Защита проекта по теме “Основные источники энергии. Энергетика будущего”.
Соседков Станислав, Фатрахманов Кирилл 11А МОУ «СОЩ№75»
«Вся жизнь есть энергия,
Энергия – вечный восторг» –
в таких поэтических строках выразил свое философское кредо знаменитый английский поэт XVIII века Уильям Блейк. И действительно, роль энергии в жизни человечества исключительно велика.
Энергия (от греческого слова energeia– действие, деятельность) – это общая количественная мера различных форм движения материи.
Энергетика – это область народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу различных видов энергии. Ведущая область энергетики – электроэнергетика.
В 1945 году, когда первые атомные бомбы были уже взорваны, крупным американским специалистам был задан вопрос: «Когда удастся использовать атомную энергию в мирных целях?» Почти все ученые назвали одну цифру: 50 лет (1995 год). Но, как известно, первая советская (и первая в мире) атомная электростанция в Обнинске дала ток уже 27 июня 1954 года.
Оказывается, американские специалисты исходили из соображений не столько технических, сколько экономических. Атомная электростанция, рассуждали они, дороже ГЭС или тепловой. А, следовательно, у нее нет шансов. А вот лет через 50, когда запасы нефти начнут истощаться…
Отчего же в последнее время, вопреки скепсису экономистов, во всем мире атомная энергетика развивается опережающими темпами? Почему у нас в стране прирост мощностей в этой области составляет около 35 процентов.
Потребление энергии важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность любой страны. Рост энергопотребления всегда сопровождал развитие экономического общества, но особенно стремительным он был на протяжении XX века: потребление энергии увеличилось в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд. тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающих странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь её наиболее универсального вида – электричества. К средине XXI века прогнозируется удвоение мирового энергопотребления и утроения потребления электроэнергии.
Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, продолжает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.
Данная работа является кратким, обзором современного состояния энергоресурсов человечества. В работе рассмотрены традиционные источники электрической энергии. Цель работы – прежде всего, ознакомиться с современным положением дел в этой необычайно широкой проблематике.
К традиционным источникам в первую очередь относятся: тепловая, атомная и энергия потока воды. Российская энергетика сегодня –это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями.
Имеющиеся виды электростанций обладают как достоинствами, так и недостатками. А хотелось бы иметь идеальную электростанцию, которая должна приносить как можно меньше вреда окружающей среде и иметь малую себестоимость, большие источники топлива и малые затраты для их добычи.
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.
Солнце светило и обогревало человека всегда: и, тем не менее, однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма". Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.
И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с
каждым годом стоить нам все дороже.
Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.
Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.
А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.
В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.
Но времена изменились. Сейчас, в начале XXI века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.
Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.
Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед.
Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.
Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы.
Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений, есть только разумный выбор".
Вложение | Размер |
---|---|
osnovnye_istochniki_energii._energetika_budushchego.doc | 884 КБ |
stas_kirilp.ppt | 2.15 МБ |
Управление образования администрации г. Чусового
Муниципальное образовательное учреждение
Средняя общеобразовательная школа №75
«Естественно – математический цикл»
Исполнитель:
Соседков Станислав,
Фатрахманов Кирилл
СШ №75 11 «А»
Руководитель:
Широкова Л. Н.
Учитель физики
СШ № 75
г. Чусовой 2008
Содержание.
I. ВВЕДЕНИЕ.
«Вся жизнь есть энергия,
Энергия – вечный восторг» –
в таких поэтических строках выразил свое философское кредо знаменитый английский поэт XVIII века Уильям Блейк. И действительно, роль энергии в жизни человечества исключительно велика.
Иногда, чтобы подчеркнуть важность какого-либо явления, например трения, в жизни человека, описываются картины типа «жизнь без трения». Картина получается то комической (отпадают пуговицы, развязываются шнурки), то трагической (аварии машин, зданий, невозможно передвигаться и т. д.), но все-таки получается. Картины же «что было бы без энергии» не получится: без энергии ничего не было бы.
