Учебник геометрия 7класс Л.С Атанасян.Программа и планирование.
Рабочая программа по геометрии составлена на основе федерального государственного стандарта основного общего образования и Примерной программы среднего общего образования по геометрии . Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Данная рабочая программа ориентирована на учащихся 7 классов, изучающих предмет на базовом уровне и реализуется на основе следующих документов:
1. Закона «Об образовании» от 26.12.2012г. N 273 -ФЗ
2. Федерального государственного образовательного стандарта (ФГОСа) основного общего образования, утверждённого Приказом Министерства образования и науки РФ от 17.12. 2010г. № 1897
3. Программы для общеобразовательных учреждений: сборник «Программы для общеобразовательных учреждений, геометрия 7- 9 классы», составитель Т. А. Бурмистрова, Москва, издательство « Просвещение», 2014 год
4. Приказа Министерства образования и науки РФ от 31.03.2014г. № 253 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию
5. Санитарно – эпидемиологических правил и нормативов СанПин 2.4.2.2821-10 (утверждены постановлением Главного государственного санитарного врача РФ от 29.12.2010 г. № 189)
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Общая характеристика курса
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».
Материал раздела «Наглядная геометрия» содержит элементы наглядной стереометрии и способствует развитию пространственных представлений учащихся при изучении планиметрии.
Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира.
Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач.
Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несётв себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах (физике).
Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии, как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
В ходе освоения содержания курса геометрии учащиеся получают возможность:
· развить представление о числе и роли вычислений в человеческой практике;
· сформировать практические навыки выполнения устных, письменных инструментальных вычислений, развить вычислительную культуру;
· овладеть символическим языком геометрии; выработать формально-оперативные геометрические умения и научиться применять их к решению математических и нематематических задач;
· развить пространственные представления и изобразительные умения;
· освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
· получить представления об особенностях выводов и прогнозов; развить логическое мышление и речь – умения логически обосновывать суждения; проводить несложные систематизации;
· приводить примеры и контрпримеры; использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
· сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В ходе преподавания геометрии в 7-9 классах, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
· планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
· решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
· исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
· ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
· проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
· поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Место предмета в базисном учебном плане
В соответствии с Федеральным государственным образовательным стандартом, учебным планом ГБОУ СОШ №163 Центрального района на этапе основного общего образования для обязательного изучения курса «Геометрия» в 7 классах предусмотрено 68 учебных часов из расчета 2 часа в неделю.
Цели и задачи обучения
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
· развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
· формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
· воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
· формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
· развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
· формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
· развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
· формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
· овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
· создание фундамента для развития математических способностей и механизмов мышления, формируемых математической деятельностью.
В ходе изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний. Таким образом, решаются следующие задачи:
· введение терминологии и отработка умения её грамотного использования;
· развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;
· совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
· формирование умения доказывать равенство данных треугольников;
· отработка навыков решения простейших задач на построение с помощью циркуля и линейки;
· формирование умения доказывать параллельность прямых, используя соответствующие признаки, находить равные углы при параллельных прямых, что находит широкое применение в дальнейшем курсе геометрии;
· расширение знаний учащихся о треугольниках.
Личностные, метапредметные и предметные результаты освоения учебного предмета
Изучение математики в основной школе даёт возможность обучающимся достичь следующих результатов:
1. В направлении личностного развития:
· умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
· критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
· представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
· креативность мышления, инициатива, находчивость, активность при решении математических задач;
· способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
2. В метапредметном направлении:
· умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
· умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
· умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
· умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
· умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
· понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
· умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
· умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
· первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
3. В предметном направлении:
предметным результатом изучения курса является сформированность следующих умений:
· пользоваться геометрическим языком для описания предметов окружающего мира;
· распознавать геометрические фигуры, различать их взаимное расположение;
· изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
· распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
· в простейших случаях строить сечения и развертки пространственных тел;
· проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
· вычислять значения геометрических величин (длин, углов, площадей, объемов); для углов от 0˚ до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности; находить площади основных геометрических фигур и фигур, составленных из них;
· решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
· проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
· решать простейшие планиметрические задачи в пространстве.
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
· описания реальных ситуаций на языке геометрии;
· расчетов, включающих простейшие тригонометрические формулы;
· решения геометрических задач с использованием тригонометрии;
· решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
· построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Содержание учебного предмета
Начальные понятия и теоремы геометрии.
Возникновение геометрии из практики.
Геометрические фигуры и тела. Равенство в геометрии.
Точка, прямая и плоскость.
Понятие о геометрическом месте точек.
Расстояние. Отрезок, луч. Ломаная.
Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.
Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.
Многоугольники.
Окружность и круг.
Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.
Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинами сторон и углов треугольника.
Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.
Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число p; длина дуги. Величина угла. Градусная мера угла.
Построения с помощью циркуля и линейки.
Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы.