Взаимосвязь музыки и математики
Вложение | Размер |
---|---|
matematika_i_muzyka.doc | 104 КБ |
Муниципальное общеобразовательное бюджетное учреждение
Лицей № 8 г.Тынды Амурской области
Научно-исследовательская работа
тема:
«Математика в Музыке
и
Музыка в Математике»
Подготовил ученик 7А класса
Астапович Виктор
Научный руководитель:
Плеханова М.В. учитель музыки
Содержание
Введение 3
Глава 1. Общие элементы в математике и музыке 5
1.1. Ритм 5
1.2. Отражение 6
1.3. Противоположности 7
1.4. Упорядочение 8
1.5. Пропорции 8
1.6. Интервалы и математика 9
Глава 2. Логарифмы в музыке 10
Глава 3. Математический анализ гармонии в музыке 12
Глава 4. Алгебра – сестра гармонии, а композиторы –
первые программисты 16
Заключение 18
Список литературы 19
Введение
Звуки умертвив,
Музыку я разъял как труп,
Поверил я алгеброй гармонию…
А.С. Пушкин
Математика и музыка – два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.
Давно уже ученые занимались вопросом: почему в музыкальной октаве семь основных звуков – столько же, сколько цветов в спектре солнечного света. Еще, ничего не зная о природе звуков, человек интуитивно подстраивал струны так, чтобы они создавали благозвучие.
Пифагору принадлежит математическое объяснение основ гармонии; по его определению, наиболее естественно воспринимаются человеком частоты, которые находятся между собой в простых числовых отношениях. Вот откуда в отношении частот в октаве 1:2, и благозвучное трезвучие с отношением частот 4:5:6. Уменьшая последовательно длины струн, мы получим природный звукоряд из 16 звуков, но почему же древние музыканты приняли звукоряд, состоящий из семи основных звуков, и лишь позже добавили еще пять дополнительных (так появились черные клавиши в пианино).
По свидетельству историков древнейшая греческая лира (Орорея) имела четыре струны. Первая струна – основа, у второй струны число колебаний относится к числу колебаний первой струны 4:3 (как у катетов «священного» египетского треугольника). Это кварта основного тона. Число колебаний третьей струны по отношению к основному типу равно 3:2, это – квинта основного тона. Четвертая струна – октава, число колебаний у нее в два раза больше, чем у основы (как отношение катетов в треугольнике 1:2: 5)
Значительно позже появилась семиструнная греческая гамма, которая является развитием четырехструнного строя. В семиструнной гамме отношение частот рядом расположенных звуков 1, 12 (например, ре/до=294/262; соль/фа=392/349). Но очень близкое отношение имеют стороны треугольника 1:2:, оно равно 5/2=1,118 =1,12.
Естественно возникает вопрос, не явились ли закономерности в геометрическом прямоугольном треугольнике со сторонами 1:2: основой для разработки музыкальной гаммы? Если же связь сторон треугольника и отношения частот звуков в семиструнной гамме не случайна, то в таком случае построение музыкальной гаммы связано с золотой пропорцией. Однако трудно допустить, что музыкальная гамма явилась итогом «научной разработки», более вероятно, что она была найдена эмпирическим путем, на основании интуиции музыкантов.
Взаимосвязь математики и музыки является одной из самых актуальных тем. Она до сих пор полностью не раскрыта и не изучена, чем и привлекает к себе внимание многих ученых и математиков. Поверхностно рассмотрев значение этих двух наук, нам кажется, что они совершенно несопоставимы, ведь разве может быть сходство между математикой- царицей всех наук, символом мудрости и музыки - наиболее отвлеченным видом искусства. Но если всмотреться вглубь, то нетрудно заметить, что мир звуков и пространство чисел издавна соседствуют друг с другом.
В своей работе я попытаюсь установить связь между математикой и музыкой и найти их общие элементы.
Глава 1. Общие элементы в математике и музыке
1.1. Ритм
Во всем царит гармонии закон
И в мире все суть ритм, аккорд и тон.
