Материал для проведения учебных занятий по дисциплине Электротехника. Уроки №№ 39-40,42.
план-конспект занятия на тему

Евдокимов Павел Евгеньевич

 

Материал для проведения учебных занятий  по дисциплине.

Уроки №№ 39-40,42.

 Для студентов, обучающихся специальности  150414    Монтаж и техническая эксплуатация холодильно-компрессорных  машин и установок

Скачать:

ВложениеРазмер
Microsoft Office document icon elektrotekhnika_-_uroki_394042.doc863.5 КБ

Предварительный просмотр:

Департамент образования города Москвы

Государственное образовательное учреждение

среднего профессионального образования

Технологический колледж №28

Евдокимов П.Е.

Материал для проведения учебных занятий  по дисциплине.

Уроки №№ 39-40,42.

 Для студентов, обучающихся специальности  150414    Монтаж и техническая эксплуатация холодильно-компрессорных  машин и установок

Москва

2011

«Электротехника».

Материал для проведения учебных занятий  по дисциплине.

Уроки №№ 39,40, 42.

 Для студентов, обучающихся специальности  150414    Монтаж и техническая эксплуатация холодильно-компрессорных  машин и установок

 ______________________________________________________________

Вниманию студентов, обучающихся по специальности 150414    Монтаж и техническая эксплуатация холодильно-компрессорных  машин и установок, предлагается теоретический материал по электротехнике для уроков и самостоятельного изучения. Студенты должны отработать данный материал, познакомиться с новинками в новых изданиях по холодильной промышленности и составить отчет по проделанной работе.

Автор: Евдокимов Павел Евгеньевич, преподаватель физики и электротехники.

Рецензент: Плотникова Ирина Анатольевна, преподаватель математики и физики.

Редактор: Малькова Людмила Алексеевна, зам. директора по учебно-методической работе.

Рукопись рассмотрена на заседании цикловой методической комиссии естественнонаучных дисциплин, протокол № 5 от 11 января 2011 г.

Урок №39

Выпрямители переменного напряжения.

Выпрямители используются в блоках питания радиоэлектронных устройств для преобразования переменного напряжения в постоянное. Схема любого выпрямителя содержит 3 основных элемента:

  • Силовой трансформатор – устройство для понижения или повышения напряжения питающей сети и гальванической развязки сети с аппаратурой.
  • Выпрямительный элемент (вентиль), имеющий одностороннюю проводимость – для преобразования переменного напряжения в пульсирующее.
  • Фильтр – для сглаживания пульсирующего напряжения.

Выпрямители могут быть классифицированы по ряду признаков:

  • по схеме выпрямления – однополупериодные, двухполупериодные, мостовые, с удвоением (умножением) напряжения, многофазные и др.
  • По типу выпрямительного элемента – ламповые(кенотронные), полупроводниковые, газотронные и др.
  • По величине выпрямленного напряжения – низкого напряжения и высокого.
  • По назначению –для питания анодных цепей, цепей экранирующих сеток, цепей управляющих сеток, коллекторных цепей транзисторов, для зарядки аккумуляторов и др.

Основные характеристики выпрямителей:

Основными характеристиками выпрямителей являются:

  • Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.
  • Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.
  • Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.
  • Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.
  • Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой-однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы и схемы удвоения напряжения дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.
  • Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различают коэффициент пульсаций на входе фильтра (p0 % ) и коэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.
  • Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.
  • Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

     Выпрямители, применяемые для однофазной бытовой сети выполняются по 4 основным схемам: однополупериодной, двухполупериодной с нулевой точкой(или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Греца”), и схема удвоения(умножения) напряжения(схема Латура). Для многофазных промышленных сетей применяются две разновидности схем:    Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей.

      Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

  • Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.
  • Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе(вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.
  • Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

Основные характеристики различных схем выпрямления.

Сравнение схем выпрямления и ориентировочный расчет выпрямителя можно сделать используя данные из таблицы.

 

Тип схемы

Uобр

I макс

2

2

*

P%

C0

Однополупериодная

3 U0

7 I 0

2 I 0

0,75U0

60 I 0/U0

600 I
¯¯¯¯¯¯
 
U0 *C0

1,2U0

Двухполупериодная

3 U0

3,5 I 0

I 0

0,75U0

30 I 0/U0

300 I0 
¯¯¯¯¯¯
 
U0 *C0

1,2U0

Мостовая

1,5 U0

3,5 I 0

1,41 I 0

0,75U0

30 I 0/U0

300 I0 
¯¯¯¯¯¯
 
U0 *C0

1.2U0

Удвоения напряжения

1,5 U0

7 I 0

2,8 I 0

0,38U0

125 I 0/U0

1250 I0 
¯¯¯¯¯¯
 
U0 *C0

0,6U0

* Значение емкости конденсатора рассчитано для                  P0 % = 10 %

Задавшись значением напряжения на выходе выпрямителя U0 и значением номинального тока в нагрузке(среднего значения выпрямленного тока) I 0, можно без труда определить напряжение вторичной обмотки трансформатора, ток во вторичной обмотке, максимально допустимый ток вентилей, обратное напряжение на вентилях, а также рабочее напряжение конденсатора фильтра. Задавшись необходимым коэффициентом пульсаций, можно рассчитать значение емкости на выходе выпрямителя.

Однополупериодный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

pow2_15odno

U2 - Напряжение на вторичной обмотке трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Как видно на осциллограммах напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт и напряжение в нагрузку подается только с заряженного в предыдущий полупериод конденсатора. При отсутствии конденсатора пульсации выпрямленного напряжения довольно значительны.

Недостатками такой схемы выпрямления являются: Высокий уровень пульсации выпрямленного напряжения, низкий КПД, значительно больший, чем в других схемах, вес трансформатора и нерациональное использование в трансформаторе меди и стали.

      Данная схема выпрямителя применяется крайне редко и только в тех случаях, когда выпрямитель используется для питания цепей с низким током потребления.

Двухполупериодный выпрямитель с нулевой точкой.

      Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

pow2_15dwuh

U2 - Напряжение на одной половине вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

В этом выпрямителе используются два вентиля, имеющие общую нагрузку и две одинаковые вторичные обмотки трансформатора(или одну со средней точкой).

Практически схема представляет собой два однополупериодных выпрямителя, имеющих два разных источника и общую нагрузку. В одном полупериоде переменного напряжения ток в нагрузку проходит с одной половины вторичной обмотки через один вентиль, в другом полупериоде - с другой половины обмотки, через другой вентиль.

Преимущество: Эта схема выпрямителя имеет в 2 раза меньше пульсации по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций может быть в 2 раза меньше.

Недостатки: Более сложная конструкция трансформатора и нерациональное использование в трансформаторе меди и стали.

Мостовая схема выпрямителя.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке

pow2_15most

U2 - Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Основная особенность данной схемы – использование одной обмотки трансформатора при выпрямлении обоих полупериодов переменного напряжения.

При выпрямлении положительного полупериода переменного напряжения ток проходит по следующей цепи: Верхний вывод вторичной обмотки – вентиль V2 – верхний вывод нагрузки – нагрузка - нижний вывод нагрузки - вентиль V3 – нижний вывод вторичной обмотки – обмотка.

При выпрямлении отрицательного полупериода переменного напряжения ток проходит по следующей цепи: Нижний вывод вторичной обмотки – вентиль V4 – верхний вывод нагрузки - нагрузка – нижний вывод нагрузки – вентиль V1 – верхний вывод вторичной обмотки – обмотка.

Как мы видим, в обоих случаях направление тока через нагрузку (выделено курсивом) одинаково.

Преимущества: По сравнению с однополупериодной схемой мостовая схема имеет в 2 раза меньший уровень пульсаций, более высокий КПД, более рациональное использование трансформатора и уменьшение его расчетной мощности. По сравнению с двух полупериодной схемой мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций. Обратное напряжение вентилей может быть значительно ниже, чем в первых двух схемах.

Недостатки: Увеличение числа вентилей и необходимость шунтирования вентилей для выравнивания обратного напряжения на каждом из них.

Эта схема выпрямителя наиболее часто применяется в самых различных устройствах. На основе этой схемы, при наличии среднего вывода с вторичной обмотки трансформатора можно получить еще два варианта схем выпрямления:

pow2_15komb2

На левой схеме отвод от средины вторичной обмотки позволяет получить еще одно напряжение, меньше основного в 2 раза. Таким образом основное напряжение получается с мостовой схемы выпрямления, дополнительное – с двух полупериодной.

