Электрооборудование. Методические указания по самостоятельному изучению и освоению учебного материала
методическая разработка на тему

Евдокимов Павел Евгеньевич

В данной брошюре предложен материал, который даёт достаточно подробную информацию о видах электрооборудования, применяемого в промышленности. Каждая глава содержит теоретический материал только по одному из видов оборудования. Естественно, что рассматривать конкретные изделия смысла нет, так как конструктивные изменения, вносимые в  те или иные образцы электрооборудования,  происходят значительно быстрее, чем складывается возможность отразить эти изменения в учебниках и даже справочниках. Поэтому освоение материала носит характер изучения принципов работы элементов схем и электроаппаратов, а также закрепления знаний законов физики, которые лежат в основе работы и использования по назначению электрооборудования. Перед каждой новой темой даётся пояснение: для чего предназначен данный вид электрооборудования, как правильно его нужно эксплуатировать, достоинства и возможные недостатки при эксплуатации.

В конце брошюры даны контрольные и тестовые вопросы для подготовки к экзаменам. Они носят  характер контрольных работ по итогам семестра.

Скачать:

ВложениеРазмер
Microsoft Office document icon sbornik_zadaniy_po_elektrooborudovaniyu._chast_1.doc451 КБ

Предварительный просмотр:

                       Департамент образования города Москвы

                   Государственное образовательное учреждение

                          среднего специального образования

                               Технологический колледж №28

П.Е.Евдокимов

                 

Методические указания

по самостоятельному изучению и освоению  учебного материала.

Для студентов заочного отделения,

обучающихся специальности 150414 Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок. Часть I.

D:\Documents\Мои рисунки\Физика и электротехника\электродвигатели.jpg

Москва

2012

Электрооборудование.

Методические указания

по самостоятельному изучению и освоению  учебного материала.

Для студентов заочного отделения,

обучающихся специальности 150414 Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок. Часть I.

_______________________________________________________________

В данной брошюре предложен материал, который даёт достаточно подробную информацию о видах электрооборудования, применяемого в промышленности. Каждая глава содержит теоретический материал только по одному из видов оборудования. Естественно, что рассматривать конкретные изделия смысла нет, так как конструктивные изменения, вносимые в  те или иные образцы электрооборудования,  происходят значительно быстрее, чем складывается возможность отразить эти изменения в учебниках и даже справочниках. Поэтому освоение материала носит характер изучения принципов работы элементов схем и электроаппаратов, а также закрепления знаний законов физики, которые лежат в основе работы и использования по назначению электрооборудования. Перед каждой новой темой даётся пояснение: для чего предназначен данный вид электрооборудования, как правильно его нужно эксплуатировать, достоинства и возможные недостатки при эксплуатации.

В конце брошюры даны контрольные и тестовые вопросы для подготовки к экзаменам. Они носят  характер контрольных работ по итогам семестра.

Составитель: Евдокимов Павел Евгеньевич, преподаватель специальных дисциплин и физики

Рецензенты: Семенова Светлана Борисовна, преподаватель специальных дисциплин

Редактор: Малькова Людмила Алексеевна, зам. директора по учебно-методической работе

Рукопись рассмотрена на заседании ПЦК социально-экономических дисциплин ГОУ ТК № 28, протокол № 4 от 12 декабря 2011 г.

       

                                                                                                                             I. Схемы электродвигателей и их характеристики

В данной главе приводятся принципиальные схемы подключения обмоток возбуждения электродвигателя. Способы подключения электродвигателей очень важно знать, так как от схемы подключения зависит правильность реализации расчётных параметров электроустановок, электроприводов. Знание механических характеристик электродвигателей позволяет добиваться безотказной работы сложных технологических систем, так как мягкие или жёсткие характеристики, дают возможность сделать электропривод зависящим или не зависящим от величины нагрузки на валу двигателя, и как следствие к резкому или плавному набору оборотов электродвигателем. Приведённые схемы принципиальные, то есть они позволяют изучить возможности подключения реальных электродвигателей в технологическом оборудовании.

Свойства электродвигателей постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают электродвигатели:

с независимым возбуждением: обмотка возбуждения питается от постороннего источника постоянного тока (возбудителя или выпрямителя) ;

с параллельным возбуждением: обмотка возбуждения подключена параллельно обмотке якоря;

с последовательным возбуждением: обмотка возбуждения включена последовательно с обмоткой якоря;

со смешанным возбуждением: он имеет две обмотки возбуждения, одна подключена параллельно обмотке якоря, а другая — последовательно с ней.

Все эти электродвигатели имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения. Обмотки возбуждения указанных электродвигателей выполняют так же, как у соответствующих генераторов.

Электродвигатель с независимым возбуждением. В этом электродвигателе (рис. 125, а) обмотка якоря подключена к основному источнику постоянного тока (сети постоянного тока, генератору или выпрямителю) с напряжением U, а обмотка возбуждения — к вспомогательному источнику в напряжением UB. В цепь обмотки возбуждения включен регулировочный реостат Rрв, а в цепь обмотки якоря — пусковой реостат RП. Регулировочный реостат служит для регулирования частоты вращения якоря двигателя, а пусковой — для ограничения тока в обмотке якоря при пуске. Характерной особенностью электродвигателя является то, что его ток возбуждения Iв не зависит от тока Iя в обмотке якоря (тока нагрузки). Поэтому, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя Ф не зависит от нагрузки. При этом условии согласно формулам (63′) и (65) получим, что зависимости электромагнитного момента М и частоты вращения п от тока Iя будут линейными (рис. 126, а). Следовательно, линейной будет и механическая характеристика двигателя — зависимость п(М) (рис. 126,б). При отсутствии в цепи якоря реостата с сопротивлением RП скоростная и механическая характеристики будут жесткими, т. е. с малым углом наклона к горизонтальной оси, так как падение напряжения Iя Rя в обмотках машины, включенных в цепь якоря, при номинальной нагрузке составляет лишь       3—5 % от UHOM. Эти характеристики (прямые 1 на рис. 126, а и б) называются естественными. При включении в цепь якоря реостата с сопротивлением RП угол наклона этих характеристик возрастает, вследствие чего можно получить семейство реостатных характеристик 2, 3 и 4, соответствующих различным

Рис. 125. Принципиальные схемы электродвигателей с независимым (а) и параллельным (б) возбуждением

Рис. 126. Характеристики электродвигателей с независимым и параллельным возбуждением: а — скоростные и моментная; б — механические; в — рабочие

значениям Rп1, Rп2 и Rп3. Чем больше сопротивление Rп, тем больший угол наклона имеет реостатная характеристика, т. е. тем она мягче.

Регулировочный реостат Rрв позволяет изменять ток возбуждения двигателя Iв и его магнитный поток Ф. Как следует из формулы (65), при этом будет изменяться и частота вращения п. В цепь обмотки возбуждения никаких выключателей и предохранителей не устанавливают, так как при разрыве этой цепи резко уменьшается магнитный поток электродвигателя (в нем остается лишь поток от остаточного магнетизма) и возникает аварийный режим. Если электродвигатель работает при холостом ходе или небольшой нагрузке на валу, то частота вращения, как следует из формулы (65), резко возрастает (двигатель идет вразнос). При этом сильно увеличивается ток в обмотке якоря Iя [см. формулу (66)] и может возникнуть круговой огонь. Во избежание этого защита должна отключить электродвигатель от источника питания. Резкое увеличение частоты вращения при обрыве цепи обмотки возбуждения объясняется тем, что в этом случае резко уменьшаются магнитный поток Ф (до значения потока Фост от остаточного магнетизма) и   э. д. с. Е и возрастает ток Iя.  А так как приложенное напряжение U остается неизменным, то частота вращения п будет увеличиваться до тех пор, пока     э. д. с. Е не достигнет значения, приблизительно равного U (что необходимо для равновесного состояния электрической цепи якоря, при котором         E=U — Iя  Rя).