Джон Драйден
Ритм в музыке
Ритм – один из важнейших элементов музыки. Ритм – чередование длительностей. Рассмотрим ритм 3/4 . В такте могут встречаться такие чередования длительностей:
От правильно подобранного ритма зависит звучание мелодии.
Ритм в математике.
Ритмы можно обнаружить и среди чисел. Взять хотя бы дробь 2/82. Ее можно записать в виде 2/82=0,0243902439…или кратно 2/82= 0,(02439)
Здесь мы обнаруживаем ритм. Дробь 2/82 записывается в виде бесконечной периодической дроби, да и период ее также отличается необыкновенной правильностью:02439. Нам известно, что 0,(02439)=2439/99999=271/1111
Итак, мы проследили, что ритм встречается как в музыке, так и в математике.
1.2. Отражение
В повседневной жизни слово «Отражение» мы воспринимаем, как отражение в зеркале каких-либо предметов. Но мало кто задумывается, что отражаться также могут ноты и цифры.
Отражение в математике
Числа, состоящие из цифр 8 и 0, не изменяются при отражении в зеркале. Если зеркало ставить не сбоку от числа, а сверху или снизу, то при отражении в таком зеркале остается неизменной только цифра 3.
Умножение чисел на -1 очень похоже на отражение в зеркале.
Рассмотрим числовую прямую
____________________________________________________
-5 -4 -3 -2 -1 0 1 2 3 4 5
0 – делит прямую на две части.
Правая и левая части очень похожи, и каждая полупрямая почти совпадает с зеркальным отражением другой. Почти, но не совсем. Найдем различие между полупрямыми.
______________________________
0 1 2 3 4 5
Если поставить зеркало в нуле так, чтобы оно было перпендикулярно прямой, полупрямая вместе со своим отражением образует прямую, которая выглядит так:
____________________________________________________
0 1 2 3 4 5
Назовем ее зеркальной числовой прямой. Сравним зеркальную числовую прямую с настоящей. Зеркало заменяет -1 числом 1, -2 –числом 2, -3 – числом 3 и т.д., т.е. превращает отрицательные числа в положительные.
Этого же результата можно достичь и не прибегая к помощи зеркала, если отрицательные числа умножить на (-1).
Например: (-1)*(-1)=+1,
(-2)*(-1)=+2.
Отражение в музыке
Также как и цифры 8 и 0 длительности / и П при отражении совпадают с оригиналом.
Симметричные ритмы не содержат половинных нот.
- половинная нота.
Начертим ее отражение.
Получили - полностью противоречит симметрии.
Совершенно симметричный ритм может состоять из нот следующих трех длительностей: четвертных /, пар восьмых П и целых .
/ П П /, П // П - ритмы не «переворачивающиеся» при отражении в зеркале.
1.3. Противоположности.
Очень часто встречаются противоположности в характерах людей: злой - добрый, агрессивный - спокойный и т. д.
Но мы рассмотрим противоположности в музыке и математике.
Противоположности в музыке
Медленно - быстро.
Характер музыки во многом определяется ее темпом. Музыкальные произведения, будь то народная песня или полифония, нельзя исполнять в произвольном темпе. Неправильно выбранный темп до неузнаваемости исказит характер музыки.
Короткое – длинное (произведение).
Высокое – низкое.
Высота звука зависит от частоты колебаний: при большой частоте колебаний звук выше, при меньшей – ниже.
Противоположности в математике
Отрицательное число – положительное.
Сложение – вычитание.
Четное – нечетное.
Делитель – кратное.
Простое число – составное число.
Плюс – минус.
Умножение – деление.
Прямая – кривая.
1.4. Упорядочение
Упорядочение в математике
Рассмотрим набор вещественных чисел:
12 48 9 1
3 6 10 125 300
Входящие в него числа не упорядочены. Их можно упорядочить, например, по возрастанию: 1 3 6 9 10 12 48 125 300;
или по убыванию: 300 125 48 12 10 9 6 1.
Упорядочение в музыке
Упорядочить означает расположить в ряд. Иногда под упорядочением
понимают классификацию, или разбиение на группы, по определенным признакам. Например: классификация народных песен по месту, где они были записаны собирателями, по времени проведения этнографической экспедиции, тональности, ладу, содержанию.