Существует в мире семь видов электростанций:
1.ГЭС (гидроэлектростанции)
2.ТЭС (тепловые электростанции)
3.ВЭС (ветряные электростанции)
4.СЭС (солнечные электростанции)
5.ПЭС (приливные электростанции)
6.ГеоТЭС (геотермальная электростанция)
7.АЭС (атомные электростанции)
В 1945 году, когда первые атомные бомбы были уже взорваны, крупным американским специалистам был задан вопрос: «Когда удастся использовать атомную энергию в мирных целях?» Почти все ученые назвали одну цифру: 50 лет (1995 год). Но, как известно, первая советская (и первая в мире) атомная электростанция в Обнинске дала ток уже 27 июня 1954 года.
Оказывается, американские специалисты исходили из соображений не столько технических, сколько экономических. Атомная электростанция, рассуждали они, дороже ГЭС или тепловой. А, следовательно, у нее нет шансов. А вот лет через 50, когда запасы нефти начнут истощаться…
Отчего же в последнее время, вопреки скепсису экономистов, во всем мире атомная энергетика развивается опережающими темпами? Почему у нас в стране прирост мощностей в этой области составляет около 35 процентов.
Потребление энергии важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность любой страны. Рост энергопотреб ления всегда сопровождал развитие экономического общества, но особенно стремительным он был на протяжении XX века: потребление энергии увеличилось в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд. тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающих странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь её наиболее универсального вида – электричества. К средине XXI
века прогнозируется удвоение мирового энергопотребления и утроения потребления электроэнергии.
Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, продолжает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.
Поэтому в не столь уж далёком будущем человечество будет вынуждено перейти на использование альтернативных «безуглеродных» технологий производства энергии, которые позволят в течение длительного времени надёжно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии – ветровой, солнечной, геотермальной, приливной и др. – по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства. А весьма много обещающая технология управляемого термоядерного синтеза всё ещё на стадии исследований и создания демонстрационного ядерного реактора.
Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы тради ционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.
Данный реферат является кратким, обзором современного состояния энергоресурсов человечества. В работе рассмотрены традиционные источники электрической энергии. Цель работы – прежде всего, ознакомиться с современным положением дел в этой необычайно широкой проблематике.
К традиционным источникам в первую очередь относятся: тепловая, атомная и энергия потока воды. Российская энергетика сегодня – это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями.
II. ЧТО ТАКОЕ ЭНЕРГИЯ?
Энергия (от греческого слова energeia – действие, деятельность) – это общая количественная мера различных форм движения материи.
Энергетика – это область народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу различных видов энергии. Ведущая область энергетики – электроэнергетика.
В нашем индустриальном обществе от энергии зависит все. С ее помощью движутся автомобили, улетают в космос ракеты. С ее помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли.
Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова.
Ученые могут сказать, что энергия - способность к совершению работы, а работа совершается, когда на объект действует физическая сила (такая, как давление или гравитация). Согласно формуле A=F*S , работа равна произведению силы на расстояние, на которое переместился объект. Попросту говоря, работа – это энергия в действии.
Вы не раз видели, как подпрыгивает крышка закипающего кофейника, как несутся санки по склону горы, как набегающая волна приподнимает плот. Все это примеры работы, энергии в действии, действующей на предметы.
Подпрыгивание крышки кофейника было вызвано давлением пара, возникшим при нагревании жидкости. Санки ехали, потому что существуют гравитационные силы. Энергия волн двигала плот.
В нашем работающем мире основой всего является энергия, без нее и не будет совершаться работа. Когда энергия имеется в наличии и может быть использована, любой объект будет совершать работу - иногда созидательную, иногда разрушительную.
Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах.
Важную роль в жизни современного общества играет энергетика. Энергетика народного хозяйства, охватывающая энергетические ресурсы, выработку преобразования, передачу и использование различных видов энергии. Ведущая область энергетики – электроэнергетика.
III. ОСНОВНЫЕ СПОСОБЫ ПОЛУЧЕНИЯ ЭНЕРГИИ.
Основу современного энергетического баланса мира по-прежнему составляет жидкое и газообразное топливо. Поэтому на развитие энергетики мира в ближайшие годы решающее влияние будет оказывать положение на мировом рынке углеводородных топлив.
