны в виде правильных многогранников. И хотя сегодня «атомная физика» Платона кажется наивной, принцип симметрии и через два тысячелетия остается основополагающим принципом современной физики атома. За это время наука прошла путь от осознания симметрии геометрических тел к пониманию симметрии физических явлений.
Симметрия – одно из фундаментальных понятий в современной физике, играющее важнейшую роль в формулировке современных физических теорий. Симметрии, учитываемые в физике, довольно разнообразны, начиная с симметрий обычного трехмерного «физического пространства» (такими, например, как зеркальная симметрия), кончая более абстрактными и менее наглядными. Некоторые симметрии в современной физике считаются точными, другие – лишь приближёнными. Исторически использование симметрии в физике прослеживается с древности, но наиболее революционным для физики в целом, по-видимому, стало применение такого принципа симметрии, как принцип относительности (как у Галилея, так и у Пуанкаре-Лоренца-Эйнштейна), ставшего затем как бы образцом для введения и использования в теоретической физике других принципов симметрии, которые привели к общей теории относительности Эйнштейна.
В теоретической физике поведение физической системы описывается обычно некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин. Например, следует, что инвариантность (неизменность) уравнений движения тела с течением времени приводит к закону сохранения энергии; инвариантность относительно сдвигов в пространстве – к закону сохранения импульса; инвариантность относительно вращений – к закону сохранения момента импульса.
Глава 1. Центральная симметрия
Понятие центральной симметрии следующее: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией [1].
Понятия центра симметрии в «Началах» Евклида нет, однако в 38-ом предложении XI книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней [3].
Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма – точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличие от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много – любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является произвольный треугольник.
В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции – относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция – осевой.
В других источниках определение центральной симметрии раскрывается следующим образом: геометрическая фигура (или тело) называется симметричной относительно центра C, если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам (AC = CE). Точка C называется центром симметрии. Фигура ABCDE составлена из двух треугольников АВС и EDC, у которых стороны попарно равны и служат продолжением друг друга, обладает центром симметрии С (приложение 1). Между соответствующими парами точек всегда лежат равные отрезки; соответствующие друг другу углы двух половин тела, обладающего центральной симметрией, тоже равны. Две половины тела с центральной симметрией не могут накладываться одна на другую, как и две половины тела, обладающие зеркальной симметрией. Более того, одну из половин тела с центральной симметрией можно поворотом на 180º поставить в зеркально симметричное положение. Поэтому две половины тела с центральной симметрией зеркально равны друг другу.
Также рассмотрим пример с пирамидой. Если продолжить ребра SA, SB, SC, ... пирамиды SABCDE на расстояния, равные длинам этих рёбер, в противоположную сторону от вершины, то две пирамиды SABCDE и Sabcde вместе образуют тело, симметричное относительно центра S (приложение 2).
Если пирамида SABCDE не имеет «дна» (пирамидальная воронка), то, вывернув её наизнанку, получим тело, в которое можно вложить пирамиду Sabcde; не производя выворачивания, нельзя (в общем случае) совместить эти два тела, так что в общем случае SABCDE и Sabcde не равны, а лишь зеркально равны. В исключительных случаях (например, если пирамида SABCDE - правильная) возможно и равенство.
Рассмотрим ещё один пример. Если плоская фигура
ABCD (приложение 3) имеет ось симметрии второго порядка, перпендикулярную к плоскости фигуры (прямая KL), то точка О, в которой KL пересекает плоскость фигуры, служит центром симметрии фигуры ABCD. Обратно, если плоская фигура ABCD имеет центр симметрии О (он непременно лежит в плоскости фигуры), то эта фигура имеет ось симметрии второго порядка, проходящую через О перпендикулярно к плоскости фигуры.
Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180° около центра симметрии.
Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором – перпендикулярна к этой плоскости.
Глава 2. Симметрия вращения
Тело (или фигура) обладает симметрией вращения, если при повороте на угол 360º/n, где n целое число, около некоторой прямой АВ (ось симметрии) оно полностью совмещается со своим исходным положением. Если число n равно 2, 3, 4 и т.д., то ось симметрии называется осью второго, третьего и т.д. порядка.
Например, если мы разрежем круг на три части с центральными углами по 120º, наложим эти секторы друг на друга (не переворачивая их другой стороной) и прорежем на них фигуру а произвольной формы, то, сложив снова части так, как они лежали, получим фигуру (круг с дырочками), обладающую осью симметрии 3-его порядка. Эта ось перпендикулярна к плоскости чертежа. Поворотом на 120º фигура полностью совмещается со своим исходным положением (приложение 4).