1.5. Пропорции
Шестнадцатая, восьмая, четвертная, половинная, целая нота … Названия длительностей служат одновременно и названиями чисел. В самом деле, длительность соответствует и дробь 1/16, называются одинаково. Перечень совпадений можно продолжить.
соответствует 1/8
соответствует 1/1
соответствует 1/4
Нетрудно понять, почему длительности музыкальных нот заимствовали свои названия у дробей. Половинная нота потому и называется половинной или ½, что звучит вдвое короче целой ноты. Ее длительность составляет ½ длительности целой ноты и т.д.
Мы видим, что длительности получаются так же, как дроби: они возникают при делении целой на равные доли. Поэтому длительность можно подсчитывать так же как дробные числа, например
Это равенство следует понимать в том смысле, что длительность слева равна суммарно длительности справа. С помощью чисел то же равенство можно записать в виде 1=1/4+1/4+1/2.
1.6. Интервалы и математика
Интервал (от греческого – расстояние) – это сочетание двух звуков.
Названия интервалов в переводе на русский язык означают число.
Прима – один
Секунда – два
Терция – три
Кварта – четыре
Квинта – пять
Секста – шесть
Септима – семь
Октава – восемь
Нона – девять
Децима – десять
Ундецима – одиннадцать
Терцдецима – двенадцать
Квартдецима – четырнадцать
Квинтдецима – пятнадцать
Глава 2. Логарифмы в музыке
Музыканты редко увлекаются математикой, большинство из них уважают эту науку, однако стараются держаться от нее подальше. Но все же музыканты соприкасаются с математикой гораздо чаще, чем сами подозревают, и притом с такими страшными вещами, как логарифмы.
А.Эйхенвальд в своей статье писал так: «Товарищ мой по гимназии любил играть на рояле, но не любил математики. Он даже говорил с оттенком пренебрежения, что музыка и математика друг с другом ничего не имеют общего. Правда, Пифагор нашел какие-то соотношения между звуковыми колебаниями, - но ведь как раз пифагорова-то гамма для нашей музыки и оказалась неприменимой».
Но все же Эйхенвальду удалось доказать своему товарищу, что играя по клавишам современного рояля, он играет, собственно говоря, на логарифмах. И действительно, так называемые «ступени» темперированной
хроматической гаммы не расставлены на равных расстояниях ни по
отношению к числам, ни по отношению к длинам волн соответствующих
звуков, а представляют собой логарифмы этих величин. Только основание
этих логарифмов равно 2, а не 10, как принято в других случаях.
Оказывается, что номера клавишей рояля представляют собой логарифмы чисел колебаний соответствующих звуков. Можно даже сказать, что номер октавы представляет собой характеристику, а номер звука в данной октаве – мантиссу этого логарифма.
ХVII век ознаменовался новыми открытиями в области математики. В 1614 году опубликованы таблицы логарифмов. Их автор – шотландец Д.Непер. Он не был математиком по профессии. Получив хорошее образование у себя на родине, Д. Непер занимался астрономией и математикой как любитель и добился некоторых важных открытий. Теперь его именем называют ряд правил и формул сферической геометрии. Впоследствии в предисловии к своему сочинению, посвященному таблицам, он писал: «Я всегда старался, насколько позволяли мои силы и способности, отделаться от скуки и трудности вычислений, докучность которых обыкновенно отпугивает многих от изучения математики».
ХVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А. Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы. Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от латинского - соразмерность).
Органы, настроенные А .Веркмайстером, зазвучали в равномерно – темперированном строе. Преимущества нового строя были бесспорны. Строй носил замкнутый характер и состоял из интервалов, вполне приемлемых для музыкального слуха как в мелодическом, так и в гармоническом отношении. В нем совершенно спокойно можно было осуществлять переходы от тональности в тональность. И.С. Бах доказал жизнеспособность новой музыкальной системы, написав «Хорошо темперированный клавир», состоящий из 12 мажорных и 12 минорных произведений. Авторитет великого композитора примирил споры математиков и музыкантов, выступавших «за» или «против» нового музыкального строя.