На правой схеме получается двуполярное напряжение амплитудой в 2 раза меньше чем получаемое в основной схеме. Оба напряжения получаются с помощью двух полупериодных схем выпрямления.

Схема удвоения напряжения.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

pow2_15udw

U2 - Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Отличительной особенностью данной схемы является то, что в одном полупериоде переменного напряжения от вторичной обмотки трансформатора “заряжается” один конденсатор, а во втором полупериоде от той же обмотки– другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах ( на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем.

Преимущества: Вторичную обмотку трансформатора можно расчитывать на значительно меньшее напряжение.

Недостатки: Значительные токи через вентили выпрямителя, Уровень пульсаций значительно выше, чем в схемах двух полупериодных выпрямителей.

Эта же схема может использоваться еще в двух вариантах:

pow2_15komb

Левая схема предназначена для получения двух напряжений питания одной полярности, правая – для получения двуполярного напряжения с общей точкой.

Во втором варианте схемы характеристики выпрямителя соответствуют характеристикам однополупериодного выпрямителя.

Многофазные выпрямители.

Многофазные выпрямители применяются как правило только в промышленной и специальной аппаратуре.

Обычно в промышленной аппаратуре применяются трехфазные выпрямители двух типов – трехфазный выпрямитель и выпрямитель Ларионова.

Трехфазный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

pow2_15treh

ФА, ФС, ФВ – напряжения на вторичных обмотках трехфазного трансформатора.

U va Uvb Uvc напряжение на нагрузке получаемое с соответствующего вентиля.

Uн – Суммарное напряжение на нагрузке.

Выпрямитель представляет собой однополупериодный выпрямитель для каждой из трех фазных вторичных обмоток. Все три вентиля имеют общую нагрузку.

Если рассмотреть осциллограммы напряжения на нагрузке при отключенном конденсаторе для каждой из трех фаз, то можно заметить, что напряжение на нагрузке имеет такой же уровень пульсаций как и в схеме однополупериодного выпрямления. Сдвиг фаз(т.е. сдвиг по времени) напряжений выпрямителей между собой в результате даст в 3 раза меньший уровень пульсаций, чем в однофазной однополупериодной схеме выпрямления.

Достоинства: Низкий уровень пульсаций выпрямленного напряжения.

Недостатки: Так же как и в однофазной однополупериодной схеме выпрямления низкий КПД, нерациональное использование трансформатора. Данный выпрямитель неприменим для обычной однофазной сети.

Схема Ларионова.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

pow2_15lar

Этот выпрямитель представляет собой мостовые выпрямители для каждой пары трехфазных обмоток, работающие на общую нагрузку. Соединяя в себе достоинства мостового выпрямителя и трехфазного питания, он имеет настолько низкий уровень пульсаций, что позволяет работать почти без сглаживающего конденсатора или с небольшой его емкостью.

Недостатки: Увеличенное количество вентилей. Выпрямитель также не может быть применен для работы в однофазной бытовой сети.

Выпрямители для безтрансформаторного питания аппаратуры.

Безтрансформаторные выпрямители являются простейшими неавтономными источниками постоянного тока. Они применяются при напряжениях близких к напряжению сети или превышающих его в 1,5 – 2,5 раза и токах до нескольких десятков миллиампер.

Ограниченное применение безтрансформаторных выпрямителей объясняется в первую очередь требованиями техники безопасности, так как оба полюса выпрямленного напряжения гальванически связаны с сетью. Второй недостаток таких выпрямителей – отсутствие гибкости при выборе выпрямленного напряжения. Для радиоаппаратуры можно использовать в качестве безтрансформаторных выпрямители: Однополупериодный, мостовой, удвоения напряжения. Основные характеристики такие же как и в случае с трансформаторным питанием. Сетевое напряжение подключают к точкам подключения вторичных обмоток трансформаторов(вместо трансформатора).

Безтрансформаторные схемы опасны для использования!

Для питания малогабаритной портативной аппаратуры с токами до 15-20 миллиампер можно применять однополупериодные или мостовые схемы с гасящими конденсаторами.

В этой схеме конденсатор Сгас выполняет роль “безваттного” реактивного сопротивления, образующий с активным сопротивлением нагрузки своеобразный делитель напряжения.

pow2_15gas

Реактивное сопротивление гасящего конденсатора указано в формуле.

Данная схема может найти применение для заряда малогабаритных аккумуляторов радиоприемников, радиостанций и радиотелефонов.

При конструировании и эксплуатации выпрямителя также необходимо соблюдать осторожность!

Некоторые рекомендации по работе с выпрямителями.

Вторичные обмотки трансформаторов необходимо всегда защищать плавкими предохранителями. В этом случае короткое замыкание в цепи нагрузки не приведет к таким последствиям как выход из строя трансформатора и тем более не приведет к возгоранию аппаратуры.

Часто при конструировании выпрямителей оказывается, что нет нужных вентилей(диодов) или конденсаторов.с нужными характеристиками. В таком случае можно применить параллельное или последовательное соединение вентилей или конденсаторов.

Что при этом нужно помнить?

Если имеющиеся вентили (диоды) по допустимому току меньше расчетного максимального тока, можно применить параллельное соединение таких диодов, умножив их допустимый ток на количество диодов в “связке”.

В случае, если допустимое обратное напряжение вентилей (диодов) меньше рассчитанного значения, можно применить их последовательное соединение, включив параллельно каждому диоду шунтирующие резисторы, которые выровняют обратное напряжение между диодами. Величину сопротивления шунта рассчитывают по формуле:

Rш = 700 * Uобр / N для диодов с Uобр меньше 200 В и Iмакс = 1 – 10 Ампер

Или

Rш = 150 * Uобр / N для диодов с Uобр более 200 В и Iмакс менее 0,3 Ампер

В случае если емкость конденсатора меньше расчетной, можно применить параллельное включение нескольких конденсаторов, имеющих рабочее напряжение не меньше расчетного.

В случае, если рабочее напряжение конденсаторов меньше допустимого для конкретной схемы, можно применить последовательное включение конденсаторов, не забывая, что общая емкость в этом случае уменьшится во столько раз, сколько конденсаторов будет включено в последовательную цепь.

Такую схему применять можно только в крайнем случае, поскольку в такой схеме пробой(короткое замыкание) одного конденсатора вызовет “цепную реакцию”, так как на оставшиеся в работе конденсаторы будет приложено большее напряжение, чем было до замыкания одного из них. Шунтирование конденсаторов резисторами в этом случае не спасает аппаратуру от последовательного выхода из строя конденсаторов во всей цепочке. Лучше применить последовательное соединение нескольких выпрямителей, рассчитанных на более низкое напряжение. Тогда при пробое одного из конденсаторов выходное напряжение просто снизится.

Урок №40

Трёхфазный выпрямитель "три четвертьмоста параллельно" (Миткевича В. Ф.)

Схема трёхфазного ртутного выпрямителя по схеме В.Ф.Миткевича приведена в [6].

150px-Half-wave_rectifier3

Три четвертьмоста параллельно (Миткевича В. Ф.)

150px-Waveform_halfwave_rectifier3

magnify-clip

Вид ЭДС на входе (точками) и на выходе (сплошной).

(«Частично трёхполупериодный с нулевым выводом»). Площадь под интегральной кривой равна:

S = 6\cdot \int\limits_{\pi/6}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) = 6 \frac{\sqrt3}{2}\cdot E_m = 3 \cdot \sqrt3 \cdot E_m, где E_m=\sqrt 2\cdot E_2eff, — максимальное (наибольшее) мгновенное значение ЭДСE_2eff\,\! — эффективное (действующее) значение ЭДС вторичной обмотки трансформатора или генератора.

Средняя ЭДС равна: Esr=\frac{3 \cdot \sqrt3 \cdot E_m}{2\cdot \pi}=0,83 \cdot E_m=1,17 \cdot E_2eff.\,\!