Радиальная симметрия – форма симметрии, сохраняющаяся при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром тяжести объекта, то есть той точкой, в которой пересекается бесконечное количество осей симметрии. Подобными объектами могут быть круг, шар, цилиндр или конус.
Приведу примеры тел, обладающих перечисленными видами симметрии.
Шар обладает и центральной, и зеркальной, и осевой симметрией. Центром симметрии является центр шара, плоскостью симметрии — плоскость любого большого круга; осью — любой диаметр шара. Порядок оси — любое целое число.
Круглый конус имеет осевую симметрию (любого порядка); ось симметрии — ось конуса.
Правильная пятиугольная призма имеет плоскость симметрии, идущую параллельно основаниям на равном от них расстоянии, и ось симметрии пятого порядка, совпадающую с осью призмы. Плоскостью симметрии может также служить плоскость, делящая пополам один из двугранных углов, образуемых боковыми гранями.
Глава 3. Осевая симметрия
Понятие осевой симметрии представлено следующим образом: «Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая a называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.
В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам. Рассмотренная выше (гл. 1) пара треугольников обладает (кроме центральной) еще осевой симметрией. Её ось симметрии проходит через точку С перпендикулярно к плоскости чертежа.
Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии — прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник— три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат— четыре оси симметрии. У окружности их бесконечно много — любая прямая, проходящая через её центр, является осью симметрии.
Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник (приложение 5).
Глава 4. Зеркальная симметрия
Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело) (приложение 6). [1]
Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» — это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.
Важно отметить, что два симметричных друг другу тела не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя называть равными, поэтому их называют зеркально равными.
Рассмотрим пример. Если плоская фигура ABCDE (приложение 3) симметрична относительно плоскости Р (что возможно лишь в случае взаимной перпендикулярности плоскостей ABCDE и Р), то прямая KL, по которой пересекаются упомянутые плоскости, служит осью симметрии (второго порядка) фигуры ABCDE. Обратно, если плоская фигура ABCDE имеет ось симметрии KL, лежащую в её плоскости, то эта фигура симметрична относительно плоскости Р, проведённой через KL перпендикулярно к плоскости фигуры. Поэтому ось КЕ можно назвать также зеркальной L прямой плоской фигуры ABCDE.
Две зеркально симметричные плоские фигуры всегда можно наложить
друг на друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости.
Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).
Раздел II. Симметрия в живой природе
Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наше внимание и ласкает наш взгляд. К числу таких образцов относятся некоторые кристаллы и микробы, многие животные и растения. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну их красоты. Нас удивляет и архитектура пчелиных сот, и расположение семян на шапке подсолнечника, и винтообразное расположение листьев на стебле растения (приложение 8) [4].
У биологических объектов встречаются следующие типы симметрии:
а) сферическая симметрия — симметричность относительно вращений в трёхмерном пространстве на произвольные углы;
б) симметрия n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси;
в) аксиальная симметрия (радиальная ) — симметричность относительно поворотов на произвольный угол вокруг какой-либо оси;
г) двусторонняя (билатеральная) симметрия (от би... и лат. lateralis — боковой) — симметричность относительно зеркального отражения; выражается в том, что тело живых организмов делится срединной плоскостью на правую и левую половины, представляющие как бы зеркальное отражение одна другой.;
д) трансляционная симметрия — симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние;
е) триаксиальная асимметрия — отсутствие симметрии по всем трём пространственным осям.
Глава 1. Симметрия растений
Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.
Среди цветов наблюдаются поворотные симметрии разных порядков. Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120º, для колокольчика – 72º, для нарцисса – 60º [4]. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 360º. Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно. Особенно часто среди цветов встречается симметрия пятого порядка. Это такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых деревьев – вишня, яблоня, груша, мандарин и др., цветы плодово-ягодных растений – земляника, ежевика, малина, шиповник; садовые цветы – настурция, флокс и др.
В пространстве существуют тела, обладающие винтовой симметрией, т. е. совмещающиеся со своим первоначальным положением после поворота на угол вокруг оси, дополненного сдвигом вдоль той же оси.
Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.
Билатеральной симметрией обладают также органы растений, например, многие стебли с двурядно расположенными листьями или боковыми побегами, стебли многих кактусов и т.п. Билатеральными называются также листья, у которых верхняя и нижняя поверхности различны по строению.
В ботанике часто встречаются радиально симметрично построенные цветы: 3 плоскости симметрии имеет водокрас лягушачий, 4 – лапчатка прямая, 5 – колокольчик, 6 – безвременник.
