Конспект урока с применением ИКТ «Степень с рациональным показателем и ее свойства»
план-конспект урока на тему
Конспект урока с применением ИКТ: «Степень с рациональным показателем и ее свойства» был проведен в СПО для специальности: «Компьютерные сети»
Дидактические единицы: степень с произвольным действительным показателем и ее свойства, преобразование и вычисление значений показательных выражений.
Тип занятия: урок усвоения нового материала. Применяемая технология: технология сотрудничества, информационно – компьютерная технология с использованием презентации к уроку.
Методы обучения:по источникам знаний: практический;по характеру познавательной деятельности: репродуктивно-поисковые. Форма организации занятия: групповая, индивидуальная, фронтальная.
Дидактическая цель: составление мониторинга качества сформированных умений и навыков при применении основных понятий, правил, законов на определение степени с натуральным и рациональным показателем.
Скачать:
Вложение | Размер |
---|---|
otkr_urok_rizvanovastepen_s_ratsionalnym_pokazatelem_i_ee_svoystva.docx | 403.45 КБ |
Предварительный просмотр:
Модель учебного занятия
дисциплины «Математика»
ГПОУ «Воркутинский политехнический техникум»
Специальность: «Компьютерные сети»
Тема: «Степень с рациональным показателем и ее свойства»
Дидактические единицы: степень с произвольным действительным показателем и ее свойства, преобразование и вычисление значений показательных выражений.
Тип занятия: урок усвоения нового материала.
Применяемая технология: технология сотрудничества, информационно – компьютерная технология с использованием презентации к уроку.
Методы обучения:
- по источникам знаний: практический;
- по характеру познавательной деятельности: репродуктивно-поисковые.
Форма организации занятия: групповая, индивидуальная, фронтальная.
Оборудование: оценочные листы, карточки с заданиями, дешифраторами, кроссвордами для каждого обучающегося, мультимедийное оборудование, электронные презентации.
Цели занятия:
образовательная |
|
развивающая |
|
воспитательная |
|
Дидактическая цель: составление мониторинга качества сформированных умений и навыков при применении основных понятий, правил, законов на определение степени с натуральным и рациональным показателем.
ХОД УРОКА
Приложение 1 (слайд 1)
I. Организационный момент.
Преподаватель. На столе у каждого из вас есть оценочный лист. В него вы будете вносить свою оценку за каждый этап урока. В конце урока вы выставите средний балл за урок.
Приложение 2 (слайд2)
Оценочный лист
Фамилия, имя | Кроссворд | Устные упражнения (Гимнастика ума) | Творч. задания | С/р | Итоговая оценка |
|
|
|
|
II. Актуализация знаний учащихся.
Преподаватель. Известный французский писатель Анатоль Франс сказал в свое время: “Учиться надо весело.…Чтобы поглощать знания надо поглощать их с аппетитом”.
Повторить необходимые теоретические сведения я предлагаю вам в ходе разгадывания кроссворда.
Цель: создать условия для воспроизведения в памяти обучающихся системы опорных знаний и умений
Приложение 3 (слайд 3)
По горизонтали:
- Действие, с помощью которого вычисляется значение степени.
- Произведение, состоящее из одинаковых множителей.
- Действие показателей степеней при возведении степени в степень.
- Действие степеней, при которых показатели степеней вычитаются.
По вертикали:
- Число всех одинаковых множителей.
- Степень с нулевым показателем.
- Повторяющийся множитель.
- Значение 44: 26
- Показатель степени, который обычно не пишут.
Задания для группы сильных студентов:
1.Найти значение выражения: (х+х2): (х-х2) при х=0, 5
2. Упростить выражение: (а + 3а1/2): (а1/2+3)
3.Решить уравнение: - 1=0
Приложение 4 (слайд 4) Ответы:
По горизонтали: 1. Возведение 2. Степень 3. Произведение 4. Деление
По вертикали: 5. Показатель 6.Единица 7.Основание 8.Четыре 9.Единица
Преподаватель. Теперь подведем итог первого этапа работы в группах при разгадывании кроссворда, из которого вы повторили основные свойства и понятия для работы со степенями. Руководители групп назовите результат работы ваших групп и оцените работу каждого студента, а результаты каждый занесите в свои оценочные листы.