На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода эдс обратносмещает (закрывает) диоды в ветви с меньшей на данном отрезке периода ЭДС. Эквивалентное активное сопротивление при этом равно сопротивлению одной ветви 3\cdot r.\,\! При увеличении нагрузки (уменьшении Rn\,\!) появляются и увеличиваются отрезки периода на которых обе ветви работают на одну нагрузку параллельно. Эквивалентное внутреннее активное сопротивление на этих отрезках равно 3\cdot r/2.\,\! В режиме короткого замыкания эти отрезки максимальны, но полезная мощность в этом режиме равна нулю.

Отрицательные полупериоды в выпрямителе Миткевича не используются. Из-за этого выпрямитель Миткевича имеет очень низкий коэффициент использования габаритной мощности трансформатора и применяется при малых мощностях.

Частота пульсаций равна 3\cdot f\,\!, где f\,\! — частота сети.
Абсолютная амплитуда пульсаций равна 
0,5 \cdot E_m.
Относительная амплитуда пульсаций равна 
0,5/0,83=0,6 (60%)\!.

Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно)

Трёхфазный выпрямитель "три полумоста параллельно, объединённые кольцом (треугольником)" («треугольник-Ларионов»).

Treugolnik-Larionov.jpg

Вид ЭДС на входе (точками) и на выходе (сплошной).

В некоторой электротехнической литературе иногда не различают схемы «треугольник-Ларионов» и «звезда-Ларионов», которые имеют разные значения среднего выпрямленного напряжения, максимального тока, эквивалентного активного внутреннего сопротивления и др.

В выпрямителе "треугольник-Ларионов" потери в меди больше, чем в выпрямителе "звезда-Ларионов", поэтому на практике чаще применяется схема "звезда-Ларионов".

Кроме этого, выпрямители Ларионова А. Н. часто называют мостовыми, на самом деле они являются полумостовыми параллельными.

В некоторой литературе выпрямители Ларионова и подобные называют «полноволновыми» (англ. full wave), на самом деле полноволновыми являются выпрямитель «три последовательных моста» и подобные.


Площадь под интегральной кривой равна:

S = 12\cdot \int\limits_{\pi/3}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) = 12 \cdot \frac {1}{2}\cdot E_m=6\cdot E_m.

Средняя ЭДС равна: Esr=\frac{6\cdot E_m}{2\cdot \pi}=\frac{3\cdot E_m}{\pi}=0,95 \cdot E_m=1,35 \cdot E_2eff\!, то есть больше, чем в выпрямителе Миткевича.

В работе схемы «треугольник-Ларионов» есть два периода. Большой период равен 360° (2\cdot \pi). Малый период равен 60° (\ \pi/3), и повторяется внутри большого 6 раз. Малый период состоит из двух малых полупериодов по 30° (\ \pi/6), которые зеркально симметричны и поэтому достаточно разобрать работу схемы на одном малом полупериоде в 30°.

На холостом ходу и в режимах близких к нему ЭДС в ветви с наибольшей на данном отрезке периода обратно смещает (закрывает) диоды с меньшими на данном отрезке периода ЭДС.

В начальный момент (w\cdot t = 0) ЭДС в одной из ветвей равна нулю, а ЭДС в двух других ветвях равны 0,87*Em, при этом открыты два верхних диода и один нижний диод. Эквивалентная схема представляет собой две параллельные ветви с одинаковыми ЭДС (0,87) и одинаковыми сопротивлениями по 3*r каждое, эквивалентное сопротивление обеих ветвей равно 3*r/2. Далее, на малом полупериоде, одна из двух ЭДС, равных 0,87, растёт до 1,0, другая уменьшается до 0,5, а третья растёт от 0,0 до 0,5. Один из двух открытых верхних диодов закрывается, и эквивалентная схема становится параллельным включением двух ветвей, в одной из которых бо́льшая ЭДС и её сопротивление равно 3*r, в другой ветви образуется последовательное включение двух меньших ЭДС, и её сопротивление равно 2*3*r=6*r, эквивалентное сопротивление обеих ветвей равно

3\cdot r\cdot 6\cdot r/(3\cdot r+6\cdot r)=18\cdot r^2/(9\cdot r)=2\cdot r.\,\!

Частота пульсаций равна 6\cdot f\,\!, где f\,\! — частота сети.
Абсолютная амплитуда пульсаций равна 
(1-\frac{\sqrt3}{2}) \cdot E_m=(1-0,87) \cdot E_m=0,13 \cdot E_m.
Относительная амплитуда пульсаций равна 
0,13/0,95=0,14 (14%)\!.

Трёхфазный выпрямитель "три полумоста параллельно, объединённые звездой" («звезда-Ларионова»)

150px-Full-wave_rectifier3

Три полумоста параллельно, объединённые звездой («звезда-Ларионов»).

Zwezda-Larionow.jpg

Выпрямитель звезда-Ларионов (шестипульсный) применяется в генераторах электроснабжения бортовой сети почти на всех средствах транспорта (автотракторных, водных, подводных, воздушных и др.). В электроприводе дизель - электровозов и дизель - электроходов почти вся мощность проходит через выпрямитель звезда-Ларионов.

Площадь под интегральной кривой равна:

S = 12\cdot (\int\limits_{\pi/3}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) + \int\limits_{\pi/6}^{\pi/3} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t)) =
= 12\cdot \frac{\sqrt 3}{2}\cdot E_m = 6\cdot \sqrt 3\cdot E_m.

Средняя ЭДС равна: Esr=\frac{6\cdot \sqrt 3\cdot E_m}{2\cdot \pi}=\frac{3\cdot \sqrt 3\cdot E_m}{\pi}=1,65 \cdot E_m=2,34 \cdot E_2eff\!, то есть в \sqrt 3 раз больше, чем в схемах «треугольник-Ларионов» и «три параллельных полных моста» и вдвое больше, чем в схеме Миткевича.

В этом выпрямителе есть большой период равный 360° и малый период, равный 60°. В большом периоде помещаются 6 малых периодов. Малый период в 60° состоит из двух зеркально симметричных частей по 30°, поэтому для описания работы этой схемы достаточно разобрать её работу на одной части в 30° малого периода. В начале малого периода (w\cdot t = 0) ЭДС в одной из ветвей равна нулю, в двух других — по 0,87*Em. Эти две ветви включены последовательно. Эквивалентное внутреннее активное сопротивление при этом равно 6\cdot r.\,\! Далее, одна из ЭДС увеличивается от 0,87 до 1,0, другая уменьшается от 0,87 до 0,5, а третья растёт от 0,0 до 0,5. Эквивалентная схема при этом изменяется и представляет собой две последовательно включенные ветви, в одной из которых одна ЭДС и её сопротивление равно сопротивлению одной обмотки 3*r, в другой две параллельно включенные ЭДС с сопротивлением 3*r каждая, эквивалентное сопротивление двух параллельных ветвей равно 3*r/2. Эквивалентное активное внутреннее сопротивление всей цепи равно 3\cdot r/2+3\cdot r=9\cdot r/2=4,5\cdot r.\,\!. В режимах близких к холостому ходу (при малых нагрузках) в параллельных ветвях э.д.с. в ветви с большей э.д.с. обратно смещает (закрывает) диод в ветви с меньшей э.д.с., при этом изменяется эквивалентная схема. При увеличении нагрузки появляются и увеличиваются отрезки периода на которых обе ветви работают на нагрузку параллельно. В режиме короткого замыкания отрезки параллельной работы увеличиваются до длины всего периода, но полезная мощность в этом режиме равна нулю.

Частота пульсаций равна 6\cdot f\,\!, где f\,\! — частота сети.
Абсолютная амплитуда пульсаций равна 
(\sqrt3-1,5) \cdot E_m=(1,73-1,5) \cdot E_m=0,23 \cdot E_m.
Относительная амплитуда пульсаций равна 
0,23/1,65=0,14 (14%)\!.

Трёхфазный выпрямитель "три двухфазных двух четверть мостовых параллельных выпрямителей Миткевича параллельно" (6 диодов)

Shestifaznyi.jpg

В литературе иногда называют «шестифазный»  -  является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.

Площадь под интегральной кривой равна:

S = 12\cdot \int\limits_{\pi/3}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) = 12\cdot \frac{1}{2}\cdot E_m = 6\cdot E_m.

Средняя ЭДС равна: Esr=\frac {6\cdot E_m}{2\cdot \pi}=\frac {3\cdot E_m}{\pi}=0,95 \cdot E_m=1,35 \cdot E_2eff, то есть такая же, как и в схеме «треугольник-Ларионов» и в \sqrt 3 раз меньше, чем в схеме «звезда-Ларионов».