Глава 2. Симметрия животных
Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды – от простейших до самых сложных. Симметрия в строение животных – почти общее явление, хотя почти всегда встречаются исключения из общего правила (приложение 10).
Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного [6].
В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.
Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).
При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии – двусторонняя. Левая половина их тела — это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе — скорее всего ничего не выйдет.
Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфы – пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами – это объект и его зазеркальный двойник при условии, что сам объект зеркально асимметричен.
Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.
Губки и пластинчатые не проявляют симметрию.
Глава 3. Асимметрия живого
Понятия симметрии и асимметрии альтернативны: чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать отсутствие формы (например, у амёбы) от отсутствия симметрии. В природе и биологии симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.
Симметрия в строении животных – почти общее явление, хотя почти всегда встречаются исключения из общего правила, выражающиеся в асимметричном положении той или другой части или того или другого органа. Например, наиболее резким примером асимметричной конфигурации могут служить камбалы и особенно смещение их глаз. Асимметрия (греч. α- – «без» и «симметрия») – отсутствие симметрии.
Ещё немецкий философ Иммануил Кант [6] заметил: «Что может быть больше похоже на мою руку или на моё ухо, чем их собственное отражение в зеркале? И всё же я не могу поставить ту руку, которую я вижу в зеркале, на место оригинала». На аналогичное явление обратили внимание и поэты:
Я на правую руку надела
Перчатку с левой руки...
(Анна Ахматова)
Совершить такую ошибку можно только в состоянии сильного волнения. Да и как ни надевай такую перчатку, она всё равно не подойдёт. Организм, как мы видим, прекрасно различает правое и левое. Причём, что удивительно, — как правило, живая природа отдаёт явное предпочтение одному из двух направлений — либо правому, либо левому. Среди людей гораздо чаще встречаются «правши», нежели «левши». Раковины моллюсков закручиваются обычно права налево, и лишь одна на несколько тысяч — наоборот. Впрочем, к этому можно добавить, что и наблюдаемая нами неживая природа как будто «предпочитает», например, вещество антивеществу.
Вероятно, таков вообще признак жизни — её стремление образовывать из симметричных молекул асимметричные и затем делать выбор в пользу одного из возможных видов асимметрии. Эта мысль, по-видимому, ведёт своё начало от французского химика, биолога и медика Луи Пастера (1822—1895). Он даже назвал нарушение симметрии, асимметрию, основным свойством живого. Он не имел в виду, конечно, только знакомые нам внешние проявления асимметрии. Дело в том, что асимметрия живого существует и на самом глубоком уровне — на уровне молекул живых организмов. Из одного перечня профессий Луи Пастера видно, что он был человеком поистине универсальных знаний. Человечество обязано ему предохранительными прививками против бешенства и других заболеваний. Ему принадлежит открытие, что кипячение убивает микробов. К Пастеру восходят дезинфекция и методы стерилизации. В молодости Пастер занимался винной кислотой. Ему было известно, что наряду с винной кислотой существует химически тождественная ей виноградная кислота. Но обе эти кислоты различаются по их оптическим свойствам. Раствор винной кислоты оптически активен, он вращает поляризованный свет. Раствор виноградной кислоты, напротив, совсем не отклоняет света. Рассматривая кристаллы обеих кислот под микроскопом, Пастер обнаружил, что у винной кислоты они являются либо правыми, либо левыми, а у оптически нейтральной виноградной кислоты половина кристаллов — левые и половина — правые. Он продолжил свои эксперименты и пришел к заключению, что живые существа, предпочитающие асимметричные молекулы, тоже должны быть асимметричными. Не только в спирали ДНК, но и всюду, где присутствуют белковые молекулы (а микробы — это высокомолекулярные органические белки), мы встречаемся со спиральным строением. Но, несмотря на кажущуюся простоту формулировки в сочетании с современными теориями физики, химии и других естественных наук, а также с новыми открытиями (например, нейтрино) в этих областях симметрия пространства становится всё более запутанной. Но, несомненно, одно: Мир симметричен! В нём найдено, в принципе, зеркальное соответствие каждому изображению.
Белковые цепочки живых организмов состоят из отдельных «бусин» — аминокислот. И, оказывается, аминокислоты могут быть правыми и левыми. Не отличаясь по химическому составу, они будут отличаться друг от друга, как предмет (та же рука) и его зеркальное отражение. Эти формы не совмещаются друг с другом ни при каких поворотах, как не надеваются левая и правая перчатки на одну руку. Если задать себе вопрос, «Какие аминокислоты входят в состав белков живых организмов?». Ответ, вероятно, будет «Поровну — правые и левые». Так вот нет – только левые! Более того, правые формы для земной жизни просто вредны. Точно так же правыми и левыми могут быть и углеводы. В составе живых организмов все углеводы — правые.
