Лекция “Электролитическое наращивание. Сварка и наплавка. Электроискровая обработка” 211 группа
план-конспект урока
Оформить конспект
Скачать:
Предварительный просмотр:
Лекция “Электролитическое наращивание. Сварка и наплавка. Электроискровая обработка.”
Процесс электролитического наращивания основан на электролизе, т. е. способности металла осаждаться на катоде при прохождении постоянного тока через электролит. В ванну с электролитом, содержащим металл покрытия, опускают деталь, поверхность которой необходимо нарастить. На ванне укрепляют и соответствующим образом изолируют от нее три штанги, две крайние из них присоединяют к положительному, а среднюю - к отрицательному выводу электрической машины. На средней штанге, на подвеске, укрепляют деталь (катод), а на крайних штангах - металл покрытия (анод).
Известно, что при растворении в воде электролиты диссоциируют, т. е. распадаются на ионы. При прохождении тока через растворы электролитов ионы двигаются к электродам (катоду и аноду). При этом положительно заряженные ионы (катионы) направляются к отрицательному электроду - катоду, а отрицательно заряженные (анионы) - к положительному электроду (аноду). На электродах ионы или совсем теряют заряд, выделяясь в виде нейтральных атомов, или изменяют заряд, образуя новые химические соединения. В результате на катоде осаждается металл покрытия (из раствора солей и щелочей) и выделяется водород (из солей кислот и воды). Количество выделенных при электролизе веществ пропорционально току и времени его прохождения.
В качестве электролита применяют: при хромировании - водный раствор хромового ангидрида (150.250 г/л) и серной кислоты (1,5.2,5 г/л); при осталивании - водный раствор хлористого железа (200 г/л) и соляной кислоты (0,6.0,8 г/л). При хромировании анодами служат свинцовые пластины с добавкой до 8 % сурьмы для повышения механической прочности (нерастворимый анод), а при осталивании - стальные пластины из малоуглеродистой стали (растворимый анод).
В ремонтной практике наибольшее распространение получили хромирование и осталивание. Меднение и никелирование применяют значительно реже и главным образом для вспомогательных целей.
Хромирование. Технологический процесс хромирования состоит из трех этапов: подготовки детали (механическая обработка, изоляция мест, не подлежащих покрытию, монтаж детали на подвеске, обезжиривание и промывка, декапирование), собственно хромирования и обработки после покрытия.
Механическая обработка детали (шлифование и полирование) необходима для придания поверхности правильной формы, иначе при отложении хрома на поверхности детали будут «скопированы» все неровности и изъяны.
Изоляция мест, не подлежащих хромированию, осуществляется целлулоидной лентой, цапонлаком (целлулоид, растворенный в бензине), бакелитовым лаком, резиновыми чехлами, клеем ГЭН- 150В и т. п. Отверстия, имеющиеся в детали, закрывают свинцовыми пробками, чтобы избежать искривления силовых линий у отверстий. Перед изоляцией деталь обезжиривают промывкой в бензине.
Обезжиривание и промывка производятся для лучшего соединения хрома с наращиваемыми поверхностями детали. Предварительное обезжиривание ведется одним из химических способов, а затем электролитическим способом. В последнем случае деталь подвешивают в ванну с водным раствором едкого натра концентрацией 70. 100 г/л, в который добавлено 2.3 г/л жидкого стекла. В процессе электролиза на катоде происходит интенсивное выделение пузырьков газа (водорода), срывающего с поверхности детали жировую пленку, одновременно с этим идут и процессы омыления и эмульгирования жиров.
После обезжиривания деталь промывают горячей или холодной водой для удаления остатков раствора. Качество обезжиривания проверяют по смачиваемости поверхности детали водой.
Декапирование - это процесс удаления тончайшей пленки окислов для получения активной поверхности металла, необходимой для его прочного сцепления с покрытием. Декапирование проводят в течение 1 мин в отдельной ванне или в ванне с электролитом для хромирования, при этом деталь служит анодом, а свинцовая пластина - катодом.
Хромирование ведется до получения необходимого слоя на детали в ванне с электролитом при соответствующем режиме (определенной плотности тока и температуре электролита). Практически толщина наращиваемого слоя хрома при ремонте ограничивается 0,1. 0,2 мм. Слой большей толщины непрочен и имеет структуру низкого качества. Хромовые осадки делятся на гладкие и пористые. Гладким хромом обычно наращивают детали с неподвижными посадками, а пористым - детали трения (поршневые кольца и пальцы, гильзы цилиндров и т. п.). Поры хорошо удерживают масляную пленку, которая предохраняет трущиеся поверхности от сухого и граничного трения.