При нагрузке на валу, близкой к номинальной, электродвигатель в случае разрыва цепи возбуждения остановится, так как электромагнитный момент, который может развить двигатель при значительном уменьшении магнитного потока, уменьшается [см. формулу (63')] и станет меньше нагрузочного момента на валу. В этом случае так же резко увеличивается ток Iя [так как в формуле (64) э. д. с.  Е = 0], и машина должна быть отключена от источника питания.

Следует отметить, что частота вращения n0 соответствует идеальному холостому ходу, когда двигатель не потребляет из сети электрической энергии и его электромагнитный момент равен нулю. В реальных условиях в режиме холостого хода двигатель потребляет из сети ток холостого хода I0, необходимый для компенсации внутренних потерь мощности (см. § 25), и развивает некоторый момент М0, требуемый для преодоления сил трения в машине. Поэтому в действительности частота вращения при холостом ходе меньше nо.

Зависимость частоты вращения n и электромагнитного момента М от мощности Р2 (рис. 126, в) на валу двигателя, как следует из рассмотренных соотношений, является линейной. Зависимости тока обмотки якоря Iя и мощности Р1 от Р2 также практически линейны. Ток Iя и мощность Р1 при    Р2 = 0 представляют собой ток холостого хода I0 и мощность Р0, потребляемую при холостом ходе. Кривая к. п. д. имеет характер, общий для всех электрических машин (см. § 37).

Электродвигатель с параллельным возбуждением. В этом электродвигателе (см. рис. 125, б) обмотки возбуждения и якоря питаются от одного и того же источника электрической энергии с напряжением U. В цепь обмотки возбуждения включен регулировочный реостат Rрв, а в цепь обмотки якоря — пусковой реостат Rп. В рассматриваемом электродвигателе имеет место, по существу, раздельное питание цепей обмоток якоря и возбуждения, вследствие чего ток возбуждения Iв не зависит от тока обмотки якоря Iв. Поэтому электродвигатель с параллельным возбуждением будет иметь такие же характеристики, как и двигатель с независимым возбуждением. Однако двигатель с параллельным возбуждением работает нормально только при питании от источника постоянного тока с неизменным напряжением.

При питании электродвигателя от источника с изменяющимся напряжением (генератор или управляемый выпрямитель) уменьшение питающего напряжения U вызывает соответствующее уменьшение тока возбуждения Iв и магнитного потока Ф, что приводит к увеличению тока обмотки якоря Iя [см. формулу (66) ]. Это ограничивает возможность регулирования частоты вращения якоря путем изменения питающего напряжения U. Поэтому электродвигатели, предназначенные для питания от генератора или управляемого выпрямителя, должны иметь независимое возбуждение.

Электродвигатель с последовательным возбуждением. Для ограничения тока при пуске в цепь обмотки якоря включен пусковой реостат Rп (рис. 127, а), а для регулирования частоты вращения

Рис. 127. Принципиальная схема электродвигателя с последовательным возбуждением (а) и зависимость его магнитного потока Ф от тока Iя в обмотке якоря (б)

Рис. 128. Характеристики электродвигателя с последовательным возбуждением: а — скоростные и моментная; б — механические; в — рабочие

параллельно обмотке возбуждения может быть включен регулировочный реостат Rрв. Характерной особенностью этого электродвигателя является то, что его ток возбуждения Iв равен или пропорционален (при включении реостата Rрв) току обмотки якоря Iя, поэтому магнитный поток Ф зависит от нагрузки двигателя (рис. 127,б).

При токе обмотки якоря Iя, меньшем (0,8—0,9) номинального тока Iном, магнитная система машины не насыщена и можно считать, что магнитный поток Ф изменяется прямо пропорционально току Iя. Поэтому скоростная характеристика электродвигателя будет мягкая — с увеличением тока Iя частота вращения n будет резко уменьшаться (рис. 128, а). Уменьшение частоты вращения n, как следует из формулы (65), происходит из-за увеличения падения напряжения IяRя во внутреннем сопротивлении  Rя цепи обмотки якоря, а также из-за увеличения магнитного потока Ф.

Электромагнитный момент М при увеличении тока Iя будет резко возрастать, так как в этом случае увеличивается и магнитный поток Ф, т. е. момент М будет пропорционален току Iя. Поэтому при токе Iя, меньшем (0,8-0,9) Iном, скоростная характеристика имеет форму гиперболы, а моментная — параболы.

При токах Iя > Iном зависимости М и п от Iя линейны, так как в этом режиме магнитная цепь будет насыщена и магнитный поток Ф при изменении тока Iя меняться не будет.

Механическая характеристика, т. е. зависимость п от М (рис. 128,6), может быть построена на основании зависимостей n и М от Iя. Кроме естественной характеристики 1, можно путем включения в цепь обмотки якоря реостата с сопротивлением Rп получить семейство реостатных характеристик 2, 3 и 4. Эти характеристики соответствуют различным значениям Rп1, Rп2 и Rп3; при этом чем больше Rп, тем ниже располагается характеристика. Механическая характеристика рассматриваемого двигателя мягкая и имеет гиперболический характер. При малых нагрузках магнитный поток Ф сильно уменьшается, частота вращения n резко возрастает и может превысить максимально допустимое значение (двигатель идет вразнос). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка для двигателей большой и средней мощности составляет (0,2-0,25) Iном. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты недопустимо. Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют, особенно там, где имеют место изменения нагрузочного момента в широких пределах и тяжелые условия пуска: во всех тяговых приводах (электровозы, тепловозы, электропоезда, электрокары, электропогрузчики и пр.), а также в приводах грузоподъемных механизмов (краны, лифты и пр.). Объясняется это тем, что при мягкой характеристике увеличение нагрузочного момента приводит к меньшему возрастанию тока и потребляемой мощности, чем у двигателей с независимым и параллельным возбуждением; поэтому двигатели с последовательным возбуждением лучше переносят перегрузки. Кроме того, эти двигатели имеют большой пусковой момент, чем двигатели с параллельным и независимым возбуждением, так как при увеличении тока обмотки якоря при пуске соответственно увеличивается и магнитный поток.

Если принять, например, что кратковременный пусковой ток может в 2 раза превышать номинальный рабочий ток машины, и пренебречь влиянием насыщения, реакцией якоря и падением напряжения в цепи его обмотки, то в двигателе с последовательным возбуждением пусковой момент будет в 4 раза больше номинального (в 2 раза увеличиваются и ток, и магнитный поток), а в двигателях с независимым и параллельным возбуждением — только в 2 раза больше. В действительности из-за насыщения магнитной цепи магнитный поток не увеличивается пропорционально току, но все же пусковой момент двигателя с последовательным возбуждением при прочих равных условиях будет значительно больше пускового момента такого же двигателя с независимым или параллельным возбуждением.

Зависимости п и М от мощности Р2 на валу электродвигателя (рис. 128, в), как следует из рассмотренных выше положений, являются нелинейными; зависимости P1, Iя и ? от Р2 имеют такую же форму, как и у двигателей с параллельным возбуждением.

Электродвигатель со смешанным возбуждением. В этом электродвигателе (рис. 129, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения — параллельной (или независимой) и последовательной, по которым проходят токи возбуждения Iв1 и Iв2 = Iя. Поэтому

Ф = Фпосл + Фпар

Где                                                                                                                            Фпосл — магнитный поток последовательной обмотки, зависящий от тока Iя;

Фпар — магнитный поток параллельной обмотки, который не зависит от нагрузки (определяется током возбуждения Iв1).

Механическая  характеристика электродвигателя  со смешанным возбуждением  (рис. 129,б) располагается  между  характеристиками двигателей с параллельным (прямая 1),  и последовательным (кривая 2) возбуждением. В зависимости от соотношения магнитодвижущих сил параллельной и последовательной обмоток при номинальном режиме можно приблизить характеристики двигателя со смешанным возбуждением к

характеристике 1 (кривая 3 при малой м. д. с. последовательной обмотки) или к характеристике 2 (кривая 4 при малой м. д. с. параллельной обмотки). Достоинством двигателя со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, когда Фпосл = 0. В этом режиме частота вращения его якоря определяется магнитным потоком Фпар и имеет ограниченное значение (двигатель не идет вразнос).