В повести Льюиса Кэрролла (псевдоним английского математика Ч.Л. Доджсона) «Алиса в Зазеркалье» девочка Алиса проходит сквозь зеркало и попадает в «зеркальный» мир. Математик Кэрролл не был, вероятно, знаком с тонкостями химического строения зеркально-симметричных веществ. Ведь, попади Алиса в мир, «отражённый» на уровне молекул, она бы... умерла от голода, т.к. не смогла бы питаться «зеркальной» пищей (а вот вода ничем не отличалась бы от нашей).
Тогда возникает вопрос «Почему же случилось так, что в составе живых существ нашей планеты оказались только правые углеводы и левые аминокислоты?» В одном из рассказов польского фантаста Станислава Лема предлагается такая версия. Будто бы жизнь была завезена на Землю на инопланетном космическом корабле. И механик этого корабля, выливая в первобытный земной океан ведро органических веществ, размешал их кочергой в одном направлении. И вот результат... Это, конечно, шутка.
А как же обстояло дело в действительности? Важнейшие жизненные процессы могут протекать только в «зеркально» - однородной среде. Значит, жизнь неизбежно должна была нарушить равноправие правых и левых форм органических веществ.
Быть может, одновременно где-то возникла «зеркальная» жизнь — с правыми аминокислотами и левыми углеводами? Но тогда, видимо, в борьбе за существование выжили наши далёкие предки, истребив своих «двойников из Зазеркалья».
Далеко не всякий пятилетний ребёнок различает правую и левую стороны. В XIX в. солдаты заучивали «право и лево», привязывая к правому сапогу сено, а к левому — солому. И сейчас взрослому человеку случается ошибиться. А взятый из живого организма белок-фермент разделяет смесь правых и левых аминокислот безошибочно и чисто. Так что в чём-то жизнь, безусловно, ушла вперёд, развиваясь от белковых молекул до человека. А в чём-то мы поотстали...
В ходе эволюции происходит закономерный переход от симметрии к асимметрии живой формы. Признаки симметрии определяются внешней средой. Полностью изотропной экологической нише (широкие условия необходимые для существования живых организмов) соответствует максимальная степень симметрии организмов. Первые организмы на Земле, плавающие в толще воды одноклеточные, имели максимально возможную симметрию — шаровую, они появились примерно 3.5 млрд. лет назад.
Асимметризация у наземных животных по оси «верх-низ» происходила под действием поля гравитации. Это привело к появлению малоподвижных или прикреплённых организмов радиальной симметрии.
Асимметризация по оси «перед-зад» происходила при взаимодействии с пространственным полем, когда понадобилось быстрое движение (спастись от хищника, догнать жертву). В результате, в передней части тела оказались главные рецепторы и мозг. Билатерально симметричные организмы господствуют последние 650—800 млн. лет. Это ракообразные, рыбы, все прогрессивные формы: млекопитающие, птицы, насекомые.
Итак, эти три типа симметрии располагаются в эволюционном ряду следующим образом: полностью асимметричная амёба является более примитивным существом, чем одноклеточные организмы шаровой симметрии (радиолярии, вольвоксовые), она находится в начале этого ряда. Затем соответственно представители радиальной симметрии. Билатерально симметричные организмы считаются «венцом» эволюции.
Глава 4. Человек - существо симметричное
Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.
Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи (приложение 7). Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлинённой формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор — слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой). Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают характерные, индивидуальные черты.
И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.
Раздел III. Симметрия в неживой природе
Глава 1. Симметрия кристаллов
Ещё более ярко и систематически симметричность структуры материи обнаруживается в неживой природе, а именно в кристаллах. «Кристаллы блещут симметрией», - писал Е. С. Федоров в своём «Курсе кристаллографии». При слове «кристалл» в воображении рисуется первый среди драгоценных камней – алмаз: «кристальная» чистота и прозрачность, чудесная, непередаваемая игра света, идеальная, правильная форма. Но теперь алмазы не только предмет роскоши. Сегодня они служат для обработки наиболее твёрдых металлов и сплавов. Без них не мыслится современная металлообрабатывающая промышленность.