История создания равномерной темперации еще раз свидетельствует о том, как тесно переплетаются судьбы математики и музыки. Рождение нового музыкального строя не могло произойти без изобретения логарифмов и развития алгебры иррациональных величин. Без знания логарифмов провести расчеты равномерно-темперированного строя было бы невозможно. Логарифмы стали своеобразной «алгеброй гармонии», на которой выросла темперация.
Глава 3. Математический анализ гармонии в музыке
Анализ гармонии в музыке не исчерпывается установлением закономерностей звучания в гамме, изучение природы благозвучных аккордов. Интересно было определить природу прекрасного в произведениях великих композиторов, определить, в чем причина их привлекательности, эстетической ценности.
Более 30 лет отдал изучению закономерностей гармонии в музыке и природе композитор М. Марутаев. Он разработал концепцию универсальной гармонии, определяющим элементом которой является выявление единых числовых характеристик – общих как для природы, так и для музыки. М. Марутаев ввел понятие о нарушенной симметрии и получил «основные числа нарушенной симметрии (Sн)»: 0,713; 0,718; 0,729 и т.д. до 0,992. Мерой нарушения симметрии композитор считает величину 2 в степ.5/11 равную 1,37035…, которая, по его мнению, выражает сущность гармонии.
Оказалось, что во многих музыкальных произведениях, изученных М. Марутаевым, соотношения частей отвечают числам нарушенной симметрии (Sн), а после их математического преобразования получается величина 1,37 – мера гармонии природы.
Теорию «нарушенной симметрии» М. Марутаев использовал для анализа музыкального темперированного звукоряда, в котором интервал между двумя до разбит на 12 частей. Центром симметрии здесь является корень квадратный из 2. После исключения из ряда числа 2 была получена усредненная величина нарушенной симметрии, равная 1,37. Таким образом, считает М.Марутаев, установлена связь звукоряда с мировой физической константой. Путем математических преобразований композитор установил также связь золотой пропорции со значением малой секунды, равной 2 в степени 1/12 =1,059.
Таким образом, можно предполагать, что природа формулирует свои законы (если не все, то некоторые), на языке музыки.
В композиции многих музыкальных произведений отмечается наличие некоторого «кульминационного взлета», высшей точки, причем такое построение характерно не только для произведения в целом, но и для его отдельных частей
Такая высшая точка крайне редко расположена в центре произведения или его композиционной части, обычно она смещена, ассиметрична. Изучая восьмитактные мелодии Бетховена, Шопена, Скрябина русский музыковед Л. Мазель установил, что во многих из них вершина, или высшая точка, приходится на сильную долю шестого такта или на последнюю мелкую долю пятого такта, то есть находится в точке золотого сечения. По мнению Л. Мазеля, число подобных восьми тактов, где подъем мелодии занимает пять тактов, а последующий спуск – три, необычайно велико; их можно без труда найти почти у каждого автора, сочинявшего музыку в гармоническом стиле.
Очевидно, такое расположение кульминационных моментов музыкальной мелодии является важным элементом ее гармонической композиции, придающим художественную выразительность и эстетическую эмоциональность мелодии. Рисунок мелодии строится по схеме: длительный период нарастания эмоционального напряжения, затем остановка и после – более краткий период спада. Может быть, ощущение гармонии такой композиции имеет психофизиологическую основу. Ведь и сердечная деятельность (а ведь сердце считается «вместилищем» чувств), и пульсация крови в сосудах тела подчинены такой же ассиметричной ритмике, основанной на золотой пропорции. В конечном итоге музыка только тогда доставляет эстетическое, эмоциональное удовлетворение, когда гармония музыки входит в резонанс с внутренней гармонией человека.