За последние два столетия мировая топливно-энергетическая промышленность прошла в своём развитии два главных этапа. В течение всего XIX в. И первой половины XX в. Продолжался угольный этап, когда в структуре мирового топливно-энергетического баланса резко преобладало угольное топливо. Затем наступил второй, нефтегазовый этап. Это объясняется многими преимуществами нефти и газа как наиболее эффективных энергоносителей перед твёрдым топливом.
Предполагалось, что энергетический кризис середины 70-х гг. приведёт к началу третьего этапа в развитии мировой энергетики – к довольно быстрому переходу от минерального топлива к ядерной энергетике, возобновимым и нетрадиционным источникам энергии. Но, вопреки ожиданиям, этого не произошло в значительной мере из-за скачков цен на нефть. Поэтому в ближайшей перспективе в структуре мирового энергопотребления радикальных изменений, по-видимому, не произойдёт.
Из периодических изданий по энергетике была составлена таблица по производству электроэнергии на электростанциях России за последнии 10 лет.
Год | 1995 | 2000 | 2005 |
Всего | 860 | 922 | 1020 |
ГЭС и ГАС | 177 | 166 | 180 |
КЭС | 252 | 242 | 249 |
ТЭЦ | 332 | 392 | 457 |
АЭС | 99 | 122 | 134 |
1.ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ.
Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В середине 70-х гг. XX в. ТЭС – основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).
Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно снижается, вследствие уменьшения температуры теплоносителя. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в отдельно стоящем доме становится экономически выгодна.
На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.
Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические стан ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро станций (ГРЭС).
Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис. Уголь подается в топливный бункер 1, а из него – в дробильную установку 2, где превращается в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400-650°С и под давлением 3-24 МПа поступает по паропроводу в паровую турби ну 4. Параметры пара зависят от мощности агрегатов.
Тепловые конденсационные электростанции имеют невысокий кпд (30-40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.
Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции.
Теплоэлектроцентраль отличается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рис. штриховая линия), отбирается от промежуточной ступени турбины и используется для теплоснабжения. Конденсат насосом 7 через деаэратор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя тий в тепловой энергии.
Коэффициент полезного действия ТЭЦ достигает 60-70%.
Такие станции строят обычно вблизи потребителей – промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.
Рассмотренные тепловые электростанции по виду основного теплового агрегата – паровой турбины – относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками.
Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт/ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.
Современные паровые турбины для ТЭС – весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.
Из курса физики известно, что КПД тепловых двигателей увеличивается с ростом на чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру – почти до 550°С и давление – до 25 МПа. Коэффициент полезного действия ТЭС дости гает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.
По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.
К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века.
2.ГИДРОЭЛЕКТРОСТАНЦИИ.
Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечи вающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию. По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.
В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во досбросные сооружения (рис.4). Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолже нием плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой – нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями заклады ваются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.
В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами произво дится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м, к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На круп ных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС – наиболее крупная среди станций руслового типа.
При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, тур бинный водовод, спиральная камера, гидро турбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооружения и рыбо ходы, а также дополнительные водосбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.
Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 МВт и выше, причём 16 из них – на территории бывшего Советского Союза.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные, удельные капиталовложения на 1 кВт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств.
3. АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ.
Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.
Первая в мире АЭС опытно-промышленного назначения (рис. 1) мощностью 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).
Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активной зоне реактора, теплоносителем, вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в пароге нераторе, и образованный пар поступает в турбину 4.
Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водоводяные с обычной водой в качестве замедлителя и теплоносителя; 2) графитоводные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графитогазовые с газовым теплоносителем и графитовым замедлителем.
В России строят главным образом графитоводные и водоводяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графитогазовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.
В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное го рючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС тепловой реактор, которой охлаждается водой, обычно пользуются низко температурными паровыми циклами. Реак торы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур – пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная паро водяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева. (рис. 3).
В высокотемпературных графитогазовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.
При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.
К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.
В зависимости от конструктивного исполнения реакторы имеют отличительные, особенности: в корпусных реакторах топливо и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),
Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.