Оказывается, не только алмаз кристалл. Обычный сахар и поваренная соль, лёд и песок состоят из множества кристалликов. Больше того, основная масса горных пород, образующих земную кору, состоит из кристаллов. Даже обыкновенная глина представляет собой нагромождение мельчайших кристалликов. Словом, большинство строительных материалов – металлы, камень, песок, глина – кристаллические вещества. Можно сказать, что мы живём в домах, построенных из кристаллов. Неудивительно, что кристаллы являются предметом тщательного изучения. Кристаллы – это твердые тела, имеющие естественную форму многогранника. Для каждого данного вещества существует своя, присущая только ему одному, идеальная форма его кристалла. Эта форма обладает свойством симметрии, т.е. свойством кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов. Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и рёбрами для всех образцов кристаллов одного и того же вещества. Что же касается формы граней, числа граней и рёбер и величины кристалла, то для одного и того же вещества они могут значительно отличаться друг от друга.
Нам известны некоторые элементы симметрии: оси симметрии, плоскости симметрии, центр симметрии, зеркальные оси. Кристалл каждого вещества характеризуется определённым набором элементов симметрии – видом (классом) симметрии. Внутреннее устройство кристалла представляется в виде так называемой пространственной решетки, в одинаковых ячейках которой, имеющих форму параллелепипедов, размещены по законам симметрии одинаковые мельчайшие материальные частицы – молекулы, атомы, ионы или их группы.
Сама правильность формы кристаллов, тесно связана с их решетчатым строением, т. е. в конечном счёте, определяется симметрией их структуры.
Следует признать, что значение симметрии в кристаллах, где она играет роль своеобразного закона формообразования, шире, чем в живой природе, в которой она выступает как некая очевидная, но недостаточно последовательно выраженная тенденция.
Глава 2. Симметрия в архитектуре
Принцип симметрии играет важную роль и в архитектуре. «Архитектура – по словам Н.В. Гоголя – это летопись мира». Она несет в себе уникальную информацию о жизни людей в давно прошедшие исторические эпохи.
Термин «симметрия» в разные исторические эпохи использовался для обозначения разных понятий. Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем. Ещё в Древности греки строили пирамиды строго симметрично. Те же развалины Парфенона на Акрополе служат доказательством этого.
Симметрия в Средневековье присутствовала в романском стиле (сооружения в форме креста), в готике (архитектурные конструкции имели прямоугольный или крестообразный вид). На смену готике пришёл стиль «барокко», который использовал асимметрию. Но смену этому стилю приходит «классицизм» – самый симметричный из всех известных стилей. Практически поворот на 180 градусов произошел при смене классицизма модерном. Стиль «модерн» использует асимметрию – волнообразное построение архитектурных композиций. В настоящее время каких-либо стилей нет, каждый архитектор работает в своей манере.
Композиция в русской традиционной архитектуре в значительной степени основывалась на специфическом применении симметрии, широко применялись как классическая, так и неклассические симметрии. Применение симметрии основывалось на особенностях зрительного восприятия сооружений в натуре. Поэтому на чертежах и планах симметрия может отсутствовать.
В искусстве симметрия играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия.
Немалую роль симметрия играет в архитектурной композиции — закономерное расположение частей формы относительно друг друга. История архитектуры полна всеми видами симметричных преобразований, основными из которых являются отражение, поворот и перенос. В вопросе о симметрии архитектурного сооружения важно помнить, что сама функция постройки часто диктует симметричность или асимметричность построения. Так зрелищные сооружения (цирки, театры), мемориальные комплексы и другие архитектурные композиции, где есть явно выраженный главный функциональный элемент (сцена, главный монумент) тяготеют к симметричности, к организованности пространства вокруг этого главного элемента. И вовсе не случайно строго симметричные сооружения использовались для воплощения идей строгой централизации общества и строгого упорядочения устройства мира (Мавзолей В.И. Ленина в Москве) (приложение 9). Напротив, сложные в функциональном отношении сооружения требуют свободного, асимметричного расположения элементов, т.к. симметричное построение композиции трудно осуществимо. Например, никогда еще не удавалось уложить в строгую симметричную схему такое многофункциональное сооружение, как город. В этих случаях применяют в архитектуре асимметрию. Средством создания единства в асимметричных композициях является зрительное равновесие частей по массе, фактуре, цвету и пр. В сложных композициях могут сочетаться симметрия и асимметрия.