III. Этап усвоения новых знаний.
Преподаватель. На доске слева пример- , справа - *= ?
В чем отличие и в чем сходство? (разные показатели, но одинаковые основания)
А, чем отличаются показатели степени в данных примерах? (в первом случае целые числа, а во втором- дробные числа)
К какому множеству чисел относятся дробные числа? (рациональному)
Правильно! В начале урока я называла тему «Свойства степени с натуральным показателем», а как вы думаете, что нужно изменить в названии темы, чтобы более точно сформулировать тему занятия. Хорошо, теперь вместе с вами сформулируем цели нашего занятия. Для этого необходимо вспомнить, что представляет собой множество рациональных чисел, дать определение степени с рациональным показателем, перечислить основные свойства степени с рациональным показателем и научиться применять данную теорию на практике.
Приложение 5 (слайд 5)
III. Осознание и осмысление учебной информации.
Приложение 6 (слайд 6)
1.
2. Вычислить: 160,75 + 4*
3. Решить уравнение: х1/3 = 4
4. Упростить выражение: (0,04х7/8)-1/2
На доску проецируются задания. Обучающиеся выполняют их в тетради.
IV. Первичное закрепление учебного материала.
1.Самостоятельная работа по группам (оценивание по слайду):
Вариант 1
1. Вычислить:
2.Упростить выражение: б)
3. Решить уравнение: х1\4 = 2
Вариант 2
1.Вычислить:
2. Упростить выражение: а)(х3/8 )-5/6 б)
3. Решить уравнение: = 3
Вариант 3
1. Вычислить:
2. Упростить выражение:
а) б)
3. Решить уравнение:
Вариант 4
1. Вычислить:
2. Упростить выражение:
а) х3\7 : х-2\3 б) (0,008х6/7)1/3
3. Решить уравнение:
Затем происходит проверка данных заданий с помощью проектора (Слайд 6). Качество своего выполнения учащиеся определяют сами (взаимопроверка по группам), выставляя себе отметку в оценочный лист.
2. Преподаватель. Повторив определение степени с рациональным показателем и его свойства, выполним следующие задания, получая и исторические справки, связанные с понятием степени.
Приложение 7 (слайд 7) Все обучающиеся делятся на 4 группы.
Приложение 8 (слайд 8)
Задание (1группа). Решив уравнения и составив слово 1234567, используя дешифратор, вы узнаете имя этого ученого, который положил начало буквенных записей степени.
Л | Т | Н | Р | Ш | О | Ь | И | Е | Ф | К | А | Д | Ю |
9/4 | 9 | 5 | 11 | -2 | 4/9 | 20 | 5/3 | 1/3 | 1 | 3 | 8 | 64 | 2 |
- Х1/3=4
- у-1=3/5
- а1/2= 2/3
- х-0,5 х1,5 = 1
- у1/3 =2
- а2/7а12/7 = 25
- а1/2 : а = 1/3
Ответ: 1234567 (Диофант)
Приложение 9 (слайд7)
Л | Т | Н | Р | Ш | О | Ь | И | Е | Ф | К | А | Д | Ю |
9/4 | 9 | 5 | 11 | -2 | 4/9 | 20 | 5/3 | 1/3 | 1 | 3 | 8 | 64 | 2 |
Задание(2 группа). Решив уравнения и составив слово 1234567, используя дешифратор, вы узнаете имя этого ученого, который ввел название показатель.
- -81/3
- 811/2
- (3/5)-1
- (5/7)0
- 27-1/3
- (2/3)-2
- 161/2 * 1251/3
Приложение 10 (слайд 8)
Ответ: 1234567 (Штифель)
Приложение 11 (слайд7)
Задание(3 группа). Решив уравнения и составив слово 123451, используя дешифратор, вы узнаете имя этого ученого, который дал определения и обозначения степени с нулевым, отрицательным и дробным показателем.