Трёхфазный выпрямитель "три двухфазных двух четверть мостовых параллельных выпрямителей Миткевича последовательно" (6 диодов)

Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.

Трёхфазный выпрямитель "три полных моста параллельно" (12 диодов)

Tri mosta.jpg

Тримоста.jpg

Tri parallelnyh mosta.jpg

200px-Waveform_fullwave_rectifier3

magnify-clip

Вид ЭДС на входе (точками) и на выходе (сплошной).

Менее известны полно мостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А. Н.. По схемам выпрямителей можно видеть, что выпрямитель          Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А. Н., а выпрямитель Ларионова А. Н. является «недостроенным» выпрямителем «три параллельных моста».

Площадь под интегральной кривой равна:

S = 12\cdot \int\limits_{\pi/3}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) = 12\cdot \frac{1}{2}\cdot E_m = 6\cdot E_m.

Средняя ЭДС равна: Esr=\frac{6 \cdot E_m}{2\cdot \pi}=\frac{3\cdot E_m}{\pi}=0,95 \cdot E_m=1,35 \cdot E_2eff\!, то есть такая же, как и в схеме «треугольник-Ларионов» и в \sqrt 3 раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратно смещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно активному сопротивлению одного моста (одной обмотки) 3\cdot r.\,\! При увеличении нагрузки (уменьшении Rn\,\!) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов 3\cdot r/2=1,5\cdot r.\,\! При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов r.\,\! В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель "три параллельных моста" имеет большую надёжность, чем выпрямитель "звезда-Ларионов". При обрыве (выгорании) 5/6 диодов выпрямитель "звезда-Ларионов" становится полностью неработоспособным, а выпрямитель "три параллельных моста", в случае оставшихся диодов в противоположных плечах одного моста, ещё даёт около 1/6 от полной мощности, чего может хватить, чтобы "дотянуть" до ремонта. В выпрямителе "три параллельных полных моста" средний ток через один диод почти вдвое меньше, чем в выпрямителе "звезда-Ларионов", а такие диоды дешевле и доступнее.
Недостатки.
1. При очень малых токах нагрузки эквивалентное внутреннее активное сопротивление почти равно активному сопротивлению одной обмотки, т.е. больше, чем в выпрямителе "треугольник-Ларионов".
Устранение недостатка. При очень малых токах нагрузки схему "три параллельных моста" можно переключать на схему "треугольник-Ларионов" переключателем с тремя замыкающими контактными группами.
2. Из-за четырёх проводной трёхфазной сети выпрямитель "три параллельных моста" может работать только вблизи трансформатора, выпрямитель Ларионова - на удалении от трансформатора.
Устранение недостатка. Проводка шести проводной линии электропередачи.

Частота пульсаций равна 6\cdot f\,\!, где f\,\! — частота сети.

Абсолютная амплитуда пульсаций равна (1-\frac{\sqrt3}{2}) \cdot E_m=(1-0,87) \cdot E_m=0,13 \cdot E_m.
Относительная амплитуда пульсаций равна 
0,13/0,95=0,14 (14%)\!.

Трёхфазный выпрямитель "три полных моста последовательно" (12 диодов)

Tri posledowatelnyh mosta.jpg

Площадь под  интегральной кривой равна:

S = 12\cdot (\int\limits_0^{\pi/6} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) + \int\limits_{\pi/6}^{\pi/3} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t) + \int\limits_{\pi/3}^{\pi/2} E_m\cdot sin(\omega\cdot t) d(\omega\cdot t)) =
= 12\cdot (1-\frac{\sqrt 3}{2}+\frac{\sqrt 3}{2}-\frac{1}{2}+\frac{1}{2})\cdot E_m = 12\cdot E_m.

Средняя ЭДС равна: Esr=\frac{12\cdot E_m}{2\cdot \pi}=\frac{6\cdot E_m}{\pi}=1,91 \cdot E_m=2,7 \cdot E_2eff\!, то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть 9\cdot r\,\!.

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна 6\cdot f\,\!, где f\,\! — частота сети.
Абсолютная амплитуда пульсаций равна 
(2-\sqrt3)\cdot E_m=(2-1,73)\cdot E_m=0,27\cdot E_m.
Относительная амплитуда пульсаций равна 
0,27/1,91=0,14 (14%)\!.

Этот выпрямитель имеет наибольшую среднюю ЭДС и может найти применение в высоковольтных источниках напряжения (в установках электростатической очистки промышленных газов (электростатический фильтр) и др.).[5]

Двенадцати импульсный статический трёхфазный выпрямитель

Представляет собой параллельное (или иногда последовательное) включение двух выпрямителей Ларионова со сдвигом фаз входных трёхфазных токов. При этом вдвое увеличивается число выпрямленных полупериодов по сравнению с обычным выпрямителем Ларионова из-за чего уменьшается относительная амплитуда пульсаций выпрямленного напряжения и вдвое увеличивается частота пульсаций выпрямленного напряжения, что также облегчает сглаживание выпрямленного напряжения.[7]

Трёхфазные выпрямители "шесть мостов" (24 диода)

Шесть мостов.jpg

200px-6parallmostow

График ЭДС (зелёный) на выходе выпрямителя "шесть параллельных мостов".

Ещё менее известны трёхфазные выпрямители "шесть мостов параллельно" и "шесть мостов последовательно". Они состоят из двух трёхфазных трансформаторов. Первичные обмотки одного из них включаются звездой, другого - треугольником, что создаёт сдвиг фаз в 30°. Шесть вторичных обмоток подключаются к шести мостам (двадцать четыре диода). Мосты могут включаться разными способами, один из них - параллельное включение всех шести мостов. Из-за малых пульсаций выпрямитель по этой схеме соизмерим по массе стали и меди с выпрямителем "три параллельных моста" с дросселем фильтра, сглаживающим пульсации до такого же уровня. Эти выпрямители полно мостовые. Они также как и выпрямитель "три параллельных моста" по многим параметрам превосходят и выпрямитель Миткевича и выпрямитель Ларионова. При этом требуются диоды со средним током через один диод почти вчетверо меньшим, чем в схеме Ларионова, и вдвое меньшим, чем в схеме "три параллельных полных моста". Эта схема позволяет построить выпрямитель большой мощности на элементах малой мощности.

Трёхфазный выпрямитель "шесть мостов последовательно" может найти применение в источниках высокого напряжения большой мощности, например, в блоках питания промышленных установок электростатической очистки газов.

Понятие о тиристоре. Виды тиристоров. Принцип действия

1.1. Определение, виды тиристоров

Тиристором называют полупроводниковый прибор, основу которого составляет четырехслойная структура, способная переключаться из закрытого состояния в открытое и наоборот. Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открыт-закрыт (управляемый диод).

Простейшим тиристором является динистор – неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рис. 1.1.2). Здесь, как и у других типов тиристоров, крайние n-p-n-переходы называются эмиттерными, а средний p-n-переход – коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью – анодом.

В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами (симисторы).

image001

Рис. 1.1.1. Обозначения на схемах: а) симистора б) динистора в) тринистора.

 image003

Рис. 1.1.2. Структура динистора.

image005

Рис. 1.1.3. Структура тринистора.

1.2. Принцип действия

При включении динистора по схеме, приведенной на рис. 1.2.1, коллекторный p-n-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на рис. 1.2.3).

image007image009

Рис. 1.2.1. Схема включения в цепь неуправляемого тиристора (динистора).

Рис. 1.2.2. Схема включения в цепь управляемого тиристора (тринистора).

image011image013

Рис.1.2.3. Вольтамперная характеристика динистора.

Рис.1.2.4. Вольтамперная характеристика тиристора.

Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рис. 1.2.3). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области - избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.

При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может быть снижено введением не основных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uупр). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. На практике при использовании термина «тиристор» подразумевается именно элемент. Схема включения такого тиристора показана на рис. 1.2.2. Возможность снижения напряжения U при росте тока управления, показывает семейство ВАХ (рис. 1.2.4).

Если к тиристору приложить напряжение питания, противоположной полярности (рис. 1.2.4), то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой тиристора.

1.3. Параметры тиристоров

1. Напряжение включения (Uвкл) – это такое напряжение, при котором тиристор переходит в открытое состояние.

