Григорий Перельман
статья
Предварительный просмотр:
Журнальный вариант одной из глав новой книги Ник. Горькавого «Неоткрытые миры» (СПб.: «Астрель», 2018).
Григорий Яковлевич Перельман. 1993 год. Фото: George M. Bergman / Wikimedia Commons / PD
Математики — люди особенные. Они так глубоко погружаются в абстрактные миры, что, «возвращаясь на Землю», часто не могут приспособиться к реальной жизни и удивляют окружающих непривычными взглядами и поступками. У нас речь пойдёт о едва ли не самом талантливом и неординарном из них — Григории Перельмане.
В 1982 году шестнадцатилетний подросток Гриша Перельман, только что получивший золотую медаль на Международной математической олимпиаде в Будапеште, поступил в Ленинградский университет. Он заметно отличался от других студентов. Его научный руководитель профессор Юрий Дмитриевич Бураго рассказывал: «Существует масса одарённых студентов, которые говорят раньше, чем думают. Гриша был не таким. Он всегда очень тщательно и глубоко обдумывал, что намеревался сказать. Он не был очень быстрым в решениях. Скорость решения не значит ничего, математика не построена на скорости. Математика зависит от глубины».
После окончания университета Григорий Перельман стал сотрудником Математического института имени Стеклова, опубликовал ряд интересных статей по трёхмерным поверхностям в евклидовых пространствах. Мировое математическое сообщество оценило его достижения по заслугам. В 1992 году Перельмана пригласили на работу в Нью-Йоркский университет.
Григорий попал в один из мировых центров математической мысли. Каждую неделю он ездил на семинар в Принстон, где однажды прослушал лекцию выдающегося математика, профессора Колумбийского университета Ричарда Гамильтона. После лекции Перельман подошёл к профессору и задал несколько вопросов. Позже Перельман вспоминал об этой встрече: «Мне было очень важно расспросить его кое о чём. Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков».
Ричард Гамильтон. 1982 год. Фото: George M. Bergman / Wikimedia Commons / PD
Перельман провёл в США несколько лет. Он ходил по Нью-Йорку в одном и том же вельветовом пиджаке, питался в основном хлебом, сыром и молоком и непрерывно работал. Его стали приглашать в самые престижные университеты Америки. Молодой человек выбрал Гарвард и тут столкнулся с тем, что ему категорически не понравилось. Комитет по приёму на работу потребовал от соискателя автобиографию и рекомендательные письма от других учёных. Реакция Перельмана была жёсткой: «Если они знают мои работы, то им не нужна моя биография. Если им нужна моя биография, то они не знают моих работ». Он отказался от всех предложений и летом 1995 года вернулся в Россию, где продолжил работу над идеями, которые развивал Гамильтон. В 1996 году Перельману присудили премию Европейского математического общества для молодых математиков, но он, не любивший никакой шумихи, отказался её принять.
Когда Григорий добился определённых успехов в своих исследованиях, он написал письмо Гамильтону, надеясь на совместную работу. Однако тот не ответил, и Перельману пришлось действовать дальше в одиночку. Но впереди его ждала мировая слава.
В 2000 году Математический институт Клэя* опубликовал «список проблем тысячелетия», в который вошли семь классических задач математики, решения которых не могут найти уже очень много лет, и пообещал премию миллион долларов за доказательство любой из них. Менее чем через два года, 11 ноября 2002-го, Григорий Перельман опубликовал на научном сайте в интернете статью, в которой на 39 страницах подвёл итог своих многолетних усилий по доказательству одной задачи из списка. Американские математики, которые знали Перельмана лично, немедленно принялись обсуждать статью, в которой доказывалась знаменитая гипотеза Пуанкаре. Учёного пригласили в несколько университетов США прочитать курс лекций, посвящённый его доказательству, и в апреле 2003 года он полетел в Америку. Там Григорий провёл несколько семинаров, на которых показывал, как ему удалось превратить гипотезу Пуанкаре в теорему. Математическое сообщество признало лекции Перельмана исключительно важным событием и предприняло значительные усилия по проверке предложенного доказательства.