Рис. 129. Принципиальная схема электродвигателя со смешанным возбуждением (а) и его механические характеристики (б)


II. Выбор электродвигателей

Процедура выбора электродвигателей состоит в удовлетворении ряда требований потребителя; выбор состоит в переборе возможных вариантов, в том числе: по роду тока и напряжению, конструктивному исполнению, уровню вибрации и шума, мощности и режиму работы. Варианты использования электродвигателей очень разнообразны и важно учитывать условия, в которых будет эксплуатироваться электродвигатели: влажность и агрессивность окружающей среды, характер технологического процесса.

 Выбор электродвигателей по роду тока, конструктивному исполнению,  классу вибрации и уровню шума

Выбор по роду тока. В соответствии с рекомендациями двигатели постоянного тока выбираются (применяются) лишь в тех случаях, когда двигатели переменного тока не обеспечивают требуемых характеристик механизма либо не экономичны. При этом для механизмов с продолжительным режимом работы, с редкими включениями и малыми нагрузками при пуске наиболее целесообразен синхронный двигатель. Применение синхронного двигателя позволяет обеспечить высокие энергетические показатели в процессе эксплуатации.

Что касается напряжения, то двигатели постоянного тока единой серии 2П изготовляются на одно номинальное напряжение каждый, асинхронные двигатели единой серии 4А — на одно или два номинальных напряжения каждый, синхронные двигатели — на одно напряжение (подробнее см. вторую часть Справочника). При этом двигатели должны обеспечивать выдачу номинальной мощности при отклонении напряжения от номинального в некотором диапазоне. Знание этого диапазона (имеется в стандартах и ТУ на соответствующие типы двигателей) особенно необходимо при выборе двигателей, работающих в автономных сетях, где их нагрузка соизмерима с мощностью сети.

Выбор по конструктивному исполнению. При выборе конструктивного исполнения двигателя необходимо учитывать условия его эксплуатации, под которыми следует понимать в первую очередь воздействие климатических факторов окружающей среды, а также способ охлаждения и исполнение двигателей по способу монтажа.

Электрические машины обычно предназначаются для эксплуатации в одном или нескольких макроклиматических районах  и в соответствии с ГОСТ 15150-69 и 15543-70 изготовляются в следующих климатических исполнениях: У, УХЛ, Т, О, М, ОМ, В.

Электрические машины исполнения У, УХЛ, Т, О предназначены для эксплуатации на суше, реках и озерах, исполнения М, ОМ — на морских судах, В — на суше и на море для всех макроклиматических районов, в том числе: У — для макроклиматических районов с умеренным климатом, УХЛ — с холодным климатом, Т — с тропическим климатом, О — для всех макроклиматических районов на суше, М — с умеренно холодным морским климатом, ОМ — для неограниченного района плавания.

Значения климатических факторов для этих исполнений приведены в разд. 1.

При эксплуатации электрических машин на открытом воздухе (категория размещения 1) регламентируется также интенсивность дождя: для исполнений У, УХЛ — 3 мм/мин; Т, М и ОМ — 5 мм/мин. Электрические машины исполнений У, УХЛ, Т предназначаются, как правило, для эксплуатации в атмосфере типов I и II, а исполнений М, ОМ — в атмосфере типа III (табл..2).

Таблица 2. Типы атмосферы, окружающей электрические машины

Обозначение

Тип атмосферы

Содержание коррозионно-активных агентов, мг/(м'-сут)

Наименование

Сернистый газ

Хлориды

I II III IV

Условно-чистая Промышленная Морская Приморско-промышленная

До 20 20-110 До 20 200-110

Менее 0,3 Менее 0,3 30-300 0,3-30

Кроме климатических условий важное значение имеет категория размещения электрических машин. Различают пять категорий размещения, обозначаемых цифрами от 1 до 5, характеристика которых приведена в разд. 1.

Корпус машины вместе с подшипниковыми щитами образует защитную оболочку, обеспечивающую защиту электрической машины от попадания внутрь машины твердых предметов и воды. В соответствии с ГОСТ 17494-72 машины выпускаются с различными степенями защиты персонала от соприкосновения с находящимися под напряжением частями и с вращающимися частями, находящимися внутри корпуса, а также степенями защиты машины от попадания внутрь нее твердых посторонних тел и воды.

Электродвигатели, устанавливаемые в помещениях с нормальной средой, как правило, должны иметь исполнение IP00 или IP20. При установке электродвигателей на открытом воздухе они должны иметь исполнение не ниже IP44. При эксплуатации электродвигателей в помещениях, где могут иметь место химически активные пары или газы, возможно оседание на обмотках пыли и других веществ, нарушающих естественное охлаждение, исполнение должно быть не менее IP44 или необходимо продуваемое исполнение с подводом чистого воздуха. Корпус продуваемого электродвигателя, воздуховоды, все сопряжения и стыки должны быть тщательно уплотнены для предотвращения присоса воздуха в систему вентиляции. При продуваемом исполнении электродвигателя рекомендуется предусматривать задвижки для предотвращения всасывания окружающего воздуха при остановке электропривода.

Электродвигатели, устанавливаемые в сырых или особо сырых местах, должны иметь исполнение не менее IP43 и изоляцию, рассчитанную на воздействие сырости и пыли (со специальной обмазкой, влагостойкую и т. д.).

Выбор двигателя в зависимости от способа его охлаждения в значительной мере зависит от категории размещения, условий окружающей среды и класса нагревостойкости его изоляции и, кроме того, определяется также экономическими факторами и режимом работы.

Особое внимание следует обращать на выбор исполнения двигателей для установок, размещаемых в пожароопасных и взрывоопасных зонах.

Пожароопасной зоной называется пространство внутри и вне помещений, в пределах которого постоянно или периодически обращаются горючие (сгораемые) вещества и в котором они могут находиться при нормальном технологическом процессе или при его нарушениях. Классификация пожароопасных зон приведена в табл. 3. В пожароопасных зонах любого класса могут                                                                                                                      

Таблица 3. Классификация пожароопасных зон

Класс зоны

Условия, определяющие класс зоны

П-1 П-И

П-Иа П-Ш

Зоны в помещениях, в которых обращаются горючие жидкости с температурой вспышки выше 61 °С Зоны в помещениях, в которых выделяются горючие пыли или волокна с нижним концентрационным пределом воспламенения более 65 г/м3 к объему воздуха Зоны в помещениях, в которых обращаются твердые горючие вещества Вне помещений зоны, в которых обращаются горючие жидкости с температурой вспышки выше 61 °С или твердые горючие вещества

Таблица  4. Классификация взрывоопасных зон

применяться электрические машины с классами напряжения до 10 кВ при условии, что их оболочки имеют степень защиты не менее IP44. Лишь в зонах класса П-П при использовании искрящихся машин или с искрящими по условиям работы частями степень защиты оболочки должна быть IP54. В пожароопасных зонах любого класса могут применяться электрические машины, продуваемые чистым воздухом по замкнутому и разомкнутому циклам. В последнем случае выброс отработанного воздуха в пожароопасную зону не допускается.

Взрывоопасной зоной (табл. 4) является помещение или ограниченное пространство в помещении или наружной установке, в котором имеются или могут образоваться взрывоопасные смеси. Под последними понимаются смеси с воздухом горючих газов, паров легковоспламеняющихся жидкостей (ЛВЖ), горючих пыли или волокон с нижним концентрационным пределом воспламенения не более 65 г/м3 при переходе их во взвешенное состояние, которые при определенной концентрации способны взорваться при возникновении источника инициирования взрыва.