При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.
Наличие биологической защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.
Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная, особенность боль шинства АЭС – использование пара сравнительно низких параметров, насыщенного или слабо перегретого.
При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем, что теплоноситель и со держащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.
В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организа ция вентиляции помещений. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор-турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательные оборудование и системы управления станцией.
В большинстве промышленно развитых стран (Россия, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) мощность действующих и строящихся АЭС к 1980 доведена до десятков ГВт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 ГВт.
За годы, прошедшие со времени пуска в эксплуатацию первой АЭС, было создано несколько конструкций ядерных реакторов, на основе которых началось широкое развитие атомной энергетики в нашей стране.
Доля АЭС в добыче электроэнергии.
АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.
Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях, ураганах, и т. п. – здесь старые модели энерго блоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.
IV. НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ЭНЕРГИИ.
1. ЭНЕРГИЯ СОЛНЦА.
В последнее время интерес к проблеме использования солнечной энергии резко возрос.
Потенциальные возможности энергетики, основанной на использовании непо средственно солнечного излучения, чрезвычайно велики.
Заметим, что использование всего лишь 0.0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% – полностью покрыть потребности на перспективу.
Схема работы Крымской экспериментальной солнечной электростанции мощностью 5000 кВт: 1 – солнечные лучи; 2 – парогенератор-гелиоприем ник; 3 – пароводяной аккумулятор энергии вмести мостью 500 м; 4 – гелиостаты с площадью зеркал 25 м (общее их число 1000 штук)
К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресур сы удастся реализовать в больших масшта бах. Одним из наиболее серьезных препят ствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллек торы солнечного излучения "соби рали" за год энергию, необходимую для удовле творения всех потребностей челове чества нужно разместить их на территории 130000 км2.Необходимость использовать коллек торы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный метал лический (как правило, алюминиевый) лист, внутри, которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км2, требует примерно 104 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17·109 тонн.Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли
ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1·106 до 3·106км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13·106 км2.
Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, и, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.
Высокотемпературный гелиостат
Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые наде ются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, кото рая просматривается сегодня – направлять её для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы.
2. ВЕТРОВАЯ ЭНЕРГЕТИКА.
Ветродвигатель карусельного типа
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветро энергетику на огромной территории - от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.
Крыльчатый ветродвигатель
Техника XXI века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой – получение электроэнергии. Современные ветро энергетические установки делятся два класс: мощные, в сотни тысяч киловатт, называются сетевыми потому, что при безветрии обеспечение потребителя энергией идёт из сети; и автономные, в паре с аккумулятором. Как правило, мощность автономных установок не превышает 5-10 кило ватт. Они называются: ветроэлектрические установки малой мощности (ВЭУММ).
ВЭУММ просты и дёшевы в монтаже, эксплу атации и ремонте, экономичны, и не требуют при работе практически никакого обслуживания, периодической подстройки др. Такие энергетические установки могут обеспечить энергоснабжение в регионах со средней скоростью ветра всего 3-5 м/с. Фактически обладатель ВЭУММ приобретает почти полную независимость, как от традиционных производителей энергии, так и от природных явлений.
По сравнению с Европой и США ветроустановок в нашей стране выпускается намного меньше. Возможно, здесь сказывается недостаточная информированность потенциальных потребителей или относительная дешевизна жидкого топлива, однако изготовители ветровых генераторов в стране есть, и их продукция по качеству не уступает зарубежной.
3. ЭНЕРГИЯ РЕК.
Многие тысячелетия служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода – ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.
Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Можно считать, что современная гидроэнергетика родилась в 1891году.
Преимущества гидроэлектростанций очевидны – посто янно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое кол-во материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале 20 века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.
Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем – началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводя-
щаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжская, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.
Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.
4. ЭНЕРГИЯ ЗЕМЛИ.
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.
Маленькая европейская страна Исландия – "страна льда" в дословном переводе – полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли – других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в исполь зовании тепла подземных источников (еще древние римляне к знаменитым баням-термам Каракаллы – подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников.
Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, в наши дни мощность станции достигла уже внушительной величины – 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.