Преимущества хромирования: возможность наращивания как термически обработанных, так и необработанных деталей без нарушения структуры основного металла, так как процесс ведется при температуре не более 70 °С; высокая твердость хромового покрытия, а у пористого хрома, кроме того, высокая износоустойчивость; хорошая сопротивляемость действию кислот и сернистых соединений, жаростойкость (допускает нагрев до 500 °С).
Недостатки хромирования: длительность процесса и сложность подготовительных операций; возможность восстановления деталей только с относительно небольшим износом, так как при толщине слоя более 0,3 мм осадок хрома становится непрочным; малая производительность (за 1 ч работы ванны наращивается слой 0,015.0,03 мм) и относительно высокая стоимость.
Осталивание. Технологический процесс осталивания (железнения) имеет много общего с процессом хромирования. Он также состоит из трех этапов: подготовки, покрытия и последующей обработки детали. Осталивание применяют для восстановления деталей с неподвижной посадкой без дополнительной термической обработки, создания подслоя (при восстановлении деталей с большим износом) при последующем хромировании и восстановления деталей с последующей термообработкой поверхностного слоя.
Преимущества осталивания: сохранение структуры металла детали, так как процесс ведется при температуре не более 100 "С;
возможность получения достаточно твердого слоя без термообработки (при необходимости осталенные детали могут быть подвергнуты цементации, закалке и отпуску); возможность восстановления деталей с относительно большим износом (толщина наращиваемого слоя - 5 мм и более); высокая производительность процесса - примерно в 8. 10 раз выше, чем при хромировании; более низкая стоимость процесса, так как при осталивании применяют менее дефицитные и более дешевые материалы, чем при хромировании. Недостатки осталивания: сложность подготовительных операций; необходимость частой фильтрации и систематической корректировки электролита; трудность подбора материала ванн и необходимость подогрева электролита.
Под наплавкой понимают процесс нанесения на поверхность детали металла или сплава в расплавленном состоянии.
Плавление металла или сплава происходит благодаря теплоте электрической дуги (электрическая сварка и наплавка) или теплоте, образующейся при сгорании ацетилена, природного и других горючих газов в струе кислорода (газовая сварка и наплавка).
В процессе плавления металла и его последующем затвердевании из-за неравномерного распределения теплоты на участке, прилегающем к наплавленному слою (в зоне термического влияния), происходят структурные изменения в металле и изменения линейных размеров детали. Глубина зоны термического влияния, зависящая от начальной температуры детали, скорости и способа охлаждения, теплопроводности основного металла, способов и режимов наплавки, колеблется от 1 до 25 мм. Изменения структуры металла и линейных размеров, если не принять особых мер, приводят к местной деформации детали и появлению на ней трещин. К особым мерам относятся предварительный подогрев и последующее медленное охлаждение детали, особые приемы наплавки, отжиг и отпуск после наплавки, защита расплавленного металла от воздействия воздуха и т. п.
В процессе наплавки наносимый металл насыщается кислородом, азотом и водородом воздуха, а также в нем выгорают легирующие элементы. Образование окислов в наплавленном металле снижает предел прочности и ударную вязкость шва, а насыщение стали азотом ухудшает его пластические свойства, уменьшает ударную вязкость, относительное удлинение и т.п. Для защиты расплавленного металла от воздействия кислорода и азота воздуха и компенсации выгоревших легирующих элементов применяют электроды с покрытиями или наплавку проводят под слоем флюса и в среде защитных газов.
Сварка и наплавка стальных деталей. Для защиты сварочного шва от вредного действия воздуха при ручной сварке и наплавке применяют электроды с тонкими (0,10. 0,25 мм на сторону) и толстыми (0,5. 1,5 мм на сторону) покрытиями. Тонкие покрытия (состоящие чаще всего из 80.85 % мела и 20. 15 % жидкого стекла) способствуют устойчивости горения дуги, поэтому их часто называют стабилизирующими или ионизирующими. Электроды с тонкими покрытиями используют при сварке малоответственных деталей, работающих при статических нагрузках. Толстые покрытия являются защитно-легирующими. В них входят газошлако-образующие, легирующие вещества и раскислители, способствующие формированию шва с повышенными механическими свойствами. Электроды с толстыми покрытиями применяют для сварки и наплавки ответственных частей из углеродистых и низколегированных сталей. Для наращивания изношенных поверхностей стальных деталей пользуются наплавочными электродами, обеспечивающими получение плотного слоя металла необходимой твердости.