Для эксплуатации во взрывоопасных зонах следует использовать взрывозащищенные электрические машины

Выбор по способу монтажа. При выборе двигателя необходимо, чтобы его рабочее положение (горизонтальное, вертикальное, наклонное), способ крепления (к фундаменту, к производственному механизму, встраиваемые и т. д.), исполнение выходного конца вала и их количество соответствовали одному из конструктивных исполнений, приведенных в ГОСТ 2479-79

Выбор по классу вибрации. В соответствии с рекомендациями ГОСТ 16921-83 для двигателей общего назначения, имеющих исполнения IM1001 — IM1081, установлены следующие классы вибрации: h ^ 80 мм — 1,1 мм/с, 80 < h < 132 мм - 1,8 мм/с, 132 < < h< 225 - 2,8 мм/с, h > 225 мм - 4,5 мм/с.

Для малошумных двигателей и двигателей, используемых в приводах станков повышенной точности и в приводах полиграфических машин, уровень вибрации должен быть на один класс меньше, чем для машин общего назначения. Для указанных высот оси вращения классы вибрации соответствуют 0,7; 1,1; 1,8; и 2,8 мм/с соответственно.

Для специальных и прецизионных приводов с особо жесткими требованиями по вибрации и надежности должны применяться электродвигатели, имеющие уровень вибрации на два класса ниже, чем у двигателей общего назначения.

                             

Класс зоны

Условия, определяющие класс зоны

B-I В-1а B-I6

В-1г В-Н

В-На

Зоны в помещениях, в которых выделяются горючие газы или пары ЛВЖ в таком количестве и с такими свойствами, что они могут образовать с воздухом взрывоопасные смеси при нормальных режимах работы Зоны в помещениях, в которых опасные состояния, характерные для класса B-I, не имеют места при нормальной эксплуатации, а возможны только в результате аварий или неисправностей То же, что и для В-1а, но отличающиеся одной из следующих особенностей: 1) горючие газы обладают высоким нижним концентрационным пределом воспламенения (1% и более) и резким запахом; 2) помещения производств, связанных с газообразным водородом, в которых исключается образование взрывоопасной смеси в объеме, превышающем 5% свободного объема помещения; 3) зоны лабораторных и других помещений, в которых горючие газы и ЛВЖ имеются в небольших количествах, недостаточных для создания взрывоопасной смеси в зоне, превышающей 5% свободного объема помещения, причем работа проводится без применения открытого пламени Пространства у наружных установок, содержащих горючие газы или ЛВЖ Зоны в помещениях, в которых выделяются переходящие во взвешенное состояние горючие пыли или волокна в таком количестве и с такими свойствами, что они способны образовать с воздухом взрывоопасные смеси при нормальных режимах работы Зоны в помещениях, в которых опасные состояния, характерны для зон класса В-П, не имеют места при нормальной эксплуатации, а возможны только в результате аварий или неисправностей

Эти электродвигатели должны иметь классы вибрации 0,45; 0,7; 1,1 и 1,8 мм/с для Л^80 мм, 80 ^ to < 132 мм, 132 ^ to < 225 мм и to > 225 мм соответственно.

Выбор по уровню шума. Электрические двигатели в соответствии с ГОСТ 16372-84Е разделены на пять классов: 0, 1, 2, 3, 4.

К классу 0 относятся двигатели, работающие в кратковременном и повторно-кратковременном режимах (S2 — S8 по ГОСТ 183-74), двигатели со способами охлаждения IC03, IC13 (по ГОСТ 20459-75), многоскоростные асинхронные двигатели, асинхронные двигатели с повышенным скольжением и повышенным пусковым моментом.

К классу 1 относятся двигатели постоянного и переменного тока общего назначения.

К классу 2 — двигатели с малошумными подшипниками, малошумными вентиляторами и т. п.

К классу 3 — двигатели с пониженным использованием активных материалов, закрытые, с глушителями вентиляционного шума.

К классу 4 — двигатели со звукоизолирующим кожухом.

При выборе двигателей по уровню шума следует учитывать нормы шума для производственных помещений, которые оговаривают интегральный допустимый уровень шума всего установленного оборудования. Определение допустимого класса шума электродвигателей представляет отдельную, сложную задачу.

2. Выбор электродвигателей по мощности

От правильного выбора электродвигателя по мощности зависят надежность его работы в электроприводе и энергетические показатели в процессе эксплуатации. В тех случаях, когда нагрузка двигателя существенно меньше номинальной, он недоиспользуется по мощности, что свидетельствует об излишних капитальных вложениях, его КПД и коэффициент мощности заметно снижаются.

Если нагрузка превышает номинальную, то это приводит к увеличению токов и потерь мощности выше соответствующих номинальных значений, вследствие чего температура (превышение температуры) обмоток и магнитопровода двигателя может превысить допустимое значение. Рост температуры выше заданных значений приводит к резкому ускорению старения изоляции вследствие изменения ее физико-химических свойств и соответственно уменьшению срока службы и надежности двигателя в целом, поэтому одним из основных критериев выбора двигателя по мощности является температура (превышение температуры) обмоток.

Задача выбора электродвигателя по мощности осложняется тем обстоятельством, что нагрузка на его валу в процессе работы, как правило, изменяется во времени, вследствие чего изменяются также потери мощности и соответственно температура двигателя. Если при этих условиях выбрать двигатель таким образом, чтобы его номинальная мощность была равна наибольшей мощности нагрузки, он будет недоиспользован по мощности. Очевидно также, что недопустимо выбирать номинальную мощность двигателя равной минимальной мощности нагрузки.

Для обоснованного решения вопроса выбора электродвигателя по мощности необходимо знать характер изменения нагрузки двигателя во времени, т. е. зависимость от времени мощности, электромагнитного момента и потерь двигателя. С этой целью для машин, работающих в циклическом режиме, обычно строится нагрузочная диаграмма, представляющая собой зависимость нагрузки электропривода от времени в течение рабочего цикла.

Зависимость изменения нагрузки от времени позволяет судить об изменениях потерь в электродвигателе, что в свою очередь дает возможность оценить температуру его отдельных частей при известном характере процесса их нагрева.

Этот подход позволяет выбрать двигатель таким образом, чтобы максимальная температура изоляции обмоток не превышала допустимого значения. Это условие является одним из основных для обеспечения надежной работы электродвигателя в течение всего срока его эксплуатации.

Второе условие выбора двигателя заключается в том, что его перегрузочная способность должна быть достаточной для устойчивой работы электропривода в периоды максимальной нагрузки или аварийного снижения напряжения.

Таким образом, для правильного выбора двигателя необходимо знать точную зависимость нагрузки от времени, на базе которой можно рассчитать потери в его отдельных частях. Затем необходимо провести подробный тепловой расчет с учетом в большинстве случаев переходных процессов (пуска, реверса, торможения, перехода от одной нагрузки к другой), на основании которого сделать вывод о правильности выбора электродвигателя.

III. Изоляционные   материалы 

                                                                                                            (электроизоляционные материалы) — диэлектрики, которые служат целям электрической изоляции. Фактически электроизоляционные материалы предназначены препятствовать протеканию — безразлично, постоянного и переменного тока.

Применяются электроизоляционные материалы в электротехнических, радиотехнических и электронных приборах и устройствах.

У электроизоляционных материалов желательны большое удельное объёмное сопротивление, высокое пробивное напряжение, малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость . Важно, чтобы вышеперечисленные параметры были стабильны по отношению к температуре.

Электроизоляционные материалы можно подразделить по агрегатному состоянию.

  • Газообразные
  • Жидкие
  • Природные неорганические
  • Искусственные неорганические
  • Естественные органические
  • Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах из пропитанной маслом бумаги.

Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические — хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические — в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы.

Синтетические органические — большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмассы.

Электроизоляционные материалы

Электроизоляционные материалы -  материалы, применяемые в электротехнических и радиотехнических устройствах для разделения токоведущих частей, имеющих разные потенциалы, для увеличения ёмкости конденсаторов, а также служащие теплопроводящей средой в электрических машинах, аппаратах и т. п. В качестве Э. м. используют диэлектрики, которые по сравнению с проводниковыми материалами обладают значительно большим удельным объёмным электрическим сопротивлением rv = 109—1020 ом·см (у проводников 10-6—10-4 ом·см). Основные характеристики Э. м.: удельное объёмное и поверхностное сопротивления rv и rs, относительная диэлектрическая проницаемость e, температурный коэффициент диэлектрической проницаемости 1/e·de/dTград-1, угол диэлектрических потерь d, электрическая прочность Епр (напряжённость электрического поля, при которой происходит пробой, см. Пробой диэлектриков). При оценке Э. м. учитывают также зависимость этих характеристик от частоты электрического тока и величины напряжения.