5. ЭНЕРГИЯ МИРОВОГО ОКЕАНА.
Известно, что запасы энергии в Мировом океане колоссальны. В океане, который составляет 71% поверхности планеты, потенциально имеются различные виды энергии. Энергия химических связей газов, питательных веществ, солей и других минералов. Скрытая энергия водорода, находящихся в молекулах воды; энергия течений спокойно и нескончаемо движущихся в различных частях океана. Удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.
Широкая общественность, да и многие специалисты ещё не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся всё более обещающими.
Давно была выдвинута и начала осуществляться идея приливных электростанций (ПЭС), где турбины вращались бы морскими приливами и отливами. Таких мест в мире много: заливы с высокими приливами и скоростями течения есть и России, особенно на востоке. Кислогубская ПЭС (Белое море) успешно работает уже более 20 лет, но она совсем небольшая, опытная. А во Франции работает крупная ПЭС Ранс мощностью 240 тысяч киловатт; самое интересное, что её тоже двадцатилетний опыт показывает абсолютную экологическую чистоту таких сооружений: залив превратился в спокойное озеро. Он стал излюбленным местом отдыха и туризма, а плотина ПЭС имеет «рыбоходы», она не влияет на миграцию рыб.
У России больше чем у Франции, возможностей для использования ПЭС, данных самой природой.их сооружений: залив превратился в спокойное озеро.ысяч киловатт; самое интересное, что её тоже двадцатилетний опыт показывает Разрабатывается технико-экономическое освоение Тунгуской ПЭС в заливе Охотского моря, по мощности она может спорить с крупнейшими ГЭС мира – 8 млн. киловатт, а ещё более крупная ПЭС – Мезенская (на Европейском Севере) могла бы и превзойти эти гиганты (15 млн. киловатт). Однако пока не строится даже запроектированная на ближайшее будущее опытно-промышленная Кольская ПЭС. И в XXI учёные-океанологи продолжают обращать внимание общества на океан, который заряжается энергией внеземного происхождения, энергией доступной и безопасной, неиссякаемой и не загрязняющей окружающую среду.
6. ЭНЕРГИЯ ИЗ КОСМОСА.
Идея сооружения Международной опытной космической электростанции (КСЭС), подающей электроэнергию земным потребителям, возникла в 1960 году и не сходит с тех пор со страниц популярных и научных изданий.
КСЭС в совокупности с промежуточными атмосферными сооружениями сможет не только подавать электроэнергию земным потребителям. Но и непосредственно освещать большие участки земной поверхности ночью и затенять их днем, регулировать климатические условия, уничтожать тайфуны и смерчи, снабжать энергией космические корабли, воздушные средства, наземный транспорт, удаленные от линий электропередачи промышленные предприятия и т.д.
Целесообразность создания КСЭС диктуется неисчерпаемостью солнечной энергии, экологическими соображениями и необходимостью сохранять ныне широко применяемые природные энергоносители (нефть, газ, уголь) для нужд химической промышленности.
КСЭС с периодически сменяемым персоналом могла бы стать не только прообразом сверхмощных станций будущего. Но и одновременно выполнять огромное количество обычной “космической работы” (исследования, наблюдения, эксперименты) Потребность в такой опытной КСЭС имеется уже сейчас, причем не только потребность, но и возможность ее создания при условии международного сотрудничества.
При этом следует учесть, что наша страна первой в мире освоила пилотируемые космические полеты с пребыванием людей на станции в течение одного года. У нас создан и опробован в космосе уникальный монтажный инструмент. Космонавтами получен уникальный опыт работы по развертыванию крупногабаритных космических сооружений, в том числе и дополнительных панелей солнечных батарей, освоены длительные рабочие выходы космонавтов в открытый космос, успешно проведены первые испытания новой универсальной ракеты-носителя “Энергия”, способной выводить на околоземную орбиту более 100 т полезного груза. Практическое использование солнечной энергии в космонавтике началось в 1958 году на первом ИСЗ США и на третьем советском ИСЗ. Эти спутники, как известно, имели солнечные батареи.