2. Повторяющееся импульсное обратное напряжение (Uo6p.max ) - это напряжение, при котором наступает электрический пробой. Для большинства тиристоров Uвкл = Uo6p.max.

3. Максимально допустимый прямой, средний за период ток.

4. Прямое падение напряжения на открытом тиристоре (Unp = 0,5÷1В).

5. Обратный максимальный ток – это ток, обусловленный движением неосновных носителей при приложении напряжения обратной полярности.

6. Ток удержания – это анодный ток, при котором тиристор закрывается.

7. Время отключения – это время, в течение которого закрывается тиристор.

8. Предельная скорость нарастания анодного токаimage015Если анодный ток будет быстро нарастать, то p-n переходы будут загружаться током неравномерно, вследствие чего будет происходить местный перегрев и тепловой пробой .

9.   Предельная скорость нарастания анодного напряжения image017Если предельная скорость нарастания анодного напряжения будет больше паспортной, тиристор может самопроизвольно открыться от электромагнитной помехи.

10. Управляющий ток отпирания – это ток, который необходимо подать, чтобы тиристор открылся без «колена».

11. Управляющее напряжение отпирания – это напряжение, которое необходимо подать, чтобы тиристор открылся без «колена».

Глава 2. Применение тиристоров в регуляторах мощности

2.1. Общие сведения о различных регуляторах

Тиристоры имеют широкий диапазон применений (регуляторы мощности, управляемые выпрямители, генераторы импульсов и др.), выпускаются с рабочими токами от долей ампера до тысяч ампер и с напряжениями включения от единиц до тысяч вольт.

Регулировка выходного напряжения выпрямителя может осуществляться разными способами. Регулируемый трансформатор или автотрансформатор, включенный в схему выпрямителя, дает возможность изменять амплитуду переменного напряжения, подводимого к вентилям, и тем самым устанавливать желаемое выпрямленное напряжение.

Однако такие трансформаторы громоздки и имеют малую надежность из-за переключаемых или скользящих контактов.

Регулировка постоянного напряжения на нагрузке, достигаемая делителем напряжения или реостатом, включенным между выходом выпрямителя и нагрузкой, связана с большими потерями мощности.

2.2. Процесс управления напряжением при помощи тиристора

Свободным от недостатков методов, перечисленных в 2.2, является метод, основанный на управлении вентилями выпрямителя. В качестве управляемых вентилей в настоящее время широко применяют тиристоры.

Моментом включения тиристора можно управлять подавая управляющий импульс тока на n-р-переход, прилегающий к катоду.

При прохождении тока нагрузки через открытый тиристор все три его n-р-перехода смещены в прямом направлении, и управляющий электрод перестает влиять на процессы, происходящие в тиристоре. При спадании прямого тока тиристора до нуля после рассасывания заряда неосновных носителей в базовых областях тиристор запирается, и управляющие свойства восстанавливаются.

image019

Рис. 2.1.1. Схема включения тиристора.

image021

Рис. 2.1.2. Вольтамперная характеристика тиристора.

В схеме, содержащей источник питания Е, тиристор VS и резистор нагрузки R (рис. 2.1.1), возможны два устойчивых состояния, одно из которых соответствует открытому, а второе – закрытому тиристору. Наложение характеристики цепи резистор-источник на характеристики тиристора (рис. 2.1.2) позволяет получить прямые токи отключенного (точка А) и включенного (точка В) тиристора. Повышение напряжения источника от 0 до E при Iу=0 вызывает перемещение рабочей точки по нижней ветви характеристики до точки А. Если подать управляющий импульс тока амплитудой и длительностью, достаточной для поддержания этого тока на время открывания тиристора, то рабочая точка перейдет в точку, соответствующую открытому состоянию тиристора.

image023

Рис.2.1.3. Наложение характеристики цепи резистор-источник на характеристики тиристора.

Спад открывающего импульса тока в цепи управления не влияет на процессы в открытом тиристоре, его рабочая точка остается в положении В. Восстановление управляющих свойств тиристора произойдет лишь при его обесточивании на время, большее времени его закрывания.

В открытом состоянии тиристор пропускает очень большие токи (до нескольких сотен ампер) и оказывает им малое сопротивление. В этом его преимущество. Применяя тиристоры, следует иметь в виду, что скачкообразное изменение сопротивления в момент открывания может привести к очень большим броскам тока. Особенно велики эти броски в тех схемах, где нагрузка R шунтируется конденсатором.

Зарядка конденсатора через открывшийся тиристор может вывести последний из строя. Поэтому для уменьшения бросков тока последовательно с тиристором включают дроссель.

2.3. Управляемый выпрямитель на тиристоре

В выпрямительных схемах тиристоры лучше работают при активной нагрузке или при нагрузке, начинающейся с индуктивного элемента.

В управляемый выпрямитель тиристор вводят как обычный вентиль, а к его управляющему электроду подводят от цепи управления (ЦУ) импульсы, включающие тиристоры с запаздыванием на угол a относительно выпрямляемого напряжения (рис. 2.1.3).

Через тиристор VS1, включающийся в момент, соответствующий   wt =a на выход выпрямителя передается напряжение первой фазы вторичной обмотки e21. При wt=p напряжение e21 становится отрицательным, однако тиристор запереться не может, так как это привело бы к обрыву тока, проходящего через дроссель L. Индуктивность дросселя L выбирают большей критической, чем и поддерживают непрерывный ток. Поэтому в те моменты, когда e21 отрицательно, на дросселе L наводится ЭДС самоиндукции с полярностью и значением, обеспечивающими напряжение на катоде, меньше e21.

При wt=p+a открывается тиристор VS2, через который на выход передается напряжение e22, являющееся на данном этапе положительным. Ток дросселя переходит на вторую фазу, а тиристор VS1 оказавшись обесточенным и смещенным в обратном направлении, запирается и т. д. Таким образом, напряжение на выходе выпрямителя e0 создается лишь теми частями напряжений вторичных полуобмоток E21 и E22, которые соответствуют открытому состоянию тиристоров.

image025 

Рис.2.1.4. Схема регулировки выпрямления напряжения.

Напряжение на нагрузке, получающееся почти равным постоянной составляющей напряжения e0, подводимого к фильтру LС, растет при уменьшении угла a и спадает при его увеличении. Регулировка выпрямленного напряжения, достигаемая изменением фазы управляющих импульсов, не связана с гашением избытка мощности в самом регулируемом выпрямителе, что является основным его преимуществом.

Схемы выпрямления с тиристорами такие же, как обычных выпрямителей. Основное внимание далее уделяется двухфазным схемам выпрямителей.

Для простоты полагаем падение напряжения на открытом тиристоре много меньшим (рис. 2.1.4.) выпрямленного напряжения, а токи утечки (прямой ток при закрытом тиристоре и обратный ток при отрицательном напряжении) – малыми по сравнению с током нагрузки. Это позволит считать тиристор идеальным (прямое падение напряжения в режиме насыщения, прямой и обратный токи утечки, а также ток отключения в нем равны нулю). Такие упрощения не приведут к большой погрешности, так как ток через вентиль схемы определяется сопротивлением нагрузки, а не фазы. По этой же причине можем считать идеальными дроссель L и трансформатор, т. е. пренебречь индуктивностью рассеяния и активными сопротивлениями их обмоток.

(2.1.1)

(3.5)

Сначала рассмотрим одну первую фазу регулируемого выпрямителя (рис. 2.1.4). Нагрузку выпрямителя полагаем состоящей из дросселя L и конденсатора С, образующих фильтр, и активной нагрузки R, а выходное напряжение - постоянным и равным  е0. Исходя из графика

image027


(рис. 2.1.3) запишем

(2.1.1)


Здесь принято, что в силу идеальности трансформатора и вентиля напряжение e0 совпадает с ЭДС первой фазы трансформатора e21 в интервале

a

e0=e21              (2.1.3.)