Э. м. можно классифицировать по нескольким признакам: агрегатному состоянию, химическому составу, способам получения и т. д. В зависимости от агрегатного состояния различают твёрдые, жидкие и газообразные Э. м. Твёрдые Э. м. составляют наиболее обширную группу и в соответствии с физико-химическими свойствами, структурой, особенностями производства делятся на ряд подгрупп, например слоистые пластики, бумаги и ткани, лакоткани, слюды и материалы на их основе, электрокерамические и др. К этим же материалам условно можно отнести лаки, заливочные и пропиточные составы, которые, хотя и находятся в жидком состоянии, но используются в качестве Э. м. в затвердевшем состоянии. Электрическая прочность твёрдых Э. м. (при 20 °С и частоте электрического тока 50 гц) лежит в пределах от 1 Мв/м (например, для некоторых материалов на основе смол) до 120 Мв/м (например, для полиэтилентерефталата). (О применении и получении твёрдых Э. м. см. в ст. Изоляция электрическая, Изолятор, Лаки, Слюда, Стеклопластики, Пластические массы, Компаунды полимерные, Смолы синтетические.) Жидкие Э. м. — электроизоляционные масла, в том числе нефтяные, растительные и синтетические. Отдельные виды жидких Э. м. отличаются друг от друга вязкостью и имеют различные по величине электрические характеристики. Лучшими электрическими свойствами (и      имеют электрическую прочность около 7,5 Мв/м, применяются в качестве Э. м.) в основном обладают конденсаторные и кабельные масла. Электрическая прочность жидких Э. м. при 20 °С и частоте 50 гц обычно находится в пределах 12—25 Мв/м, например для трансформаторных масел 15—20 Мв/м (см. также Жидкие диэлектрики). Существуют полужидкие Э. м. — вазелины. Газообразные Э. м. — воздух, элегаз (гексафторид серы), фреон-21 (дихлорфторметан). Воздух является естественным изолятором (воздушные промежутки в электрических машинах, аппаратах и т. п.), обладает электрической прочностью около 3 Мв/м. Элегаз и фреон-21 имм в кабелях и различных электрических аппаратах.

По химическому составу различают органические и неорганические Э. м. Наиболее распространённые Э. м. — неорганические (слюда, керамика и пр.). В качестве Э. м. используют природные (естественные) материалы и искусственные (синтетические) материалы. Искусственные Э. м. можно создавать с заданным набором необходимых электрических и физико-химических свойств, поэтому такие Э. м. наиболее широко применяют в электротехнике и радиотехнике. В соответствии с электрическими свойствами молекул вещества различают полярные (дипольные) и неполярные (нейтральные) Э. м. К полярным Э. м. относятся бакелиты, совол, галовакс, поливинилхлорид, многие кремнийорганические материалы; к неполярным — водород, бензол, четырёххлористый углерод, полистирол, парафин и др. Полярные Э. м. отличаются повышенной диэлектрической проницаемостью и несколько повышенной электрической проводимостью и гигроскопичностью.

Для твёрдых Э. м. большое значение имеют механические свойства: прочность при растяжении и сжатии, при статическом и динамическом изгибе, твёрдость, обрабатываемость, а также тепловые свойства (теплостойкость и нагревостойкость), влагопроницаемость, гигроскопичность, искростойкость и др. Теплостойкость характеризует верхний предел температур, при которых Э. м. способны сохранять свои механические и эксплуатационные свойства. Нагревостойкость Э. м. — способность выдерживать воздействие высоких температур (от 90 до 250 °С) без заметных изменений электрических характеристик материала. В электромашиностроении принято деление Э. м. на 7 классов. Наиболее нагревостойкие Э. м. — неорганические материалы (слюда, фарфор, стекло без связующих или с элементоорганическими связующими). Для хрупких материалов (стекло, фарфор) важна также способность выдерживать перепады температур. Осуществляя электрическое разделение проводников, Э. м. в то же время не должны препятствовать отводу тепла от обмоток, сердечников и других элементов электрических машин и установок. Поэтому важным свойством Э. м. является теплопроводность. Для повышения коэффициента теплопроводности в жидкие Э. м. добавляют минеральные наполнители. Большинство Э. м. в той или иной мере поглощают влагу (гигроскопичны). Для повышения влагонепроницаемости пористые Э. м. пропитывают маслами, синтетическими жидкостями, компаундами.                К абсолютно влагостойким можно отнести лишь глазурованный фарфор, стекло и т. п.

IV. КОММУТАЦИОННЫЕ АППАРАТЫ

 

Для группы электродвигателей, служащих для привода одной машины или ряда машин, осуществляющих единый технологический процесс, следует, как правило, применять общий аппарат или комплект коммутационных аппаратов, если это оправдывается требованиями удобства или безопасности эксплуатации. В остальных случаях каждый электродвигатель должен иметь отдельные коммутационные аппараты.

Коммутационные аппараты в цепях электродвигателей должны отключать от сети одновременно все проводники, находящиеся под напряжением. В цепи отдельных электродвигателей допускается иметь аппарат, отключающий не все проводники, если в общей цепи группы таких электродвигателей установлен аппарат, отключающий все проводники.

 При наличии дистанционного или автоматического управления электродвигателем какого-либо механизма вблизи последнего должен быть установлен аппарат аварийного отключения, исключающий возможность дистанционного или автоматического пуска электродвигателя до принудительного возврата этого аппарата в исходное положение.

Не требуется устанавливать аппараты аварийного отключения у механизмов:

а) расположенных в пределах видимости с места управления;

б) доступных только квалифицированному обслуживающему персоналу (например: вентиляторы, устанавливаемые на крышах, вентиляторы и насосы, устанавливаемые в отдельных помещениях;

в) конструктивное исполнение которых исключает возможность случайного прикосновения к движущимся и вращающимся частям; около этих механизмов должно быть предусмотрено вывешивание плакатов, предупреждающих о возможности дистанционного или автоматического пуска;

г) имеющих аппарат местного управления с фиксацией команды на отключение.

Целесообразность установки аппаратов местного управления (пуск, останов) вблизи дистанционно или автоматически управляемых механизмов должна определяться при проектировании в зависимости от требований технологии, техники безопасности и организации управления данной установкой.

Цепи управления электродвигателями допускается питать как от главных цепей, так и от других источников электроэнергии, если это вызывается технической необходимостью.

Во избежание внезапных пусков электродвигателя при восстановлении напряжения в главных цепях должна быть предусмотрена блокировочная связь, обеспечивающая автоматическое отключение главной цепи во всех случаях исчезновения напряжения в ней, если не предусматривается самостоятельный запуск.

На корпусах аппаратов управления и разъединяющих аппаратах должны быть нанесены четкие знаки, позволяющие легко распознавать включенное и отключенное положения рукоятки управления аппаратом. В случаях, когда оператор не может определить по состоянию аппарата управления, включена или отключена главная цепь электродвигателя, рекомендуется предусматривать световую сигнализацию.

Коммутационные аппараты должны без повреждений и ненормального износа коммутировать наибольшие токи нормальных режимов работы управляемого ими электродвигателя (пусковой, тормозной, реверса, рабочий). Если реверсы и торможения не имеют места в нормальном режиме, но возможны при неправильных операциях, то коммутационные аппараты в главной цепи должны коммутировать эти операции без разрушения.

Коммутационные аппараты должны быть стойкими к расчетным токам КЗ Коммутационные аппараты по своим электрическим и механическим параметрам должны соответствовать характеристикам приводимого механизма во всех режимах его работы в данной установке.

 Использование втыкаемых контактных соединителей для управления переносными электродвигателями допускается только при мощности электродвигателя не более 1 кВт.