Первая публикация по проблеме КСЭС с изложением технической сущности принадлежит американскому инженеру П. Гейзеру. В его проекте масса КСЭС достигает 30 тыс. т, размер (“размах”) солнечных батарей 60 км, а электрическая мощность – примерно 8,5 ГВт. Таким образом, мощность спроектированной станции выше мощности эксплуатируемых ныне крупнейших электростанций мира: ГЭС “Гленд-Кули” (США) – 6,2 ГВт, Красноярской ГЭС – 6 ГВт, АЭС “Фукушима” – 4,7 ГВт, ТЭС “Кашима” – 4,4 ГВт (Япония).
Целесообразность создания КСЭС и КТЭС диктуется неисчерпаемостью, как солнечной энергии, так и горючего для КТЭС – космического водорода, экологическими соображениями и необходимостью сохранить ныне широко применяемые природные химические энергоресурсы для нужд химической промышленности.
В связи с печальным опытом аварии на Чернобыльской АЭС возникает вопрос, а не грозит ли создание КСЭС какими-либо новыми бедами людям, ведь передача энергии будет происходить через атмосферу, а, следовательно, воздействовать на ее состав и динамику. Будет ли это воздействие положительным? Расчеты вселяют оптимизм, но окончательный ответ может дать только опытная эксплуатация электропередачи Космос-Земля.
Наличие энергетических установок характерно для всех космических аппаратов. Характеристики космических солнечных батарей (СБ), применяемых в настоящее время, весьма разнообразны. Удельная масса панельных СБ составляет 5-10 кг/м2, причём около 40% массы приходится на полупроводниковые элементы, а остальное на конструкцию. Ожидается, что использование материалов на основе бора и углерода позволит уменьшить массу конструкций в 2 раза.
Срок службы СБ пока подтвержден 5 годами, однако считается, что он может составить 30 лет, правда , с деградацией (уменьшением) КПД СБ к концу этого периода на 40%.
Достигнутое КПД для двухслойного элемента, составленного из арсенида галлия (GaAs) и кремния (Si), равно 28,5% , что касается дальнейших перспектив, то они оцени ваются довольно высокими значениями до 60 %.
В космической энергетике большая роль отводится аккумуляторам. Самые лучшие из современных маховиков способны накапливать весьма значительную энергию – до 1 МДж/кг, хотя существуют и такие экспериментальные устройства, которые способны накапливать энергию до 12 МДж/кг. Но для расчетов ограничиваются значением 0,07 МДж/кг.
Вряд ли первая опытная КСЭС установленной мощностью для земных потребителей 5000 кВт способна сколько-нибудь существенно помочь энергетике нашей страны. Тем не менее, она, как и первая АЭС, необходима, причем главный смысл ее эксплуатации – натуральное изучение способов беспроводной передачи энергии на сверхдальние расстояния, изучение влияния этого процесса на окружающую среду, оптимизация параметров станции.
Первые практические опыты в нашей стране по передаче энергии без проводов с помощью СВЧ - излучения были проведены под руководством профессора С.И. Тетельбаума в Киевском политехническом институте около 30 лет назад. Две простейшие квадратные антенны со стороной квадрата 100 м при длине волны 1 см позволили передавать энергию на расстояние 50 км с КПД 40%, а на расстояние 5 км – с КПД 60%. Современное состояние техники позволяет существенно улучшить все показатели беспроводной линии передачи энергии с помощью СВЧ - излучения.
7. ВОДОРОДНАЯ ЭНЕРГЕТИКА.
Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей и т.п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина – только 47 Дж.
Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача того же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока.
Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.
Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергетики процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого водорода постоянно возрастает по мере повышения цен на нефть.
Небольшое количество водорода получают путем электролиза. Производство водорода методом электролиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атомной энергетики станет дешевле. Вблизи атомных электростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на транспортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.
Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотоннажного производства водорода за счет более эффективного разложения воды, используя высокотемпературный электролиз водяного пара, применяя катализаторы, полунепроницаемые мембраны и т. п.