Падение напряжения на дросселе L равно разности напряжений e21 и E0, и, следовательно, его ток

image029


(2.1.4)


(2.1.5)

image031


Постоянную интегрирования определим из условия баланса постоянных токов. Среднее значение тока i
L на интервале α¸p+a должно быть равно току нагрузки. Подставив найденное таким образом значение C, получим

Выпрямленное напряжение получается, если тиристор каждой из фаз открыт до тех пор, пока не вступит в работу следующая фаза. Однако это верно лишь в том случае, когда ток дросселя к моменту открывания вентиля следующей фазы положителен и напряжение, получаемое в момент включения с включающейся фазы, больше напряжения на конденсаторе. Последнее условие выполняется при α> 32,5°, что обеспечивает рост тока дросселя сразу после включения тиристора.

(2.1.6)

image033


Подставив в wt=p+a  запишем это условие в виде

(2.1.7)

 

image035


Так как е0 определяется выражением, условие непрерывности тока в дросселе можно записать иначе:

(2.1.8)

image037


Оно и должно выполняться для углов a> 32,5°. Если индуктивность дросселя L- меньше L
кр, где

(2.1.9)

image039


или сопротивление нагрузки выпрямителя больше R
max где

то ток в дросселе станет равным нулю раньше, чем откроется тиристор второй фазы. Как только ток станет равным нулю, тиристор обесточится и выключится. Такой режим не очень выгоден, так как связан с большими переменными составляющими токов тиристоров и обмоток трансформатора. Поэтому чаще всего индуктивность дросселя L выбирают такой, чтобы при максимально возможном сопротивлении нагрузки удовлетворялось условие непрерывности тока.

image041

(2.1.10)

В режиме непрерывного тока дросселя ток фазы приближается по форме к прямоугольной (рис. 2.1.5,а,б ). Его действующее значение без учета пульсаций

Действующее значение тока первичной обмотки, в которую трансформируются, не перекрываясь во времени, токи двух фаз, получается  вimage043 раз больше, чем ток nlr, т. е.

(2.1.11)

image045


image047

Рис. 2.1.5. Ток дросселя.

По форме ток первичной обмотки в каждый из полупериодов повторяет ток фазы, равный току iL (рис. 2.1.5, в). Первая гармоника этого тока при малых пульсациях сдвинута на угол α. относительно напряжения на первичной обмотке.

Таким образом, при        тиристорный выпрямитель потребляет от сети не только активный, но и реактивный ток. Это является недостатком такого выпрямителя.

Полный перепад пульсаций на выходном конденсаторе С найдем так же, как и при исследовании неуправляемого выпрямителя. В результате получим выражение:

image051


(2.1.12)


Здесь коэффициент D(a) является функцией угла a.

Подводя итог, отметим следующие особенности схемы тиристорного регулируемого выпрямителя:

1)снижение выходного напряжения в тиристорном выпрямителе достигается благодаря уменьшению отбора мощности от сети переменного тока; оно не связано с гашением значительной ее части в выпрямителе;

2)при регулировке выпрямитель потребляет не только активную, но и реактивную мощностью сети переменного тока;

3)при изменении угла регулирования a от 0 до 0,5p выходное напряжение меняется от максимума до 0;

4)пульсация выпрямленного напряжения заметно возрастает с ростом угла регулирования;

(2.1.13)

image053


5)режим непрерывного тока в дросселе нарушается, если не соблюдается отношение.

Глава 3. Практические разработки регуляторов мощности на тиристорах

3.1. Регулятор напряжения на тиристоре КУ201К

Устройство, схема которого приведена на рисунке, можно использовать для регулировки напряжения на нагрузке активного и индуктивного характера, питаемой от сети переменного тока напряжением 127 и 220 В. Напряжение на нагрузке можно менять от нуля до номинального напряжения сети.

image054

Рис. 3.1.1. Принципиальная схема регулятора напряжения.

Тиристор VS1, включенный в диагональ моста, составленного из диодов VD1—VD4 играет роль управляемого ключа, который открывается при разряде конденсатора С1 через ограничительный резистор R2 и управляющий переход тиристора при включении переключающего диода VD 6. Напряжение, при котором тиристор включается, можно регулировать потенциометром R1. Вместо переключающего диода VD6 можно использовать стабилитрон, но в этом случае уменьшается диапазон регулировки напряжения на нагрузке.

3.2. Мощный управляемый выпрямитель на тиристорах

На первых двух рисунках изображены варианты выпрямителей на тиристорах, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 в (рис. 3.2.1) и от 0,5 до 15 в (рис. 3.2.2).

В течение одного полупериода к аноду тиристора приложено положительное относительно катода напряжение.

image056

Рис. 3.2.1. Принципиальная схема выпрямителя №1.

Пока на управляющий электрод не подан положительный сигнал определенной амплитуды со схемы запуска, тиристор не пропускает ток в прямом направлении. Через некоторый произвольный угол задержки α между напряжениями на управляющем электроде и катоде прикладывается положительный запускающий сигнал, вызывающий протекание тока через тиристор и соответственно через нагрузку. При перемене полярности напряжения на аноде тиристора последний закрывается независимо от величины управляющего напряжения, при этом аналогично рассмотренному ранее начинает работать другое плечо схемы. Регулируя угол задержки включения а по отношению к приложенному напряжению, можно изменять соотношение фаз начала протекания тока и приложенного напряжения и регулировать величину среднего значения выпрямленного тока (напряжения) нагрузки от максимума (α = 0) до нуля (α = π). 
Угол задержки включения тиристоров Д1 и Д4 изменяется потенциометром R1. Диоды Д3 защищают цени управления (запуска) от отрицательного напряжения в то время, когда напряжение на анодах тиристоров отрицательное. Для получения широких пределов регулировки α (0 — π) применены RC - цепи.

В выпрямителе (рис.3.2.2) тиристор и схема запуска работают как в положительный, так и в отрицательный полупериоды, время разряда конденсаторов сокращается, что приводит к уменьшению диапазона изменения угла а и, соответственно, к уменьшению пределов регулирования напряжения на нагрузке. Для устранения этого явления включен диод Д3.

image058

Рис. 3.2.2. Принципиальная схема выпрямителя№2.

Тиристоры для выпрямителя (рис. 3.2.1) желательно выбирать с близким значением сопротивления участка управляющий электрод — катод. Если не удается подобрать одинаковые тиристоры, то схему можно симметрировать с помощью дополнительного сопротивления. Для этого включают эквивалент нагрузки и изменением величины сопротивления потенциометра R1 устанавливают максимальный ток. Поочередно отключая цепи управления тиристоров, измеряют ток каждого плеча выпрямителя. Переменное сопротивление величиной 10 кОм. подключается параллельно управляющему электроду к катоду того тиристора, через который течет больший ток. Изменяя величину этого сопротивления, добиваются одинаковых показаний тока.

Учитывая разброс параметров тиристоров, необходимо скорректировать сопротивления резисторов R1 и R2. Вначале R1 берется несколько больше рассчитанного, а R2 определяется как остаточное сопротивление потенциометра R1 при условии, что его изменение не приводит к увеличению тока нагрузки. Максимальная величина R1 ограничивается сопротивлением, при котором ток нагрузки равен нулю. 
Конструктивно тиристоры необходимо размещать на радиаторах с площадью 50 кв.см (рис. 3.2.1), 250 кв.см - (рис. 3.2.2). Во всех вариантах использован трансформатор, собранный на обычном сердечнике УШ35х55. Для намотки взят провод марки ПЭВ. Первичная обмотка содержит 550 витков, диаметр провода 0,55 мм. Данные вторичных обмоток: для варианта на рис.3.2.1 - число витков 2х60 проводом ПЭЛ диаметром 1,35 мм.; для варианта на рис.3.2.2 - число витков 2х64 проводом ПЭЛ диаметром 1,35 мм.

Урок №42

Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газахвакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры —радиоприёмникамагнитофонаизмерительного прибора и т. д.

История

1904 г. Ли де Форест на основе созданной им электронной лампы — триода разработал устройство усиления электрических сигналов (усилитель), состоящий из нелинейного элемента (лампы) и статического сопротивления Ra, включенного в анодную цепь.

1932 г. Гарри Найквист определил условия устойчивости (способности работать без самовозбуждения) усилителей, охваченных отрицательной обратной связью.

1942 г. В США построен первый операционный усилитель — усилитель постоянного тока с симметричным (дифференциальным) входом и значительным собственным коэффициентом усиления (более 1000) как самостоятельное изделие. Основным назначением данного класса усилителей стало его использование в аналоговых вычислительных устройствах для выполнения математических операций над электрическими сигналами. Отсюда его первоначальное название — решающий.