Втыкаемые контактные соединители, служащие для присоединения передвижных электродвигателей мощностью более 1 кВт, должны иметь блокировку, при которой отключение и включение соединения возможны только при отключенном положении пускового аппарата в главной (силовой) цепи электродвигателя.

 Включение обмоток магнитных пускателей, контакторов и автоматических выключателей в сети до 1 кВ с заземленной нейтралью, может производиться на междуфазное или фазное напряжение.

При включении обмоток указанных выше аппаратов на фазное напряжение должно быть предусмотрено одновременное отключение всех трех фаз ответвления к электродвигателю автоматическим выключателем, а при защите предохранителями - специальными устройствами, действующими на отключение пускателя или контактора при сгорании предохранителей в одной или любых двух фазах.

При включении обмотки на фазное напряжение ее нулевой вывод должен быть надежно присоединен к нулевому рабочему проводнику питающей линии или отдельному изолированному проводнику, присоединенному к нулевой точке сети.

Коммутационные аппараты электродвигателей, питаемых по схеме блока трансформатор - электродвигатель, следует, как правило, устанавливать на вводе от сети, питающей блок, без установки их на вводе к электродвигателю.

При наличии дистанционного или автоматического управления механизмами должна быть предусмотрена предварительная (перед пуском) сигнализация или звуковое оповещение о предстоящем пуске. Такую сигнализацию и такое оповещение не требуется предусматривать у механизмов, вблизи которых установка аппарата аварийного отключения не требуется Провода и кабели, которые соединяют пусковые реостаты с фазными роторами асинхронных электродвигателей, должны выбираться по длительно допустимому току для следующих условий:

работа с замыканием колец электродвигателя накоротко: при пусковом статическом моменте механизма, не превышающем 50% номинального момента электродвигателя (легкий пуск), - 35% номинального тока ротора, в остальных случаях - 50% номинального тока ротора; работа без замыкания колец электродвигателя накоротко - 100% номинального тока ротора.

Пуск асинхронных электродвигателей с короткозамкнутым ротором и синхронных электродвигателей должен производиться, как правило, непосредственным включением в сеть (прямой пуск). При невозможности прямого пуска следует применять пуск через реактор, трансформатор или автотрансформатор. В особых случаях допускается применение пуска с подъемом частоты сети с нуля.

 

ЗАЩИТА АСИНХРОННЫХ И СИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ ВЫШЕ 1 КВ

 

На электродвигателях должна предусматриваться защита от многофазных замыканий  и в случаях, оговоренных ниже, защита от однофазных замыканий на землю  защита от токов перегрузки (см. и защита минимального напряжения  На синхронных электродвигателях должна, кроме того, предусматриваться защита от асинхронного режима которая может быть совмещена с защитой от токов перегрузки.

Защита электродвигателей с изменяемой частотой вращения должна выполняться для каждой частоты вращения в виде отдельного комплекта, действующего на свой выключатель.

На электродвигателях, имеющих принудительную смазку подшипников, следует устанавливать защиту, действующую на сигнал и отключение электродвигателя при повышении температуры или прекращения действия смазки.

На электродвигателях, имеющих принудительную вентиляцию, следует устанавливать защиту, действующую на сигнал и отключение электродвигателя при повышении температуры или прекращении действия вентиляции.

Электродвигатели с водяным охлаждением обмоток и активной стали статора, а также с встроенными воздухоохладителями, охлаждаемыми водой, должны иметь защиту, действующую на сигнал при уменьшении потока воды ниже заданного значения и на отключение электродвигателя при его прекращении. Кроме того, должна быть предусмотрена сигнализация, действующая при появлении воды в корпусе электродвигателя.

Для защиты электродвигателей от многофазных замыканий в случаях, когда не применяются предохранители, должна предусматриваться:

1. Токовая одно релейная отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия, включенным на разность токов двух фаз, - для электродвигателей мощностью менее 2 МВт.

2. Токовая двух елейная отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия - для электродвигателей мощностью 2 МВт и более, имеющих действующую на отключение защиту от однофазных замыканий на землю , а также для электродвигателей мощностью менее 2 МВт, когда защита по п. 1 не удовлетворяет требованиям чувствительности или когда двух релейная отсечка оказывается целесообразной по исполнению комплектной защиты или применяемого привода с реле прямого действия.

При отсутствии защиты от однофазных замыканий на землю токовая отсечка электродвигателей мощностью 2 МВт и более должна выполняться трех релейной с тремя трансформаторами тока. Допускается защита в двухфазном исполнении с дополнением защиты от двойных замыканий на землю, выполненная с помощью трансформатора тока нулевой последовательности и токового реле.

3. Продольная дифференциальная токовая защита - для электродвигателей мощностью 5 МВт и более, а также менее 5 МВт, если установка токовых отсечек по п. 1 и 2 не обеспечивает выполнения требований чувствительности; продольная дифференциальная защита электродвигателей при наличии на них защиты от замыканий на землю должна иметь двухфазное исполнение, а при отсутствии этой защиты - трехфазное, с тремя трансформаторами тока. Допускается защита в двухфазном исполнении с дополнением защиты от двойных замыканий на землю, выполненной с помощью трансформатора тока нулевой последовательности и токового реле.

Для электродвигателей мощностью 5 МВт и более, выполненных без шести выводов обмотки статора, должна предусматриваться токовая отсечка.

Для блоков трансформатор (автотрансформатор) - электродвигатель должна предусматриваться общая защита от многофазных замыканий:

1. Токовая отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах  - для электродвигателей мощностью до 2 МВт. При схеме соединения обмоток трансформатора звезда - треугольник отсечка выполняется из трех токовых реле: двух включенных на фазные токи и одного включенного на сумму этих токов.

При невозможности установки трех реле (например, при ограниченном числе реле прямого действия) допускается схема с двумя реле, включенными на соединенные треугольником вторичные обмотки трех трансформаторов тока.

2. Дифференциальная отсечка в двух релейном исполнении, отстроенная от бросков тока намагничивания трансформатора, - для электродвигателей мощностью более 2 МВт, а также 2 МВт и менее, если защита по п. 1 не удовлетворяет требованиям чувствительности при междуфазном КЗ на выводах электродвигателя.

3. Продольная дифференциальная токовая защита в двух релейном исполнении с промежуточными насыщающимися трансформаторами тока - для электродвигателей мощностью более 5 МВт, а также 5 МВт и менее, если установка отсечек по п. 1 и 2 не удовлетворяет требованиям чувствительности.

Оценка чувствительности должна производиться  при КЗ на выводах электродвигателя.

Защита должна действовать на отключение выключателя блока, а у синхронных электродвигателей - также на устройство АГП, если оно предусмотрено.

Для блоков с электродвигателями мощностью более 20 МВт, как правило, должна предусматриваться защита от замыкания на землю, охватывающая не менее 85% витков обмотки статора электродвигателя и действующая на сигнал с выдержкой времени.

Указания по выполнению остальных видов защиты трансформаторов (автотрансформаторов) и электродвигателей при работе их раздельно действительны и в том случае, когда они объединены в блок трансформатор (автотрансформатор) - электродвигатель.

Защита электродвигателей мощностью до 2 МВт от однофазных замыканий на землю при отсутствии компенсации должна предусматриваться при токах замыкания на землю 10 А и более, а при наличии компенсации - если остаточный ток в нормальных условиях превышает это значение. Такая защита для электродвигателей мощностью более 2 МВт должна предусматриваться при токах 5 А и более.

Ток срабатывания защит электродвигателей от замыканий на землю должен быть не более: для электродвигателей мощностью до 2 МВт 10 А и для электродвигателей мощностью более 2 МВт 5 А. Рекомендуются меньшие токи срабатывания, если это не усложняет выполнения защиты.

Защиту следует выполнять без выдержки времени (за исключением электродвигателей, для которых требуется замедление защиты по условию отстройки от переходных процессов) с использованием трансформаторов тока нулевой последовательности, установленных, как правило, в РУ. В тех случаях, когда установка трансформаторов тока нулевой последовательности в РУ невозможна или может вызвать увеличение выдержки времени защиты, допускается устанавливать их у выводов электродвигателя в фундаментной яме.