Сварка чугунных деталей. При разработке технологии восстановления чугунных деталей сваркой следует иметь в виду, что в процессе сварки из-за высокого местного нагрева, быстрого охлаждения и усадки в металле возникают значительные внутренние напряжения, которые могут привести к появлению трещин. При быстром охлаждении кроме усадки происходит отбеливание чугуна, вследствие чего шов получается пористым. Отбеленный чугун характеризуется высокой хрупкостью и твердостью, что снижает прочность шва и затрудняет механическую обработку. Для предупреждения этих нежелательных явлений при сварке чугунных деталей применяются соответствующие электроды и флюсы. Сварку ответственных деталей ведут с предварительным подогревом (горячая сварка) и во всех случаях - с медленным охлаждением детали. Горячая сварка чугуна возможна как ацетиленокис-лородным пламенем, так и электрической дугой.
Промышленная обработка металлов включает в себя несколько десятков способов и методов изменения формы, объема и, даже молекулярной структуры материала. Электроискровая обработка металлов — одна из распространенных технологий работы с металлом, отличающаяся высокой точностью и производительностью. При помощи электроискровых станков можно:
резать металл;
сверлить отверстия микроскопического диаметра;
наращивать дефектные области деталей;
производить ювелирные работы с драгоценными металлами;
упрочнять поверхность изделий;
шлифовать изделия самой сложной формы;
извлекать застрявшие сломанные сверла и резцы.
На базе электроискрового метода обработки металлов создано немало станков промышленного назначения. Это высокоточная и дорогая техника, которую могут позволить себе купить только крупные предприятия, специализирующиеся на металлообработке.
Базируется обработка металлов электроискровым способом на свойстве электрического тока переносить вещество при пробое. При высоком напряжении и силе постоянного тока (1-60 А) анод (положительно заряженный электрод) нагревается до высокой температуры в пределах 10-15 тысяч градусов Цельсия, расплавляется, ионизируется и устремляется к катоду. Там, в силу электрических взаимодействий он осаживается.
Чтобы в процессе работы не возникала полноценная электрическая дуга, электроды сближаются только на короткие мгновения, длящиеся доли секунда. За это время возникает искра, разрушающая анод и наращивающая катод. Обрабатываемый участок подвергается нагреву и воздействию электротока на протяжении миллисекунд, при этом соседние области и лежащий ниже слой не успевают прогреться и структура их не нарушается. Проблема пограничных состояний не возникает в принципе.
Если требуется резка или сверление — катодом служит рабочий инструмент, а анодом — обрабатываемая деталь. При наращивании, укреплении поверхности или восстановлении формы детали, они меняются местами. Для этих видов обработки созданы специальные станки, каждый из которых выполняет свои операции.
Инструментом в установках электроэрозионного действия служат латунные или медно-графитные электроды, хорошо проводящие ток и недорогие в изготовлении. С их помощью можно резать и сверлить самые твердые сплавы. Чтобы металл катода не оседал на электроде и не увеличивал его размера, процесс происходит в жидкой среде — жидкость охлаждает капли расплава, и он не может осесть на электроде, даже если и достигает его. Вязкость жидкости определяет скорость движения материальных частиц, и они не успевают за током. Металл оседает в ванне в виде осадка и не мешает дальнейшему прохождению тока.
При наращивании поверхности деталей или укреплении, металл с анода переносится на катод. В этом случае на вибрационной установке закрепляется положительный электрод, служащий донором металла, а деталь присоединяется к отрицательному полюсу. Вода или масло в этом процессе не используются, все происходит в воздухе.
По теме: методические разработки, презентации и конспекты
Конспект лекции МДК.02.04 «Практикум по художественной обработке материалов и изобразительного искусства» Тема:"Виды пейзажа. Воздушная перспектива"
Для студентов и преподавателей Специальности 44.02.01 "Дошкольное образование"Конспект занятия по МДК.02.04«Практикум по художественной обработке материалов и изобразительного искусства»Тема «Виды пей...
РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ 02 Ручная дуговая сварка (резка, наплавка) плавящимся покрытым электродом по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)
Рабочая программа профессионального модуля (далее рабочая программа) – является частью рабочей основной профессиональной образовательной программы в соответствии с ФГОС СПО по профессии 15...
Лекция по теме; “ Токоприемник; назначение, конструкция, принцип действия”, группа 111
В лекции написано назначение, конструкция и принцип работы токоприёмника ВЛ80С....
Лекция: “Пневматические выключатели управления.Электропневматические вентили и клапаны.”группа 111
Оформить конспект....
РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.02 Ручная дуговая сварка (наплавка, резка) плавящимся покрытым электродом по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)
Рабочая программа по ПМ02...
РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.03 Частично механизированная сварка (наплавка) плавлением по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)
Рабочая программа ММ03...
Лекция "Технологические приемы сварки решетчатых конструкций"
Лекция "Технологические приемы сварки решетчатых конструкций"...