Л | Т | Н | Р | Ш | О | Ь | И | Е | Ф | К | А | Д | Ю |
9\4 | 9 | 5 | 11 | -2 | 4\9 | 20 | 5\3 | 1\3 | 1 | 3 | 8 | 64 | 2 |
1. а2\7а12\7 = 25
2. (х-12)1\3 =2
3. х-0,7 х3,7 = 8
4.а1\2 : а = 1\3
5. а1\2= 2\3
Приложение 12 (слайд 8)
Ответ: 123451 (Ньютон)
Приложение 13 (слайд 7)
Задание (4 группа). Выполнив это задание и составив слово 123456, используя дешифратор узнаете фамилию этого математика, который ввел современную запись степени.
Л | Т | Н | Р | Ш | О | Ь | И | Е | Ф | К | А | Д | Ю |
9\4 | 9 | 5 | 11 | -2 | 4\9 | 20 | 5\3 | 1\3 | 1 | 3 | 8 | 64 | 2 |
- Х1/3=4
- у-1= 3
- (х+6)1/2 = 3
- у1/3 =2
- (у-3)1/3=2
- а1/2 : а = 1/3
Приложение 14(слайд 8)
Ответ: 123456 (Декарт)
3.Исторические сведения о развитии понятия степени (сообщения обучающихся).
Приложение 15 (слайд 9)
Понятие степени с натуральным показателем сформировалось ещё у древних народов. Квадрат и куб числа использовались для вычисления площадей и объемов. Степени некоторых чисел использовались при решении отдельных задач учеными Древнего Египта и Вавилона.
В III веке вышла книга греческого ученого Диофанта “Арифметика”, в которой было положено начало введению буквенной символики. Диофант вводит символы для первых шести степеней неизвестного и обратных им величин. В этой книге квадрат обозначается знаком с индексом r; куб – знаком k c индексом r и т.д.
Из практики решения более сложных алгебраических задач и оперирования со степенями возникла необходимость обобщения понятия степени и расширения его посредством введения в качестве показателя нуля, отрицательных и дробных чисел. К идее обобщения понятия степени на степень с ненатуральным показателем математики пришли постепенно.
Дробные показатели степени и наиболее простые правила действии над степенями с дробными показателями встречаются у французского математика Николая Орема (1323–1382 гг.) в его труде “Алгоритм пропорций”.
Равенство, а0 =1 (для а не равного 0) применял в своих трудах в начале ХV века самаркандский ученый Гиясаддин Каши Джемшид. Независимо от него нулевой показатель был введен Николаем Шюке в ХV веке. Известно, что Николай Шюке (1445–1500 гг.), рассматривал степени с отрицательными и нулевым показателями.
Позже дробные и отрицательные, показатели встречаются в “Полной арифметике” (1544 г.) немецкого математика М.Штифеля и у Симона Стевина. Симон Стевин предположил подразумевать под а1/n корень .
Немецкий математик М.Штифель (1487–1567 гг.) дал определение а0=1 при и ввел название показатель (это буквенный перевод с немецкого Exponent). Немецкое potenzieren означает возведение в степень.
В конце ХVI века Франсуа Виет ввел буквы для обозначения не только переменных, но и их коэффициентов. Он применял сокращения: N, Q, C – для первой, второй и третьей степеней. Но современные обозначения (типа а4, а5) в XVII в ввел Рене Декарт.
Современные определения и обозначения степени с нулевым, отрицательным и дробным показателем берут начало от работ английских математиков Джона Валлиса (1616–1703) и Исаака Ньютона (1643–1727).
О целесообразности введения нулевого, отрицательных и дробных показателей и современных символов впервые подробно писал в 1665 г. английский математик Джон Валлис. Его дело завершил Исаак Ньютон, который стал систематически применять новые символы, после чего они вошли в общий обиход.