Наиболее обширное исследование проявлений золотого сечения в музыке было предпринято Л. Сабанеевым. Им было изучено 2000 произведений различных произведений композиторов. По его мнению, временное протяжение музыкального произведения делится «некоторыми вехами», которые выделяются при восприятии музыки и облегчают формы целого. Такими вехами могут быть границы изменения структуры мелодии, интонационные кульминационные пункты (как положительные, так и отрицательные), изменения тональности и т.д. Все эти музыкальные события делят целое на части, как правило, по закону золотого сечения.
По наблюдениям Л. Сабанеева, в музыкальных произведениях различных композиторов обычно констатируется не одно золотое сечение, сопряженное с происходящим возле него «эстетическим событием», а целая серия подобных сечений. Каждое такое сечение отражает свое музыкальное событие, качественный скачек в развитии музыкальной темы. В изученных им 1770 сочинениях 42 композиторов наблюдалось 3275 золотых сечений; количество произведений, в которых наблюдалось хотя бы одно золотое сечение, составило 1338. Наибольшее количество музыкальных произведений, в которых имеется золотое сечение, у Аренского (95%), Бетховена (97%), Гайдна (97%), Моцарта (91%), Скрябина (90%), Шопена (92%), Шуберта (91%).
Наиболее детально были изучены Л. Сабанеевым все 27 этюдов Шопена. В них обнаружено 154 золотых сечения; всего в трех этюдах золотое сечение отсутствовало. В некоторых случаях строение музыкального произведения сочетало в себе симметричность и золотое сечение одновременно; в этих случаях оно делилось на несколько симметричных частей, в каждой из которых проявляется золотое сечение. У Бетховена также сочинения делятся на две симметричные части, а внутри каждой из них наблюдаются проявления золотой пропорции.
Интересно, что в этюдах Шопена проявляется не одно выражение золотой пропорции, а целый ряд величин, связанных этим отношением: 0,618; 0,382; 0,236; 0,146; 0,090; и 0,058; реже встречались 0,854; 0,764 и 0,472. Первый ряд из шести чисел образует геометрическую прогрессию с показателем, равным 1,618, а три других числа являются произведениями золотой пропорции (0,764:0,472=1,618). Мелодия как бы растет и развивается, подчиняясь закону золотой пропорции.
Характерно, отмечает Л. Сабанеев, что наиболее часто золотое сечение обнаруживается в произведениях высокохудожественных, принадлежащих гениальным авторам. Может быть, частота проявлений золотой пропорции является одним из объективных критериев оценки гениальности музыкальных произведений и их авторы? И тогда вместо споров о достоинствах той или иной музыки достаточно произвести математический подсчет? И уже не представляется случайным тот факт, что в произведениях композиторов ХХ века золотая пропорция встречается значительно реже, чем у их коллег прошлых веков.
Итак, можно признать, что золотая пропорция является критерием гармонии композиции музыкального произведения. Тогда можно предположить, что чем точнее соответствие произведения музыки золотой пропорции, тем выше степень гармонии, а отклонение от золотой пропорции – свидетельство несовершенства музыки.
Но не будем спешить с таким заключением. В искусстве часто отклонения от правила не менее ценны, чем само правило. Не следует забывать, что золотое сечение – иррациональная величина и ее невозможно выразить отношением целых чисел. А ведь мы замеряем размер частей в целом по числу тактов и выражаем их в целых числах.
Л. Сабанеев считает, что это противоречие снимается, если учесть, что «живое музыкальное произведение никогда не идет точно метрически, его метрическая координата никогда не «пропорциональна» реальному времени. И темп музыки не является постоянной величиной, а переменной функцией метрического времени». Варьируя нюансами темпа, композитор может добиться точного соответствия структуры музыкального произведения золотой пропорции.
Не в этом ли заключен секрет исполнительского мастерства музыкантов, достижения лишь немногими из них наибольшей выразительности, наибольшей силы эмоционального воздействия при использовании одной и той же нотной записи? Деформируя темп исполнения произведения в его различных частях, исполнитель реализует особенности своего исполнительского мастерства и добивается наивысшего успеха, приближаясь при этом и, в частности, к точному соответствию золотой пропорции.