Устройство и принцип действия

300px-Amplifier_Circuit_Small

magnify-clip

УНЧ с обратной связью. Типичная схема

Структура усилителя

Усилитель представляет собой в общем случае последовательность каскадов усиления (бывают и однокаскадные усилители), соединённых между собой прямыми связями

В большинстве усилителей кроме прямых присутствуют и обратные связи (межкаскадные и внутрикаскадные). Отрицательные обратные связи позволяют улучшить стабильность работы усилителя и уменьшить частотные и нелинейные искажения сигнала. В некоторых случаях обратные связи включают термозависимые элементы (термисторы, позисторы) — для температурной стабилизации усилителя или частотнозависимые элементы — для выравнивания частотной характеристики

Некоторые усилители (обычно УВЧ радиоприёмных и радиопередающих устройств) оснащены системамиавтоматической регулировки усиления (АРУ) или автоматической регулировки мощности (АРМ). Эти системы позволяют поддерживать приблизительно постоянный средний уровень выходного сигнала при изменениях уровня входного сигнала.

Между каскадами усилителя, а также в его входных и выходных цепях, могут включаться аттенюаторы или потенциометры — для регулировки усиления, фильтры — для формирования заданной частотной характеристики и различные функциональные устройства — нелинейные и др.

Как и в любом активном устройстве в усилителе также присутствует источник первичного или вторичного электропитания (если усилитель представляет собой самостоятельное устройство) или цепи, через которые питающие напряжения подаются с отдельного блока питания.

Каскады усиления

Каскад усиления — ступень усилителя, содержащая один или несколько усилительных элементов, цепи нагрузки и связи с предыдущими или последующими ступенями.

В качестве усилительных элементов обычно используются электронные лампы или транзисторы (биполярные, полевые), иногда, в некоторых специальных случаях, могут применяться и двухполюсники, например, туннельные диоды (используется свойство отрицательного сопротивления) и др. Полупроводниковые усилительные элементы (а иногда и вакуумные) могут быть не только дискретными (отдельными) но и интегральными (в составе микросхем), часто в одной микросхеме реализуется полностью законченный усилитель.

В зависимости от способа включения усилительного элемента различаются каскады с общей базой, общим эмиттером, общим коллектором (эмиттерный повторитель) (у биполярного транзистора), с общим затвором, общим истоком, общим стоком (истоковый повторитель) (у полевого транзистора) и с общей сеткой, общим катодом, общим анодом (у ламп)

Каскад с общим эмиттером (истоком, катодом) — наиболее распространённый способ включения, позволяет усиливать сигнал по току и напряжению одновременно, сдвигает фазу на 180°, то есть является инвертирующим.

Каскад с общей базой (затвором, сеткой) — усиливает только по напряжению, применяется редко, является наиболее высокочастотным, фазу не сдвигает.

Каскад с общим коллектором (стоком, анодом) — называется также повторителем (эмиттерным, истоковым, катодным), усиливает ток, оставляя напряжение сигнала равным исходному. Применяется в качестве буферного усилителя. Важными свойствами повторителя являются его высокое входное и низкое выходное сопротивления, фазу не сдвигает.

Каскад с распределенной нагрузкой - каскад, занимающий промежуточное положение между схемой включения с общим эмиттером и общим коллектором. Как вариант каскада с распределенной нагрузкой, выходной каскад усилителя мощности "двухподвес". Важными свойствами являются задаваемый элементами схемы фиксированный коэффициент усиления по напряжению и низкие нелинейные искажения. Выходной сигнал дифференциальный.

Каскодный усилитель — усилитель, содержащий два активных элемента, первый из которых включен по схеме с общим эмиттером (истоком, катодом), а второй — по схеме с общей базой (затвором, сеткой). Каскодный усилитель обладает повышенной стабильностью работы и малой входной ёмкостью. Название усилителя произошло от словосочетания «КАСКад через катОД» (англ. "CASCade to cathODE")[1]

Каскады усиления могут быть однотактными и двухтактными.

Однотактный усилитель — усилитель, в котором входной сигнал поступает во входную цепь одного усилительного элемента или одной группы элементов, соединённых параллельно

Двухтактный усилитель — усилитель, в котором входной сигнал поступает одновременно во входные цепи двух усилительных элементов или двух групп усилительных элементов, соединённых параллельно, со сдвигом по фазе на 180°

200px-Classes_of_amplifier_operation

Углы отсечки полуволны сигнала в различных режимах

Режимы (классы) мощных усилительных каскадов

Особенности выбора режима мощных каскадов связаны с задачами повышения экономичности питания и уменьшения нелинейных искажений.

В зависимости от способа размещения начальной рабочей точки усилительного прибора на статических и динамических характеристиках различают следующие режимы усиления

  • 120px-Electronic_Amplifier_Class_A

Режим A

 

  • 120px-Electronic_Amplifier_Class_B

Режим B

 

  • 120px-Electronic_Amplifier_Push-pull

Режим B, двухтактный каскад

 

  • 120px-Electronic_Amplifier_Class_C

Режим C

Классификация

Аналоговые усилители и цифровые усилители

В аналоговых усилителях аналоговый входной сигнал без цифрового преобразования усиливается аналоговыми усилительными каскадами. Выходной аналоговый сигнал без цифрового преобразования подаётся на аналоговую нагрузку.

В цифровых усилителях, после аналогового усиления входного аналогового сигнала аналоговыми усилительными каскадами до величины достаточной для аналогоцифрового преобразования аналогоцифровым преобразователем (АЦПADC) происходит аналогоцифровое преобразование аналоговой величины (напряжения) в цифровую величину — число (код), соответствующий величине напряжения входного аналогового сигнала. Цифровая величина (число, код) либо непосредственно подаётся через буферные управляющие усилительные каскады на цифровое выходное исполнительное устройство, либо подаётся на мощный цифроаналоговый преобразователь (ЦАПDAC) мощный аналоговый выходной сигнал которого подаётся на аналоговое выходное исполнительное устройство.

Виды усилителей по элементной базе

Ламповый усилитель — усилитель, усилительными элементами которого служат электронные лампы

Полупроводниковый усилитель — усилитель, усилительными элементами которого служат полупроводниковые приборы (транзисторы, микросхемы и др.)

Гибридный усилитель — усилитель, часть каскадов которого собрана на лампах, часть — на полупроводниках

Квантовый усилитель — устройство для усиления электромагнитных волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов.

Виды усилителей по диапазону частот

Усилитель постоянного тока (УПТ) — усилитель медленно меняющихся входных напряжений или токов, нижняя граничная частота которых равна нулю. Применяется вавтоматикеизмерительной и аналоговой вычислительной технике. Основная статья — Усилитель постоянного тока

Усилитель низкой частоты (УНЧ, усилитель звуковой частоты, УЗЧ) — усилитель, предназначенный для работы в области звукового диапазона частот (иногда также и нижней части ультразвукового, до 200 кГц). Используется преимущественно в технике звукозаписи, звуковоспроизведения, а также в автоматике, измерительной и аналоговой вычислительной технике. Основная статья — Усилитель звуковых частот

Усилитель высокой частоты (УВЧ, усилитель радиочастоты, УРЧ) — усилитель сигналов на частотах радиодиапазона. Применяется преимущественно в радиоприёмных и радиопередающих устройствах в радиосвязи, радио- и телевизионного вещания, радиолокациирадионавигации и радиоастрономии, а также в измерительной технике и автоматике

Импульсный усилитель — усилитель, предназначенный для усиления импульсов тока или напряжения с минимальными искажениями их формы. Входной сигнал изменяется настолько быстро, что переходные процессы в усилителе являются определяющими при нахождении формы сигнала на выходе. Основной характеристикой является импульсная передаточная характеристика усилителя. Импульсные усилители имеют очень большую полосу пропускания: верхняя граничная частота нескольких сотен килогерц — нескольких мегагерц, нижняя граничная частота обычно от нуля герц, но иногда от нескольких десятков герц, в этом случае постоянная составляющая на выходе усилителя восстанавливается искусственно. Для точной передачи формы импульсов усилители должны иметь очень малые фазовые и динамические искажения. Поскольку, как правило, входное напряжение в таких усилителях снимается с широтно-импульсных модуляторов (ШИМ), выходная мощность которых составляет десятки милливатт, то они должны иметь очень большой коэффициент усиления по мощности. Применяются в импульсных устройствах радиолокации, радионавигации, автоматики и измерительной техники.