Большое внимание уделяют термолитическому методу, который (в перспективе) заключается в разложении воды на водород и кислород при температуре 2500°С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высокотемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследователи стремятся разработать процессы, протекающие в несколько стадий, что позволило бы вырабатывать водород в температурных интервалах ниже 1000°С.
В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с КПД 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реагенты циркулируют в повторных циклах. Другие – сконструированные установки работали – при температурах 700-800°С. Как полагают, высокотемпературные реакторы позволят поднять КПД таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тенденцию к росту, можно предположить, что в долгосрочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.
Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заме нить. Водород можно будет сжигать в кухонных плитах, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отличаться от современных горелок, применяемых для сжигания природного газа.
Как мы уже говорили, при сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом – он увлажняет воздух (как известно, в современных квартирах с центральным отоплением воздух слишком сух). А отсутствие дымоходов не только способствует экономии строительных расходов, но и повышает к. п. д. отопления на 30%.
Водород может служить и химическим сырьем во многих отраслях промышленности, например при производстве удобрений и продуктов питания, в металлургии и нефтехимии. Его можно использовать и для выработки электроэнергии на местных тепловых электро станциях.
V. ЭНЕРГЕТИКА БУДУЩЕГО.
1. АТОМНАЯ ЭНЕРГИЯ.
Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы.
Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный
веками принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений.
Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по изучению радиоактивности привели их к револю ционному по тем временам выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях.
Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к XI веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.
В принципе энергетический ядерный реактор устроен довольно просто - в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километ ров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.
Самый распространенный в настоящее время тип реактора водографитовый.
Еще одна распространенная конструкция реакторов – так называемые водоводяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных элек тростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекорд смена – полуторамиллионика с Игналинской АЭС.
Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предло жены учеными, – реакторами на быстрых нейтронах. Их называют еще реакторам-размножителями. Обычные реакторы используют замедленные нейт роны, которые вызывают цепную реакцию в доволь но редком изотопе – уране-235, которого в природ-ном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?
Более тридцати лет назад эта проблема была поставлена перед коллективом лабора тории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка.
Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы природных урана и тория, а они огромны - только в Мировом океане растворено более четырех миллиардов тонн урана.
Но все 400 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.
Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, безотказно поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры
по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.
По мнению многих специалистов, реальным энергетическим выбором человечества в XXI век станет широкое использование ядерной энергетики на основе реакторов деления.
Атомная энергетика могла бы уже сейчас взять на себя значительную часть приросту мировых потребностей в топливе и энергии. Сегодня она обеспечивает более 6% мирового потребления энергии, в основном электрической, где её доля сотавляет18% (в России – около 16%).
Достоинства атомной энергетики:
Недостатки:
Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива – обеспечивать функционирование «большой» атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономическим показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.
2. ТЕРМОЯДЕРНАЯ.
На протяжении XX века человечество интенсивно наращивало потребление нефти и газа. Постоянное сжигание природных углеводородов обернулось весьма не приятными последствиями для окружающей среды – от смога над крупными городами до парникового эффекта в масштабах всей планеты. Причиной экологических катастроф нередко становятся транспортировкам нефтепродуктов. Из-за достаточно крупных аварий с танкерами или разрывов трубопроводов нефть попадает в водоёмы, просачивается в почву, отравляя всё живое вокруг. Да и запасы нефти не безграничны – по самым оптимистичным прогнозам, при нынешних темпах добычи её хватит от силы лет сто. Ясно, что современной экономике нужен другой, альтернативный бензину и мазуту энергоноситель, и, по всей видимости, эта роль уготована водороду.
В США, государствах Европейского союза и многих других странах исследования по водородной энергетике относятся к приоритетным направлениям развития науки и техники. Основная цель развития водородных технологий - снижение зависимости от существующих энергоносителей – нефти и газа, составляющих сегодня основу российской экономики.