Подробности для любознательных
Задача Пуанкаре
Жюль Анри Пуанкаре (1854–1912) — выдающийся французский математик, механик, физик, астроном и философ, глава Парижской академии наук и член ещё более 30 академий наук мира. Сформулированная Пуанкаре в 1904 году задача относится к области топологии.
Жюль Анри Пуанкаре. 1887 год. Фото: Eugene Pirou / Wikimedia Commons / PD
Для топологии основное свойство пространства — его непрерывность. Любые пространственные формы, которые можно получить одну из другой с помощью растяжения и искривления, без разрезов и склеек, в топологии считаются одинаковыми (в качестве наглядного примера часто демонстрируют превращение чашки в бублик). Гипотеза Пуанкаре утверждает, что в четырёхмерном пространстве все трёхмерные поверхности, относящиеся к компактным многообразиям, с точки зрения топологии эквивалентны сфере.
Доказательство гипотезы Григорием Перельманом позволило разработать новый методологический подход к решению топологических задач, имеющий огромное значение для дальнейшего развития математики.
Парадоксально, но Перельман не получал грантов для доказательства гипотезы Пуанкаре, а другим учёным, проверяющим его правильность, гранты на сумму миллион долларов были выделены. Проверка была крайне важна, ведь над доказательством этой задачи трудилось немало математиков, а если она действительно решена, то они оставались не у дел.
Математическое сообщество проверяло доказательство Перельмана несколько лет и к 2006 году пришло к выводу, что оно правильное. Юрий Бураго тогда писал: «Доказательство закрывает целую отрасль математики. После него многим учёным придётся переключиться на исследования в других областях».
Математика всегда считалась наукой максимально строгой и точной, где нет места эмоциям и интригам. Но даже здесь есть борьба за приоритет. Вокруг доказательства российского математика закипели страсти. Двое молодых математиков, выходцев из Китая, изучив работу Перельмана, опубликовали гораздо более объёмную и подробную — более трёхсот страниц — статью с доказательством гипотезы Пуанкаре. В ней они утверждали, что работа Перельмана содержит много пробелов, которые им удалось восполнить. Согласно правилам математического сообщества, приоритет в доказательстве теоремы принадлежит тем исследователям, которые сумели представить его в наиболее полном виде. По мнению многих специалистов, доказательство Перельмана было полным, хотя и кратко изложенным. Более подробные выкладки не вносили в него ничего нового.
Когда журналисты спросили Перельмана, что он думает о позиции китайских математиков, Григорий ответил: «Я не могу сказать, что я возмущён, остальные поступают ещё хуже. Разумеется, существует масса более или менее честных математиков. Но практически все они — конформисты. Сами они честны, но они терпят тех, кто таковыми не являются». Затем он с горечью отметил: «Чужаками считаются не те, кто нарушает этические стандарты в науке. Люди, подобные мне, — вот кто оказывается в изоляции».
Эластичную петлю, растянутую на двумерной сфере, можно теоретически стянуть в точку. Любая двумерная поверхность без края, на которой можно сделать то же самое, с точки зрения топологии эквивалентна двумерной сфере. То есть поверхность дыни эквивалентна поверхности арбуза, а вот поверхность бублика не эквивалентна поверхности яблока. Гипотеза Пуанкаре заключалась в том, что аналогичное утверждение справедливо для трёхмерной сферы. Именно это и доказал Григорий Перельман. Рисунок: Salix alba / Wikimedia Commons / CC BY 2.5
В 2006 году Григорию Перельману присудили высшую награду в области математики — Филдсовскую премию**. Но математик, ведущий уединённый, даже затворнический образ жизни, отказался её получать. Это был настоящий скандал. Президент Международного математического союза даже прилетал в Петербург и десять часов уговаривал Перельмана принять заслуженную награду, вручение которой планировалось на конгрессе математиков 22 августа 2006 года в Мадриде в присутствии испанского короля Хуана Карлоса I и трёх тысяч участников. Этот конгресс должен был стать историческим событием, однако Перельман вежливо, но непреклонно сказал: «Я отказываюсь». Филдсовская медаль, по словам Григория, его совершенно не интересовала: «Это не имеет никакого значения. Всем понятно, что если доказательство верное, то никакого другого признания заслуг не требуется».