В конкретном архитектурном сооружении зрительное восприятие симметрии достигается выявлением плоскостей или осей симметрии. Для этого на них ставятся акценты — особо значимые элементы (купола, шпили, шатры, парадные входы и лестницы, балконы и эркеры). Но архитектор – прежде всего художник. И потому даже самые «классические» стили чаще использовали дисимметрию – нюансное отклонение от чистой симметрии или асимметрию – нарочито несимметричное построение. При этом довольно трудной задачей является зрительное (тектоническое) уравновешивание масс – объёмов и пространств. В симметричной композиции такое равновесие достигается само собой. В асимметричной композиции этого приходится специально добиваться, используя все средства архитектурной формы (геометрический вид, положение в пространстве, массу, величину, фактуру, а часто и цвет).
Таким образом, архитектор, используя объективные свойства архитектурных форм (геометрический вид, положение в пространстве, величину, массу, фактуру, свет и цвет), с помощью ритма, пропорционирования, масштабирования, используя тождество, нюанс, контраст и симметрию, создает целостную архитектурную композицию. Всеми вышеперечисленными приёмами он выстраивает программу восприятия зрителем архитектурного образа.
Различные виды симметрии применяют в особой области убранства архитектуры – орнаментальном декоре. Орнамент – ритмично повторяющийся рисунок, основанный на симметричной композиции его элементов и выражаемый линией, цветом или рельефом. Исторически сложилось несколько типов орнаментов на основе двух источников – природных форм и геометрических фигур. Основные типы орнаментов – сетчатые, прямолинейные (ленточные) орнаментальные полосы, круговые (кольцевые) орнаментальные композиции, центрические (розеты), основанные на симметрии многоугольников, и др.
Примеры сетчатого геометрического орнамента можно увидеть в композициях ряда металлических решеток и оград, плиточных покрытий полов, в декоративном решении стен с узорной кирпичной кладкой. Ленточный орнамент использован в порезках карнизов античных храмов, в росписях стен древнерусских храмов. Орнаментальные заполнения филёнок, пилястр и панно чаще имели симметричные композиции, за исключением стилей рококо и модерн, где встречались асимметричные.
Раздел IV. Симметрия слов и чисел
Глава 1. Стилистическая симметрия
Явление стилистической симметрии удобнее всего показать на примерах псалмов, от которых она в основном (но не исключительно) и ведет свое начало в древнерусской литературе.
Сущность этой симметрии состоит в следующем: об одном и том же в сходной синтаксической форме говорится дважды; это как бы некоторая остановка в повествовании, повторение близкой мысли, близкого суждения, или новое суждение, но о том же самом явлении. Второй член симметрии говорит о том же, о чём и первый член, в других словах и другими образами. Мысль варьируется, но сущность её не меняется. Стилистическую симметрию обычно смешивают с художественным параллелизмом и со стилистическими повторами. Однако от художественного параллелизма стилистическую симметрию отличает то, что она не сопоставляет два различных явления, а дважды говорит об одном и том же; от стилистических же повторов (обычных, в частности, в фольклоре) стилистическую симметрию отличает то, что она хотя и говорит о том же самом, но в другой форме, другими словами.
Конечно, название «стилистическая симметрия» условно. Одна из важнейших особенностей стилистической симметрии состоит в неполноте симметрического построения. Оба члена симметрии хотя и говорят об одном и том же, но говорят по-разному. Эта точность соответствия обоих членов симметрии связана с характерным отличием поэтического описания от описания научного. Первое всегда несколько «неточно»: «неточна» метафора, «неточна» метонимия, «неточен» любой художественный образ. Эта «неточность» в искусстве особого рода: она динамична, всегда как бы восполняется читателем, слушателем или зрителем. Благодаря этой «неточности» восприятие произведения искусства является до известной степени сотворчеством. Мы как бы решаем некую задачу, поставленную перед нами в произведении искусства.
Но наряду с такого рода «вечной» особенностью всякого произведения искусства в стилистической симметрии есть и черта, прямо противоположная эстетическим принципам нового времени. Обратим внимание на следующее. Стилистическая симметрия может рассматриваться как своеобразное явление синонимии и в широком смысле этого слова. Синонимия же может иметь различные функции: уточнения, конкретизации, развития и т. д. Из всех функций синонимии стилистическая симметрия по преимуществу преследует цели ограничения и абстрагирования значения. Эта абстрагирующая тенденция прямо противоположна конкретизирующему стремлению искусства нового времени. Вот почему стилистическая симметрия и не употребляется в искусстве нового времени.
Глава 2. Симметрия слов
Все мы читали сказку А.Толстого «Золотой ключик» и смотрели фильм или мультфильм. Там Мальвина диктовала Буратино всем известную «волшебную» фразу: «А роза упала на лапу Азора». Она читается и слева направо и справа налево одинаково. Автором этой фразы считается русский поэт XIX века А.А.Фет.