Если защита по условию отстройки от переходных процессов должна иметь выдержку времени, то для обеспечения быстродействующего отключения двойных замыканий на землю в различных точках должно устанавливаться дополнительное токовое реле с первичным током срабатывания около        50-100 А.

Защита должна действовать на отключение электродвигателя, а у синхронных электродвигателей - также на устройство АГП, если оно предусмотрено.

Защита от перегрузки должна предусматриваться на электродвигателях, подверженных перегрузке по технологическим причинам, и на электродвигателях с особо тяжелыми условиями пуска и самостоятельного запуска (длительность прямого пуска непосредственно от сети 20 с и более), перегрузка которых возможна при чрезмерном увеличении длительности пускового периода вследствие понижения напряжения в сети.

Защиту от перегрузки следует предусматривать в одной фазе с зависимой или независимой от тока выдержкой времени, отстроенной от длительности пуска электродвигателя в нормальных условиях и самостоятельного запуска после действия АВР и АПВ. Выдержка времени защиты от перегрузки синхронных электродвигателей во избежание излишних срабатываний при длительном форсировании возбуждения должна быть по возможности близкой к наибольшей допустимой по тепловой характеристике электродвигателя.

На электродвигателях, подверженных перегрузке по технологическим причинам, защита, как правило, должна выполняться с действием на сигнал и автоматическую разгрузку механизма.

Действие защиты на отключение электродвигателя допускается:

на электродвигателях механизмов, для которых отсутствует возможность своевременной разгрузки без останова, или на электродвигателях, работающих без постоянного дежурства персонала;

на электродвигателях механизмов с тяжелыми условиями запуска или самостоятельного  запуска.

Для электродвигателей, которые защищаются от токов КЗ предохранителями, не имеющими вспомогательных контактов для сигнализации об их перегорании, должна предусматриваться защита от перегрузки в двух фазах.

Защита синхронных электродвигателей от асинхронного режима может осуществляться при помощи реле, реагирующего на увеличение тока в обмотках статора; она должна быть отстроена по времени от пускового режима и тока при действии форсирования  возбуждения.

Защита, как правило, должна выполняться с независимой от тока характеристикой выдержки времени. Допускается применение защиты с зависимой от тока характеристикой на электродвигателях с отношением КЗ более 1.

При выполнении схемы защиты должны приниматься меры по предотвращению отказа защиты при биениях тока асинхронного режима. Допускается применение других способов защиты, обеспечивающих надежное действие защиты при возникновении асинхронного режима.

Защита синхронных электродвигателей от асинхронного режима должна действовать с выдержкой времени на одну из схем, предусматривающих:

1) ресинхронизацию;

2) ресинхронизацию с автоматической кратковременной разгрузкой механизма до такой нагрузки, при которой обеспечивается втягивание электродвигателя в синхронизм (при допустимости кратковременной разгрузки по условиям технологического процесса);

3) отключение электродвигателя и повторный автоматический пуск;

4) отключение электродвигателя (при невозможности его разгрузки или ресинхронизации, при отсутствии необходимости автоматического повторного пуска и ресинхронизации по условиям технологического процесса).

Для облегчения условий восстановления напряжения после отключения КЗ и обеспечения самостоятельный запуска электродвигателей ответственных механизмов следует предусматривать отключение защитой минимального напряжения электродвигателей неответственных механизмов суммарной мощностью, определяемой возможностями источника питания и сети по обеспечению самостоятельный запуска.

Выдержки времени защиты минимального напряжения должны выбираться в пределах от 0,5 до 1,5 с - на ступень больше времени действия быстродействующих защит от многофазных КЗ, а установки по напряжению должны быть, как правило, не выше 70% номинального напряжения.

При наличии синхронных электродвигателей, если напряжение на отключенной секции затухает медленно, в целях ускорения действия АВР и АПВ может быть применено гашение поля синхронных электродвигателей ответственных механизмов с помощью защиты минимальной частоты или других способов, обеспечивающих быстрейшую фиксацию потери питания.

Эти же средства могут быть использованы для отключения неответственных синхронных электродвигателей, а также для предупреждения несинхронного включения отключенных двигателей, если токи выключения превышают допустимые значения.

В электроустановках промышленных предприятий в случаях, когда не может быть осуществлен одновременный самостоятельный запуск всех электродвигателей ответственных механизмов следует применять отключение части таких ответственных механизмов и их автоматический повторный пуск по окончании самостоятельный запуска первой группы электродвигателей. Включение последующих групп может быть осуществлено по току, напряжению или времени.

Защита минимального напряжения с выдержкой времени не более 10 с и установкой по напряжению, как правило, не выше 50% номинального напряжения должна устанавливаться на электродвигателях ответственных механизмов также в случаях, когда самостоятельный запуск механизмов после останова недопустим по условиям технологического процесса или по условиям безопасности и, кроме того, когда не может быть обеспечен самостоятельный запуск всех электродвигателей ответственных механизмов, кроме указанных случаев эту защиту следует использовать также для обеспечения надежности пуска АВР электродвигателей взаимно резервируемых механизмов.

На электродвигателях с изменяемой частотой вращения ответственных механизмов, самостоятельный запуск которых допустим и целесообразен, защиты минимального напряжения должны производить автоматическое переключение на низшую частоту вращения.

На синхронных электродвигателях должно предусматриваться автоматическое гашение поля. Для электродвигателей мощностью 2 МВт и более АГП осуществляется путем введения сопротивления в цепь обмотки возбуждения. Для электродвигателей мощностью менее 2 МВт допускается осуществлять АГП путем введения сопротивления в цепь обмотки возбуждения возбудителя. Для синхронных электродвигателей менее 0,5 МВт АГП, как правило, не требуется. На синхронных электродвигателях, которые снабжены системой возбуждения, выполненной на управляемых полупроводниковых элементах, АГП независимо от мощности двигателя может осуществляться инвертированием, если оно обеспечивается схемой питания. В противном случае АГП должно осуществляться введением сопротивления в цепь обмотки возбуждения.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ ДО 1 КВ (АСИНХРОННЫХ, СИНХРОННЫХ И ПОСТОЯННОГО ТОКА)

 

Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий в сетях с глухо заземленной нейтралью - также от однофазных замыканий, кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима.                        Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.

Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели.

Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя и вместе с тем, чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самостоятельный запуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной . Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы.

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя.

Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители - отсечки.

Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самостоятельного запуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами.

Защита от перегрузки должна действовать на отключение, на сигнал или на разгрузку механизма, если разгрузка возможна.

Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы.

Защита минимального напряжения должна устанавливаться в следующих случаях:

для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть;

для электродвигателей механизмов, самостоятельный запуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности.

Для ответственных электродвигателей, для которых необходим самостоятельный запуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой, помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания.

Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора.

Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться:

1) в электроустановках, с заземлённой нейтралью - во всех фазах или полюсах;

2) в электроустановках, с изолированной нейтралью:

при защите предохранителями - во всех фазах или полюсах;

при защите автоматическими выключателями - не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.

Защита электродвигателей переменного тока от перегрузок должна выполняться:

в двух фазах при защите электродвигателей от КЗ предохранителями;

в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе.

Аппараты защиты электродвигателей должны удовлетворять требованиям, разработанным для данных условий. Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения, допускается осуществлять соответствующими расцепителями, встроенными в один аппарат.

Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ ДО 1 КВ (АСИНХРОННЫХ, СИНХРОННЫХ И ПОСТОЯННОГО ТОКА)

 

Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий  в сетях с глухо заземленной нейтралью, а  также от однофазных замыканий, кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности работы в синхронном режиме с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима.                          Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.

Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели.

Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя и вместе с тем чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самостоятельный запуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы.

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя.

Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители - отсечки.

Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самостоятельного  запуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами.

Защита от перегрузки должна действовать на отключение, на сигнал или на разгрузку механизма, если разгрузка возможна.

Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы.

Защита минимального напряжения должна устанавливаться в следующих случаях:

для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть;

для электродвигателей механизмов, самостоятельный запуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности;

для части прочих электродвигателей в соответствии с условиями, приведенными в разработке данной конструкции.                                          Для ответственных электродвигателей, для которых необходим самостоятельный запуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой, помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания.

Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора.

Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться:

1) в электроустановках с заземленной нейтралью - во всех фазах или полюсах;

2) в электроустановках с изолированной нейтралью:

при защите предохранителями - во всех фазах или полюсах;

при защите автоматическими выключателями - не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.

Защита электродвигателей переменного тока от перегрузок должна выполняться:

в двух фазах при защите электродвигателей от КЗ предохранителями;

в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе.

Аппараты защиты электродвигателей должны удовлетворять заданным требованиям. Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения допускается осуществлять расцепителями, встроенными в один аппарат.

Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ ДО 1 КВ (АСИНХРОННЫХ, СИНХРОННЫХ И ПОСТОЯННОГО ТОКА)

 

Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий в сетях с глухо заземленной нейтралью - также от однофазных замыканий, кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима.                         Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.

Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели.

Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя и вместе с тем чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самостоятельный запуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы.

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя.

Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители - отсечки.

Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самостоятельного запуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами.

Защита от перегрузки должна действовать на отключение, по  сигналу или на разгрузку механизма, если разгрузка возможна.

Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы.

Защита от минимального напряжения должна устанавливаться в следующих случаях:

для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть;

для электродвигателей механизмов, самостоятельный запуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности;

для части прочих электродвигателей в соответствии с условиями, приведенными в технических условиях.  

Для ответственных электродвигателей, которым необходим самостоятельный запуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой, помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания.

Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора.

Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться:

1) в электроустановках с заземленной нейтралью - во всех фазах или полюсах;

2) в электроустановках с изолированной нейтралью:

при защите предохранителями - во всех фазах или полюсах;

при защите автоматическими выключателями - не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.

Защита электродвигателей переменного тока от перегрузок должна выполняться:

в двух фазах при защите электродвигателей от КЗ предохранителями;

в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе.

Аппараты защиты электродвигателей должны удовлетворять требованиям режимов эксплуатации.  Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения допускается осуществлять соответствующими расцепителями, встроенными в один аппарат.

Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями.

Аппаратура автоматического управления электродвигателями.

В данном разделе рассматриваются примеры аппаратов автоматического управления электродвигателями. Подобных аппаратов выпускается много. Велико их разнообразие, но назначение остаётся прежним. Поэтому достаточно рассмотреть принципиальное устройство и назначение наиболее распространённых аппаратов. Их описание приводится достаточно подробно, что позволит осваивать другие аппараты такого же назначения.

     Контактор ПМУ 

Контакторы ПМУ больше не производятся, поэтому необходимо смотреть аналоги серии LCE

  применяется в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором.

      Благодаря модульной конструкции пускатели ПМУ в процессе эксплуатации или при заказе могут комплектоваться следующим оборудованием:
  -тепловыми реле перегрузки RTLU-устройствами, отключающие контактор при превышении тока, выше порогового.

- контактными приставками PKLU-реле промежуточными RPLU
  -ограничители перенапряжения RC, сменные катушки управления PMUKT.  
  Способ крепления - дин рейка и винтами на монтажную панель (ширину динрейки в зависимости от величины контактора ПМУ необходимо уточнять по каталогу).

   Особенности пускателей ПМУ

1.Корпус контактора изготовлен из высококачественного пластика, с основой из полиамида с микростекловолокном. Данный пластик не поддерживает горение, не деформируется и не изменяет форму при нагреве, что повышает эксплуатационные качества контакторов ПМУ при работе в тяжелых режимах АС4.    2. Также материал корпуса благодаря своим прочностным характеристикам не подвержен сколам во время транспортировки.
    3. Основные силовые контакты контактора изготовлены по технологии, внедрения атомов серебра в кристаллическую решетку контактной пластины, что сокращает эрозию контактов во время разрыва «дуги». Что позволяет увеличить коммутационную  и механическую стойкость контакторов ПМУ. Благодаря расположению главных контактов относительно друг друга позволяет «самоощищаться» контактную поверхность от нагара во время коммутации и разрыва цепи. 

4. Благодаря возможности подключения проводников к катушке управления  как сверху, так  и снизу, облегчается монтаж шкафов автоматизации.                                                                                                                  5. Сердечник управляющей катушки отцентрован и собран без перекосов и заусениц, что снижает вибрацию, тепловые потери и увеличение срока службы контактора ПМУ.

  Для выбора контактора ПМУ, необходимо учитывать мощность оборудования, напряжение сети, и режим работы

Параметры

Номинальный ток контакторов ПМУ при АС3

номинальный ток при при АС3

12А

18А

25А

32А

40А

50А

65А

80А

95А

номинальный ток при при АС1

25А

32А

40А

50А

60А

60А

125А

номинальное рабочее напряжение В

230,400,415,660,440,500,690(660)

Номинальное напряжение изоляции В

690

мощность двигателям при АС3 кВт

 

 

 

 

 

 

 

 

 

 

230

2,2

3

4

5,5

7,5

11

15

18,5

22

25

400

4

5,5

7,5

11

15

18,5

22

30

37

45

660

5,5

7,5

10

15

18,5

30

33

37

45

45

Расшифровка обозначений Контактор ПМУ

Контактор ПМУ – 1) ХX1 2)X 3)X 4)X
1)   номинальный ток пускателя
2)   кол-во нормально открытых контактов
3)   кол-во нормально закрытых контактов
4)   буква обозначающая напряжение катушки
     Б – 24 В
     F - 110 В
     М – 220 В
     К – 380 В

Электрооборудование.

Методические указания

по самостоятельному изучению и освоению  учебного материала.

Для студентов заочного отделения,

обучающихся специальности 150414 Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок. Часть I.

_________________________________________________________________

Евдокимов Павел Евгеньевич, преподаватель специальных дисциплин и физики ГОУ ТК № 28

Сдано в печать 10.10.2011.

Формат бумаги 60х90/16

Тираж 15 экз.

Государственное образовательное учреждение

среднего профессионального образования

Технологический колледж № 28

109382, Москва, ул. Верхние поля, 27

Тел./факс 8(495)359-65-29

E-mail: 28-2@prof.educom.ru

Отпечатано в типографии ГОУ ТК № 28

Москва, ул. 2-ая Кабельная, 2

Тел. 8(495)673-54-22

E-mail: 78@prof.educom.ru


По теме: методические разработки, презентации и конспекты

Методические указания к самостоятельному изучению дисциплины «Статистика»

Методические указания  содержат теоретический материал и методики решения задач по следующим темам: "Сводка и группировка статистических данных", "Средние величины и показатели вариации", "Выборо...

Методические рекомендации для самостоятельного изучения темы: «Логарифмы»

Методические рекомендации   содержат основные темы изучения логарифмов:свойства логарифмовдесятичный и натуральный логарифмформулы перехода от одного основания логарифмов к другомупонятия область...

Методические рекомендации по самостоятельному изучению Профессионального модуля 03. «Проведение расчетов с бюджетом и внебюджетными фондами»

Методические рекомендации по самостоятельному изучению Профессионального модуля 03. «Проведение расчетов с бюджетом и внебюджетными фондами»...

Электронный образовательный ресурс Методические материалы для самостоятельного изучения Истории ОГСЭ

Методические рекомендации предназначены для студентов, обучающихся дистанционно. Содержит перечень тем, методические указания по каждой теме, перечень вопросов для самопроверки знаний и список литерат...

Методические указания для самостоятельного изучения дисциплины гидравлические и пневматические системы

Конспект лекций позволяющий студентам самостоятельно изучать дисциплину...

Методические указания по самостоятельному изучению тем

Для самостоятельного изучения материала по дисциплине "Электрооборудование судов" для судовых механиков...