Введение степени с рациональным показателем является одним из многих примеров обобщение понятий математического действия. Степень с нулевым, отрицательным и дробными показателями определяется таким образом, чтобы к ней были применены те же правила действий, которые имеют место для степени с натуральным показателем, т.е. чтобы сохранились основные свойства первоначального определённого понятия степени.
Новое определение степени с рациональным показателем не противоречит старому определению степени с натуральным показателем, то есть смысл нового определения степени с рациональным показателем сохраняется и для частного случая степени с натуральным показателем. Этот принцип, соблюдаемый при обобщении математических понятий, называется принципом перманентности (сохранения постоянства). В несовершенной форме его высказал 1830 г. английский математик Дж.Пикок, полностью и четко его установил немецкий математик Г.Ганкель в 1867 г.
4.Гимнастика ума.
Приложение 16 (слайд 10)
5.Итог урока
Преподаватель. А, теперь подведем итоги по определению степени с рациональным показателем:
-Какие множества чисел включает множество рациональных чисел?
-Какова область определения степени с рациональным показателем?
-Еще раз пройдемся по свойствам степени. Вернемся к слайду и подумаем достигли ли мы поставленной цели?
Вы сами оценивали свои знания. Поднимите руки кто оценил свои знания на «3», на «4», на «5» ,а кто вообще никак не оценил свои знания? В тетрадях отметьте те этапы урока, которые вызвали у вас затруднения. Итог на «»5» - … , на «4» – …,на «3» - …,и конечно нужно поработать над данной темой.
Попрошу сдать оценочные листы, и оценки будут выставлены в журнал.
А ребятам, которые готовили исторические справки, делали задания «лабиринта» получают дополнительные оценки.
V. Информация о домашнем задании.
Приложение 17 (слайд 11)
1.Выполнив это задание и составив слово 12345, используя дешифратор узнаете фамилию этого математика, который ввел наиболее простые правила действии над степенями с дробными показателями.
Л | Т | Н | Р | М | О | Ь | И | Е | Ф | К | А | Д | Ю |
9\4 | 9 | 5 | 11 | -2 | 4\9 | 20 | 5\3 | 1\3 | 1 | 3 | 8 | 64 | 2 |
1.а1\2= 2\3
2.(у-3)1/3=2
3. у-1= 3
4.-81/3 =у
5.у1/3 =2
2.Глава 4 $ 9 п.34, №430,437(а,в),431(а) по учебнику: Алгебра и начала анализа, 10-11 кл., под ред. А.Н.Колмогорова и др.
VI. Рефлексия
Преподаватель. Понравился ли вам занятие? Что нового узнали? Что особенно привлекло ваше внимание? К какому выводу вы пришли?
Значит день прошел недаром. Я выполнила свою миссию.
Я получила удовлетворение от результата нашей совместной работы, благодарю за плодотворное сотрудничество.
По теме: методические разработки, презентации и конспекты
Корень n-й степени из действительного числа и его свойства
Цели урока: Образовательная: формирование у учащихся целосного представления о корне n-ой степени....
Конспект урока английского языка "Степени сравнения прилагательных"
Конспект урока английского языка "Степени сравнения прилагательных" с пояснительной запиской и презентацией...
степень числа с рациональным показателем
Обобщение материала по теме "Степень числа с рациональным показателем...
Методическая разработка урока по алгебре «Свойства степени с рациональным и действительным показателем»
Данный урок входит в тему "Преобразования выражений, содержащих степени и корни".Конспект представляет собой подробную разработку урока по свойствам степени с рациональным и действительным п...
Конспект урока:"Рациональное использование и охрана водных ресурсов» "
Урок предназначен для преподавателей спецдисциплин и студентов СПО, а также тем, кто интересуется использованием на уроках кейс - технологии....
План занятия "Степень с действительным показателем и ее свойства"
Учебная дисциплинаМатематика: алгебра и начала математического анализа, геометрия.ГруппаТО 1.9, 1 курсТип учебного занятияУрок- обобщениеВид учебного занятия Урок – комбинированное занятие...
Самостоятельная работа по теме: « Степень с рациональным показателем»
Решение самостоятельной работы по теме...