Вычисление вероятности событий
материал
Цель: формирование элементарных умений вычислять вероятность случайного события.
Скачать:
Вложение | Размер |
---|---|
23.03.2020g._gr.836-1para_pr_vychislenie_veroyatnosti_sobytiy.docx | 27.66 КБ |
Предварительный просмотр:
Практическая работа по теме: «Вычисление вероятности событий»
Цель: формирование элементарных умений вычислять вероятность случайного события.
Теоретический материал
Классическое определение вероятности
Вероятностью события A называется отношение числа благоприятных для A исходов к числу всех равновозможных исходов: Р (А) =
где n — общее число равновозможных исходов, m — число исходов, благоприятствующих событию A.
Противоположные события
Событие, противоположное событию A, обозначают Ā. При проведении испытания всегда происходит ровно одно из двух противоположных событий.
Объединение несовместных событий
Два события A и B называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию A, так и событию B.
Если события A и B несовместны, то вероятность их объединения равна сумме вероятностей событий A и B: P(A U B) =P(A) + P(B)
Пересечение независимых событий
Два события A и B называют независимыми, если вероятность каждого из них не зависит от появления или непоявления другого события.
Событие C называют пересечением событий A и B (пишут C = A∩B), если событие C означает, что произошли оба события A и B.
Если события A и B независимы, то вероятность их пересечения равна произведению вероятностей событий A и B: P(A∩B) = P(A) • P(B)
Формула сложения вероятностей совместных событий: P(A U B) =P(A) + P(B) – P(A∩B)
Образцы решения задач:
1. Из 1000 собранных на заводе телевизоров 5 штук бракованных. Эксперт проверяет один наугад выбранный телевизор из этой 1000. Найдите вероятность того, что проверяемый телевизор окажется бракованным.
Решение. При выборе телевизора наугад возможны 1000 исходов, событию A «выбранный телевизор — бракованный» благоприятны 5 исходов. По определению вероятности P(A) = 5÷1000 = 0,005. Ответ: 0,005.
2. В урне 9 красных, 6 жёлтых и 5 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым? Решение. Общее число исходов равно числу шаров: 9 + 6 + 5 = 20. Число исходов, благоприятствующих данному событию, равно 6. Искомая вероятность равна 6÷20 = 0,3. Ответ: 0,3.
3. Петя, Вика, Катя, Игорь, Антон, Полина бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.
Решение. Вероятность события равна отношению количества благоприятных случаев к количеству всех случаев. Благоприятными случаями являются 3 случая, когда игру начинает Петя, Игорь или Антон, а количество всех случаев 6. Поэтому искомое отношение равно 3:6=0,5. Ответ: 0,5.
4. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Решение: Обозначим через А событие «команда России во второй группе». Тогда количество благоприятных событий m = 4 (четыре карточки с номером 2), а общее число равновозможных событий n = 16 (16 карточек) по определению вероятности Р= 4: 16 = 0,25. Ответ:0,25
5. В чемпионате по футболу участвуют 16 команд, которые жеребьевкой распределяются на 4 группы: A, B, C и D. Какова вероятность того, что команда России не попадает в группу A?
Решение. Каждая команда попадет в группу с вероятностью 0,25. Таким образом, вероятность того, что команда не попадает в группу равна 1-0,25=0,75. Ответ:0,75
6. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орел выпадет ровно 1 раз.
Решение. Всего возможны четыре исхода: решка-решка, решка-орёл, орёл-решка, орёл-орёл. Орёл выпадает ровно один раз в двух случаях, поэтому вероятность того, что орёл выпадет ровно один раз равна 2:4=0,5. Ответ: 0,5.
7. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. Ответ: 1:4=0,25
8. Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет нечетное число очков. Решение. При бросании кубика равновозможных шесть различных исходов. Событию "выпадет нечётное число очков" удовлетворяют три случая: когда на кубике выпадает 1, 3 или 5 очков. Поэтому вероятность того, что на кубике выпадет нечётное число очков равна 3:6=0,5. Ответ: 0,5.
9. Определите вероятность того, что при бросании кубика выпало число очков, не большее 3.
Решение. При бросании кубика равновозможны шесть различных исходов. Событию "выпадет не больше трёх очков" удовлетворяют три случая: когда на кубике выпадает 1, 2, или 3 очка. Поэтому вероятность того, что на кубике выпадет не больше трёх очков равна 3:6=0,5 Ответ: 0,5.
10. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.
Решение. Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма — событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07. Ответ: 0,07.
11. Вероятность того, что на тесте по химии учащийся П. верно решит больше 8 задач, равна 0,48. Вероятность того, что П. верно решит больше 7 задач, равна 0,54. Найдите вероятность того, что П. верно решит ровно 8 задач.