Виды усилителей по полосе частот

Широкополосный (апериодический) усилитель — усилитель, дающий одинаковое усиление в широком диапазоне частот

Полосовой усилитель — усилитель, работающий при фиксированной средней частоте спектра сигнала и приблизительно одинаково усиливающий сигнал в заданной полосе частот

Селективный усилитель — усилитель, у которого коэффициент усиления максимален в узком диапазоне частот и минимален за его пределами

Виды усилителей по типу нагрузки

с резистивной

с емкостной

с индуктивной

с резонансной

Специальные виды усилителей

Дифференциальный усилитель — усилитель, выходной сигнал которого пропорционален разности двух входных сигналов, имеет два входа и, как правило, симметричный выход. Основная статья — Дифференциальный усилитель

Операционный усилитель — многокаскадный усилитель постоянного тока с большими коэффициентом усиления и входным сопротивлением, дифференциальным входом и несимметричным выходом с малым выходным сопротивлением, предназначенный для работы в устройствах с глубокой отрицательной обратной связью. Основная статья — Операционный усилитель

Инструментальный усилитель — предназначен для задач, требующих прецизионного усиления с высокой точностью передачи сигнала

Масштабный усилитель — усилитель, изменяющий уровень аналового сигнала в заданное число раз с высокой точностью

Логарифмический усилитель — усилитель, выходной сигнал которого приблизительно пропорционален логарифму входного сигнала

Квадратичный усилитель — усилитель, выходной сигнал которого приблизительно пропорционален квадрату входного сигнала

Интегрирующий усилитель — усилитель, сигнал на выходе которого пропорционален интегралу от входного сигнала

Инвертирующий усилитель — усилитель, изменяющий фазу гармонического сигнала на 180° или полярность импульсного сигнала на противоположную (инвертор)

Парафазный (фазоинверсный) усилитель — усилитель, применяемый для формирования двух противофазных напряжений

Малошумящий усилитель — усилитель, в котором приняты специальные меры для снижения уровня собственных шумов, способных вуалировать усиливаемый слабый сигнал

Изолирующий усилитель — усилитель, в котором входные и выходные цепи гальванически изолированы. Служит для защиты от высокого напряжения, которое может быть подано на входные цепи, и для защиты от помех, распространяющихся по цепям заземления

Некоторые функциональные виды усилителей

Предварительный усилитель (предусилитель) — усилитель, предназначенный для усиления сигнала до величины, необходимой для нормальной работы оконечного усилителя.

Оконечный усилитель (усилитель мощности) — усилитель, обеспечивающий при определённой внешней нагрузке усиление мощности электромагнитных колебаний до заданного значения.

Усилитель промежуточный частоты (УПЧ) — узкополосный усилитель сигнала определённой частоты (456 кГц, 465 кГц, 4 МГц, 5,5 МГц, 6,5 МГц, 10,7 МГц и др.), поступающего с преобразователя частоты радиоприёмника.

Резонансный усилитель — усилитель сигналов с узким спектром частот, лежащих в полосе пропускания резонансной цепи, являющейся его нагрузкой.

Видеоусилитель — импульсный усилитель, предназначенный для усиления видеоимпульсов сложной формы, широкого спектрального состава. Несмотря на название, применяется не только в видео- и телевизионной технике, но и в радиолокации, обработке сигналов с различных детекторов, модемах, и др. Принципиальной особенностью данного усилителя является работоспособность вплоть до 0 Гц (постоянный ток). Также сигнал данного спектра обычно называют видеосигналом, даже если он не имеет никакого отношения к передаче изображения.

Усилитель магнитной записи — усилитель, нагруженный на записывающую магнитную головку.

Микрофонный усилитель — усилитель электрических сигналов звуковых частот, поступающих с микрофона, до значения, при котором их можно обрабатывать и регулировать.

Усилитель-корректор (корректирующий усилитель) — электронное устройство для изменения параметров видео- или аудиосигнала. Усилитель-корректор видеосигнала, например, даёт возможность регулировки насыщенности цвета, цветового тона, яркости, контрастности и разрешения, усилитель-корректор аудиосигнала предназначен для усиления и коррекции сигналов от звукоснимателя проигрывателя граммофонных пластинок, бывают и другие виды усилителей-корректоров.

Усилители в качестве самостоятельных устройств

Усилители звуковой частоты

Усилители звуковой частоты для систем проводного вещания.

Усилители звуковой частоты для озвучивания открытых и закрытых пространств.

Бытовые усилители звуковой частоты . В этой группе устройств наибольший интерес представляют усилители высокой верности воспроизведения Ні-Fi и наивысшей верности high end. Различаются усилители предварительные, оконечные (усилители мощности) и полные, сочетающие в себе свойства предварительных и оконечных.

Измерительные усилители — предназначены для усиления сигналов в измерительных целях. Основная статья — Измерительный усилитель (средство измерений).

Усилители биопотенциалов — разновидность измерительных усилителей, используются в электрофизиологии.

Антенные усилители — предназначены для измерений слабых сигналов с антенны перед подачей их на вход радиоприёмника, бывают двунаправленные усилители (для приёмопередающих устройств), они усиливают также сигнал, поступающий с оконечного каскада передатчика на антенну. Антенный усилитель устанавливается обычно непосредственно на антенне или поблизости от неё.

  • 120px-TL12Bronze

Ламповый УНЧ

 

  • 120px-Technics-suc01

Предварительный усилитель

 

  • 120px-McIntosh_MA6800

Hi-Fi УНЧ McIntosh MA6800

 

  • 120px-Aleph_3

Усилитель мощности Aleph 3

 

Основные нормируемые характеристики

Диапазон частот

Коэффициент усиления

Неравномерность АЧХ

Чувствительность

Уровень шума

Коэффициент нелинейных искажений

Входное сопротивление

Выходное сопротивление

Максимальное выходное напряжение

Максимальная выходная мощность

 «Электротехника»

Материал для проведения учебных занятий  по дисциплине.

Уроки №№ 39, 40, 42.

Для студентов, обучающихся специальности  150414    Монтаж и техническая эксплуатация холодильно-компрессорных  машин и установок.

______________________________________________________________

Евдокимов П.Е. – преподаватель электротехники ГОУ ТК № 28

Сдано в печать 28.02.2011.

Формат бумаги 60х90/16

Тираж 26 экз.

Государственное образовательное учреждение

среднего профессионального образования

«Технологический колледж № 28»

Адрес: Москва, ул. Кабельная, 2

Тел. 8 (495) 673-54-22

E-mail: 78@prof.educom.ru


По теме: методические разработки, презентации и конспекты

Материал для проведения уроков.

Формирование и развитие навыков и умений в устной разговорной речи...

Материал для проведения учебных занятий по дисциплине Электротехника Уроки №№33-35.

В уроке представлен лекционный материал по теме уроков...

Материал для проведения учебных занятий по дисциплине Электротехника. Уроки №№ 43,45,46.

Материал для проведения учебных занятий  по дисциплине Электротехника.  Уроки №№ 43,45,46....

Материал для проведения контрольного среза по учебной дисциплине информатика и ИКТ

Содержание:  1.ПАСПОРТ Форма проведения контрольного среза: тест1.1. пакет заданий для учащихся(полный комплект) 1.2.пакет заданий для проверяющего(полный комплект заданий с ответа...

Нагорная Л.Н. Диагностический материал для проведения среза остаточных знаний по учебной дисциплине «Музыкальная литература (зарубежная и отечественная)». Тема 7. Модест Петрович Мусоргский

Пояснительная записка. Цели и задачи методической разработки   Учебно-методическая разработка «Диагностический материал для проведения среза остаточных знаний по дисциплине «Музы...

Vocabulary zone. Лексический презентационный материал для проведения Warm-up activities в начале учебного занятия.

Данный материал предназначен для проведения Warm-up activities  и актиуализации лексического материла по теме "House/home"...

Методический материал для проведения занятия по дисциплине "Основы финансовой грамотности"

В про­цес­се сво­его раз­ви­тия об­щес­тво стре­мит­ся, с од­ной сто­роны, свести к миниму­му воз­можный ущерб от не­гатив­ны...