Глава 4. Алгебра – сестра гармонии, а композиторы - первые программисты
«Он алгеброй гармонию разъял», - обвиняли знаменитого Сальери поклонники Моцарта. Придворный сочинитель честно пытался просчитать, какие аккорды более других могут усладить слух Его Величества. Композиторские упражнения Сальери ушли в небытие, а музыка Моцарта пережила века. В самом деле: можно ли в такую тонкую эмоциональную структуру, как музыка, вмешиваться сухим и точным математическим скальпелем? И вообще – что может быть общего у гармонии и алгебры?
На самом деле, математики в музыке гораздо больше, чем можно было бы предположить. И те, кто просто знаком с нотной грамотой, и профессиональные музыканты не всегда знают о строгой математической основе музыкального произведения. Оказывается, что частотный звукоряд гаммы представляет собой ни что иное, как геометрическую прогрессию с коэффициентом 1,059463. И вообще, любую пьесу или сонату можно рассматривать как программу: строгое чередование музыкальных мотивов, фраз, предложений и периодов, определенная протяженность во времени – все это очень похоже на модули компьютерной задачи.
Алексей Устинов утверждает: «Можно рискнуть назвать композиторов самыми первыми программистами. Как в партитурах, так и в текстах компьютерных программ есть блоки, условия, циклы, переходы, метки и прочие «программистские» атрибуты. Фактически, инженеры, разрабатывающие первые программы для компьютеров, пришли к тем же или очень схожим с ними приемам в организации текста, которые уже давно применялись в записях музыки нотами».
Первые опыты по активному применению математики в сфере искусства начались в семидесятые годы двадцатого века, на заре развития компьютерных технологий и на фоне успехов математики. Поясняет доктор искусствоведения Николай Бажанов: «Тогда казалось, что компьютер может практически все, стоит лишь приложить небольшие усилия к написанию соответствующей программы. Возникли опыты с компьютерным моделированием – музыки, прозаического и поэтического текста, других образно – художественных сфер культуры. Важно, что именно работы в области математического моделирования парадоксальным, но естественным образом показали, насколько сложно на самом деле устроена образная часть человеческой культуры, насколько сложны законы, по которым она существует»
Заключение
Итак, стало очевидным, что многие вопросы, связанные с природой музыки и ее воздействием на человека могут быть описаны языком математики. Так, музыкальные интервалы натурального звукоряда определяются отношениями частот близких натуральных чисел, а образование звука в музыкальных инструментах описывается математическими задачами. В построении музыкального строя чувствуются математическая точность и гармония. А золотое сечение может быть применено к анализу построения музыкальных фрагментов. Искусствоведы создали подробные схемы, в которых содержится геометрический анализ великой музыки. Наиболее удачным в этом отношении примером является Хроматическая фантазия и Фуга ре минор И.С. Баха. Слушая это замечательное произведение, не только восторгаешься красотой музыки, но и чувствуешь ее скрытую музыкальную гармонию. А математика открывает еще одну грань гениальности великого композитора.
Исследуя связь между математикой и музыкой, я пришла к выводу, что чем глубже поддается музыкальное произведение математическому анализу, исследованию и подчиняется каким – либо математическим законам, тем более гармонично и прекрасно его звучание, тем больше оно волнует человеческую душу. Кроме того, я убедилась, что в этой области еще очень много важного, интересного и занимательного не раскрыто и можно смело вести исследования этой темы.
Список литературы
1. Б. Варга, Ю. Димень, Э. Лопариц. „Язык, музыка, математика”.
2. Н. Васюткин. „Золотая пропорция”.
3. Математический энциклопедический словарь. – М., 1988.
4. Я. И. Перельман. „Занимательная алгебра. Занимательная геометрия”. –
М., 2002.
5. Энциклопедический словарь юного математика. – М., 1985.
6. htth://wwww.1gb/ru/show_artikle.php?upd=126
7. htth://www.vn.ru/09.01/2003/socicty/23466/
Астрономический календарь. Май, 2019
Просто так
Домик зимней ночью
Загадка Бабы-Яги
Крутильный маятник своими руками
Комментарии
Спасибо за интересный и
Спасибо за интересный и содержательный материал.