Это и есть так называемый «палиндром». Палиндромом (от гр. Palindromos – бегущий обратно) можно назвать некоторый объект, имеющий линейную или циклическую форму организации, в которой задана симметрия составляющих от начала к концу и от конца к началу; текст, или, шире, некоторое словесное построение, которое одинаково (или приблизительно одинаково, с некоторыми допущениями) читается по буквам слева направо и справа налево. В зависимости от числа и вариации места словоразделов, а также меры совпадения прямого и обратного чтения палиндромы классифицируются по степени сложности и точности. Прямой текст палиндрома, читающийся в соответствии с нормальным направлением чтения в данной письменности (во всех видах кириллической и латинской письменности – слева направо), называется прямоходом, обратный – ракоходом или реверсом (справа налево). Классический пример палиндрома:
Я – арка края (В.Брюсов).
Существует несколько разновидностей палиндромов: буквопалиндромы – читаются туда и обратно точно по буквам; словодромы (читаются уже не по буквам, а по словам и в ту, и в другую сторону); слогодромы и др. Также распространены и оборотни, читаемые справа налево иначе, чем слева направо. Причем, при их обратном прочтении текст, обычно имеет противоположный, замаскированный смысл. Например, на Ритке снег (С.Федин). А обратно получается нечто оригинальное: Генсек - тиран.
История палиндрома уходит в далекую древность. Отдельные палиндромические словосочетания и фразы известны с глубокой древности, когда им зачастую придавался магически-сакральный смысл (не лишена этого оттенка, например, фраза На в лоб, болван, использовавшаяся русскими скоморохами в качестве высказывания). Палиндромические стихи были известны еще в древнем Китае. Многими исследователями отмечаются и заговорно-молитвенные свойства палиндромов, которые позволяли использовать их в качестве заклятий. Так, считалось, что при произнесении «оборачиваемой» фразы «уведи у вора корову и деву» должна была восторжествовать справедливость. Народные пословичные построения также нередко имели палиндромическую структуру, например, «Аки лев и та мати велика». Авторское творчество в области палиндрома начинается, по-видимому, в Средние века. В русской литературе достоверно известно об авторском палиндромном стихе Державина «Я иду съ мечемъ судия».
Приведу примеры некоторых палиндромов:
А Вера - рева
А к порту тропка
Аргентина манит негра
Бел хлеб
Вор в лесу сел в ров
Голод долог
Диван нежен на вид
Ешь немытого ты меньше!
Ишаку казак сено нес, казаку - каши
Кит на море - романтик
Колька нес сена клок
Конус и рисунок
Лепил и пел
Леша на полке клопа нашел
Мокнет Оксана с котенком
Мороз узором
Тропа налево повела, на порт
Туши рано фонари, шут!
Встречаются иногда отрывки из стихотворений. Например,
Весна мутила дали... Туман, сев.
И гул поля, радуя, ударял о плуги.
Некоторые слова и числа также обладают симметрией, например, поп, кок, шалаш, наган и числа 101, 404, 1991, 2002 и др. Можно составить огромное количество симметричных чисел, используя только цифры от 0 до 9.
Заключение
И в заключении хочу сказать о том, что быть прекрасным значит быть симметричным и соразмерным.
Доктор Марио Ливио (Mario Livio) из института Space Telescope Science Institute в Балтиморе сделал предположение, что стремление человека к упорядоченным структурам и симметричным объектам не позволяет нам видеть окружающий мир таким, какой он есть в действительности, и законы природы на самом деле могут и не подчиняться законам симметрии, сообщает Live Science.
Симметрия в науке, искусстве и природе давно стала предметом изучения. Известный математик начала ХХ века Джордж Дэвид Беркофф (George David Birkhoff ) из Гарвардского университета вывел математическую формулу для измерения красоты и притягательности произведений искусства. В формуле присутствуют два абстрактных понятия — сложность и упорядоченность (или симметрия). Согласно теории Беркоффа, сложный объект более привлекателен с эстетической точки зрения, если он менее симметричен, и наоборот, симметричный объект должен быть простым по строению. Но метод измерения степени сложности и симметричности объекта, предложенный Беркоффом, показался ученым слишком субъективными, и формула вскоре была забыта.
Однако идея Беркоффа о том, что симметрия является определяющим фактором эстетической притягательности объекта искусства, нашла свое подтверждение в науке. Последние исследования в области биологии доказали, что человека и других животных привлекают особи противоположного пола с наиболее симметричным строением тела. Следовательно, можно предположить, что стремление к симметрии заложено в нас природой.