В 2010 году Институт Клэя присудил Перельману обещанную премию в миллион долларов за доказательство гипотезы Пуанкаре, которую ему собирались вручить на математической конференции в Париже. Перельман отказался от миллиона долларов и в Париж не поехал.
Как объяснил он сам, ему не нравится этическая атмосфера в математическом сообществе. Кроме того, вклад Ричарда Гамильтона он считал ничуть не меньшим. Лауреат многих математических премий, советский, американский и французский математик М. Л. Громов поддержал Перельмана: «Для великих дел необходим незамутнённый разум. Ты должен думать только о математике. Всё остальное — людская слабость. Принять награду означает проявить слабость».
Отказ от миллиона долларов сделал Перельмана ещё более знаменитым. Многие просили его получить премию и отдать им. Григорий не отвечал на подобные просьбы.
До сих пор доказательство гипотезы Пуанкаре остаётся единственной решённой задачей из списка тысячелетия. Перельман стал математиком номер один в мире, хотя и отказался от контактов с коллегами. Жизнь показала, что выдающихся результатов в науке часто добивались одиночки, которые не входили в структуру современной науки. Таким был Эйнштейн. Работая клерком в патентном бюро, он создал теорию относительности, разработал теорию фотоэффекта и принцип работы лазеров. Таким стал Перельман, который пренебрёг правилами поведения в научном сообществе и достиг при этом максимальной эффективности своей работы, доказав гипотезу Пуанкаре.
Григорий Яковлевич Перельман (род. 1966) — выдающийся математик, доказавший гипотезу Пуанкаре — одну из семи «проблем тысячелетия». Отказался от Филдсовской премии, членства в Академии наук России и других наград. В его честь назван астероид 50033 — Перельман.
Ричард Гамильтон (род. 1943) — американский математик, профессор Колумбийского университета. Впервые ввёл в рассмотрение «потоки Риччи», которые стали основой для доказательства гипотезы Пуанкаре.
* Математический институт Клэя (Кембридж, США) основан в 1998 году бизнесменом Лэндоном Клэйем и математиком Артуром Джеффи для увеличения и распространения математических знаний.
** Премия Филдса за выдающиеся достижения в области математики присуждается с 1936 года.
Цитаты
Я знаю, как управлять Вселенной. И скажите – зачем же мне бежать за миллионом?
Весь мир пронизывает пустота, а она подчиняется формулам — это даёт нам безграничные возможности.
Если можно тренировать руки и ноги, то почему нельзя тренировать мозг?
Неразрешимой задачи, пожалуй, нет. Трудно решаемой. Так точнее.
Помните библейскую легенду о том, как Иисус Христос ходил по воде, аки посуху? Так вот мне нужно было рассчитать, с какой скоростью он должен был двигаться по водам, чтобы не провалиться.
Награды и премии
- 1991 - премия «Молодому математику» Санкт-Петербургского математического общества
- 1996 - Премия Европейского математического общества для молодых математиков
- 2006 - премия «Медаль Филдса»
- 2010 - премия Математического института Клэя
По теме: методические разработки, презентации и конспекты
Внеклассное мероприятие, посвящённое памяти заслуженного писателя Мордовии Григория Ильича Пинясова.
Забота о возрождении мордовского народа, борьба за спасение народной нравственности – вот проблемы, которые двигали его пером. Григорий Ильич Пинясов являлся членом правления...
методическая разработка урока по теме: «Судьба и характер Григория Мелехова»
План – конспект урока «деловая игра» определяет основные цели, форму, методы и приемы, структурные элементы урока, деятельность обучающихся и преподавателя. В приложении представлены фрагменты историч...
Григорий Яковлевич Пелерман
Григорий Яковлевич Перельман...