Основные преимущества водорода – экологическая безопасность и высокая энергетическая отдача. При горении водорода образуется только вода, а теплота его сгорания составляет 143 кДж/г, то есть примерно в 5 раз выше, чем у углеводородов (29 кДж/г). Водород – самое распространённое вещество во Вселенной (по оценкам, он составляет около половины массы звезд и большую часть межзвёздного газа). Однако на Земле в свободном виде его практически нет. Небольшое количество водорода выбрасывают вулканы, но газ этот настолько лёгкий, что его молекулы очень быстро улетают из атмосферы в космическое пространство. Строго говоря, водород не источник энергии, а лишь его носитель. Чтобы использовать водород в качестве топлива, надо сначала извлечь его из другого вещества. В этом недостаток
3. ГЕЛИЙ-3.
Учёные связывают будущее энергетики с Луной. Не исключено, что Луна станет «Персидским заливом» XXI веке. Конечно, добывать топливо в космосе – дело не привычное и на первый взгляд, с учётом транспортировки неприемлемо дорогое, но энергосодержание гелия-3 так велико, что всего 100 кг хватит для годовой работы электростанции гигаваттного уровня. Поэтому понятно то внимание, которое в последнее время начинают уделять этому вопросу в России, США. Даже в Китае.
Гелий-3 позволит создать абсолютно безопасную энергетику, обеспеченную прак тически неограниченными запасами топлива. Источников трития в природе нет, тритий придётся нарабатывать непосредственно на электростанции – возникают дополнительные сложности. Да и КПД гелиевого реактора существенно выше, чем тритиевого.
На Земле гелия-3 очень мало – суммарные запасы оцениваются в 4000 т. Но всё же в пределах досягаемости находится богатый источник гелия -3 – Луна.
Как ни парадоксально, но по энергетическому эквиваленту гелий-3 может оказаться дешевле земного каменного угля.
Добыча гелия-3 на Луне выглядит вполне выгодной, как чисто с энергетической так и с экономической точки зрения – разумеется, при условии, что на Земле эксплуатируется значительное число термоядерных реакторов, сжигающих гелий-3.
Желательно, чтобы «лунная» и «термоядерная» части программы, нацеленной на создание энергетики второй половины XXI века, были скоординированы.
VI. ЗАКЛЮЧЕНИЕ.
Познакомившись с принципами работы всех видов электростанций, я пришёл к следующим выводам:
1. ГЭС – хоть имеет малую себестоимость, но приводит к изменению грунтовых вод;
2. ТЭС – имея большие запасы топлива, что позволяет говорить о их перспективах на будущее, очень загрязняют атмосферу вредными выбросами и тепловыми отходами, что пагубно сказывается на флору и фауну;
3. АЭС – не зависит ее расположение от источников топлива и практически не загрязняет атмосферу, вызывает радиоактивное излучение, что вредно для живых организмов и существует проблема хранения и утилизации отходов;
4. ГеоТЭС – не нуждается в органическом топливе и экологически чистая, но ее строительство затруднено труднодоступностью районов местоположения;
5. ВЭС – экологически чистая, но необходима постоянное наличие ветра;
6. СЭС – огромные запасы топлива, экологически чистая, но высокая стоимость сооружения;
7. ПЭС – экологически чистая, огромны запасы топлива, но зависит строительство от рельефа местности.
То есть имеющиеся виды электростанций обладают как достоинствами, так и недостатками. А хотелось бы иметь идеальную электростанцию, которая должна приносить как можно меньше вреда окружающей среде и иметь малую себестоимость, большие источники топлива и малые затраты для их добычи.
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.
Солнце светило и обогревало человека всегда: и, тем не менее, однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более кало рийного "корма". Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энерге тическом рынке нефти.
И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с
каждым годом стоить нам все дороже.
Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.
Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.
А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.
В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.
Но времена изменились. Сейчас, в начале XXI века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно повреж денной биосферы.
Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые,
удобные в обращении.
Яркий пример тому – быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.
Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана букваль но со Всем, и Все тянется к энергетике, зависит от нее.
Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, – это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.
Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед.
Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.
Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и эконо мичные методы.
Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений, есть только разумный выбор".
VII. СПИСОК ЛИТЕРАТУРЫ.
В. Святый кандидаты технических наук.
Washington ProFile.
им. А. М. Прохорова.
Фокус-покус! Раз, два,три!
Загадка Бабы-Яги
Снегири и коты
Солдатская шинель
Астрономы получили первое изображение черной дыры