В своей книге «The Equation That Couldn’t Be Solved» доктор Ливио рассматривает симметрию во всех областях наук, начиная с биологии и физики и заканчивая музыкой и живописью, и пытается выяснить, влияет ли наше биологическое стремление к симметрии на восприятие окружающего мира, а, следовательно, и на развитие науки в целом. Ученый высказывает следующее предположение: поскольку наш мозг настроен на восприятие симметрии, то инструменты, которые мы используем для выявления законов природы, и сами наши научные теории несут в себе симметрию отчасти потому, что мы предпочитаем упорядоченность, а вовсе не потому, что природа устроена в соответствии с законами симметрии.
Зеркальная симметрия преобладает в животном и растительном мире, что заставляет ученых думать, что это не простое совпадение. Симметрия наблюдалась в строении живых организмов уже 500 млн. лет назад. Следовательно, симметрия возникла не случайно — возможно, симметричные объекты легче воспринимать живым существам. Существует также мнение, что симметрия участвует в естественном отборе — и человек, и животные предпочитают выбирать особей противоположного пола с более симметричным строением тела. Кроме того, выявлена прямая зависимость между симметричным строением тела и здоровьем.
В естественных науках также царят законы симметрии. В математике симметрия выражена наиболее чётко. В физике это симметрия пространственно-временных преобразований. Если бы законы природы не были основаны на свойстве симметрии, их даже не смогли бы открыть — они менялись бы в зависимости от того, где, когда и в каком направлении проводился эксперимент.
Доктор Ливио считает, что учёным еще предстоит открывать различные виды симметрии во многих областях науки. «Теория всего, по его мнению, будет включать в себя все виды симметрии во Вселенной, которые свяжут между собой все известные законы физики».
В связи со всем вышеизложенным, доктор Ливио задаётся вопросом: не может ли наше биологическое стремление к симметрии являться результатом естественного отбора и неосознанно искажать картину мира? К примеру, мы воспринимаем только видимый диапазон излучения — поэтому неудивительно, что другие виды излучения — рентгеновское, инфракрасное, гамма-излучение — были открыты сравнительно недавно. «Если это так, и наше стремление к симметрии в природе и науке есть результат естественного отбора и основано на работе нашего мозга, отдающего предпочтение симметричным объектам и явлениям, то, видимо, существуют другие способы формулировки законов природы, и симметрия в этом случае уже не будет играть решающей роли», — предполагает учёный.
Доктор Ливио высказывает предположение, что так же, как были изобретены детекторы, которые позволяют нам видеть то, что не видят наши глаза, со временем будут изобретены и способы видеть окружающий мир за границами нашего «симметричного» восприятия. «Поскольку в этом случае речь идет о серьёзных фундаментальных законах, всё гораздо сложнее. Но по мере того, как мы будем приближаться к истинному пониманию законов окружающего мира, мы поймём, что является фундаментальным принципом, лежащим в основе законов природы, и преодолеем свою близорукость».
Немало примеров, демонстрирующих правильность формы объектов или предметов, созданных человеком. Симметрия присутствует везде: в регулярности смены дня и ночи, времён года, в ритмичном построении стихотворения, практически там, где присутствует какая-то упорядоченность и регулярность.
В своем реферате я попыталась рассмотреть симметрию в целом, как соразмерность, пропорциональность, одинаковость в расположении частей в живой и неживой природе, в словах, числах и самой математике. И если в древности слово «симметрия» употреблялось в значении «гармония», «красота», то и в настоящее время нельзя подобрать других слов, чтобы сказать точнее.
Мне было интересно работать над выбранной темой реферата. Я узнала много нового. Но наибольший интерес у меня вызвал раздел, касающийся слов и цифр, а также о симметрии в живой природе.
В своей работе я обобщила собранный по теме реферата материал и подготовила для его защиты презентацию, выполненную в редакторе Power Point.
Хотелось бы сказать, что почти во всём, что нас окружает, есть та или иная симметрия. О ней можно говорить бесконечно. Поэтому, заканчивая свой реферат, я надеюсь, что смогла передать сложность и привлекательность этой темы. И могу с уверенностью также сказать, что составляющие основу красоты природы явления симметрии и периодичности хорошо изучены и описаны математически.
Список литературы.
Приложение 1.
Приложение 2.
Приложение 3.
Приложение 5.
Приложение 7.
Приложение 9.
Приложение 10.
В Китае испытали "автобус будущего"
Рисуем кактусы акварелью
Растрёпанный воробей
Астрономы наблюдают за появлением планеты-младенца
Вокруг света за 80 дней