Решение. Вероятность решить несколько задач складывается из суммы вероятностей решить каждую из этих задач. Больше 8: решить 9-ю, 10-ю ... Больше 7: решить 8-ю, 9-ю, 10-ю ...Вероятность решить 8-ю = 0,54-0,48=0,06. Ответ:0.06
12. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.
Решение. Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем: Р(А+В)=Р(А)+Р(В)=0,02•0,99+0,98•0,01=0,0198+0,0098=0,0296 Ответ: 0,0296.
13. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).
Решение. Пусть A — событие, состоящее в том, что мишень поражена стрелком с первого выстрела, B — событие, состоящее в том, что мишень поражена со второго выстрела. Вероятность события A равна P(A) = 0,7. Событие B наступает, если, стреляя первый раз, стрелок промахнулся, а, стреляя второй раз, попал. Это независимые события, их вероятность равна произведению вероятностей этих событий: P(B) = 0,3·0,7 = 0,21. События A и B несовместные, вероятность их суммы равна сумме вероятностей этих событий: P (A + B) = P(A) + P(B) = 0,7 + 0,21 = 0,91. Ответ: 0,91.
Задания для самостоятельного выполнения
Вариант I | Вариант II |
1.В лыжных гонках участвуют 11 спортсменов из России, 6 спортсменов из Норвегии и 3 спортсмена из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен не из России. 2. В чемпионате по футболу участвуют 25 команд, которые жеребьевкой распределяются на 5 групп: A, B, C, D и Е. Какова вероятность того, что команда России не попадает в группу A? 3. В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе. 4. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл не выпадет ни разу. 5. Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, большее 3. 6. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. 7. Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые 3 раза попал в мишени, а последний раз промахнулся. | 1.На каждые 1000 электрических лампочек приходится 5 бракованных. Какова вероятность купить исправную лампочку? 2.В чемпионате по футболу участвуют 20 команд, которые жеребьевкой распределяются на 4 группы: A, B, C и D. Какова вероятность того, что команда России не попадает в группу A? 3. В классе 16 учащихся, среди них два друга —Вадим и Сергей. Учащихся случайным образом разбивают на 4 равные группы. Найдите вероятность того, что Вадим и Сергей окажутся в одной группе. 4. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно 2 раза. 5. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых. 6. По отзывам покупателей Иван Иванович оценил надёжность двух интернет- магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. 7. Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,4. Найдите вероятность того, что стрелок первые 3 раза попал в мишени, а последний раз промахнулся.
|
Вариант 1 | Вариант 2 |
Абдурашидов И., Бобылев А., Глазунов А., Деркач А., Изин Андрей, Изосимов А., Кирпичников А, Котькорло К., Маненков К., Осауленко Г., Плечев К., Тюлькин И., Ахмедов Д. | Алексеев Н., Близняков М., Горсков В., Джапаров Р., Изин Антон, Кириллов П., Ковалевский Д., Лосев А., Мунтян С.,Пошеченков А., Солдатов И., Тулупов А. |
Требования к отчетности:
- Выполнять в рабочей тетради;
- Фотографировать готовые решения;
- Присылать на почту: vismyt89@mail.ru своевременно (подписывайте ФИО и номер группы), можно в ВКонтакте.
По теме: методические разработки, презентации и конспекты
Конспект урока по теме "Событие, вероятность события"
Урок изучения нового материала, с элементами исследования. Цели урока: дать представление о теории вероятности, его истории возникновения; сформировать понятия события, видов событий, ...
Методические рекомендации к практическому занятию «Вычисление вероятности событий, связанных со случайной величиной, по заданному закону распределения этой величины»
Предлагается теория, разобран пример и даютсяф примеры для отработки навыков....
Методическое пособие для преподавателей по разделу "Случайные события" дисциплины "Терия вероятностей и математическая статистика"
Настоящее методическое пособие подготовлено по разделу «Случайные события» дисциплины ЕН.03 Теория вероятностей и математическая статистика. Методическое пособие полностью соответствует требованиям го...
21.03.2020г. гр.836 Решение задач на вычисление вероятности
Цель: формирование умений решать задачи, используя классическую формулу вероятности...
Понятия события и вероятности события. Достоверные и невозможные события
Понятия события и вероятности события. Достоверные и невозможные события...
Классическое определение вероятности, свойства вероятностей, теорема о сумме вероятностей
Практическая работа "Классическое определение вероятности, свойства вероятностей, теорема о сумме вероятностей"...
Решение практических задач на определение вероятности события
Практическая работа "Решение практических задач на определение вероятности события"...