Работа выполнена обучающейся 5 класса.
Вложение | Размер |
---|---|
proekt_zhivopis_v_matematike.docx | 28.82 КБ |
ВВЕДЕНИЕ
Тема: «Живопись в математике».
Выбор темы исследования: выбор данной темы поспособствовала любовь к предмету математика, а также решение вопроса, насколько математика тесно связанна в других сферах деятельности человека.
Цель исследования: показать взаимосвязь математики и живописи.
Задачи исследования:
Объект исследования: живопись с математической составляющей.
Предмет исследования: взаимосвязь математики и живописи.
Гипотеза исследования: математика тесно связана в сфере живописи.
Методы исследования:
К написанию данной исследовательской работы меня подвигла любовь к предмету математика и не меньшая любовь к рисованию. Размах практического применения математики огромен. Практически в любой области деятельности человека необходимо знание математики.
Математика дисциплинирует ум, приучает к логическому мышлению. В ней много цифр, различных знаков, символов, отношений. Если мы посмотрим вокруг, то заметим, что нас окружают предметы, которые имеют разную геометрическую форму.Архитекторы и строители создают здания при помощи вычислений и геометрических законов. Наша жизнь без математики немыслима, ведь человек постоянно открывает что-то новое и усовершенствует давно забытое. Математика присутствует даже в искусстве художников. Итак, рассмотрим применение математики в живописи. Эта тема очень интересна и необычна.
Практически каждому ученику знакома ситуация, когда он всем своим видом олицетворяет или даже непосредственно озвучивает вопрос: «Зачем МНЕ это надо?». Действительно, зачастую непросто увидеть прикладной, практический смысл математического знания. К тому же формулам и теоремам нелегко выдержать конкуренцию со стороны компьютерных игр, социальных сетей и т.д. и увлечь собой школьника. А без вовлеченности сложно рассчитывать на высокие результаты. Чтобы увлечь ученика, полезно показать, как применяется математическое знание в той области жизни, которая его интересует. Моя работа посвящена роли математики в живописи.
Математика соблюдает пристрастие к точности, к строгому логическому мышлению. Согласно современным взглядам, математика и изобразительное искусство очень удаленные друг от друга дисциплины, первая - аналитическая, вторая - эмоциональная. Также многие считают, что математика не играет очевидной роли в большинстве работ современного искусства, Я хочу доказать обратное. Есть много художников, у которых математика находится в центре внимания.
В данной работе можно поднять вопрос на довольно избитую тему взаимоотношений точных наук и искусства с точки зрения представителя тех самых наук. Дабы как-то конкретизироваться, можно сказать о математике, как, пожалуй, наиболее рафинированном представителе точных наук. А в качестве представителя искусств выбрать живопись. Таким образом, очевидным, по сути, определяется тот факт, что математика и искусство являют собой два примера того, как человеческое сознание стремится осмыслить мир не только в контексте непосредственной физической реальности вокруг нас, но реальности в ее самом широком смысле. Разумеется, вопрос нахождения каких-то параллелей и взаимосвязей возникает естественным образом.
Художник, как и математик, вовлечен в попытку придания смысла миру. Тут осознанно нельзя сказать окружающему миру, ибо это ограничивает обе обсуждаемые категории, да и не суть. И тот и другой размышляют над структурой реальности и пытаются выделить какие-то элементы этой структуры, иногда абстрактные, иногда конкретные. Художник имеет возможность исследовать пути выражения, и таким же образом также и определения, психологического настроения. Иными словами, художник по сути одними и теми же приемами способен как передать эмоции образа, так и вызвать эмоции у зрителя своим образом.
Абсолютно аналогичным образом математик зачастую пытается выделить концептуальную сущность определенного свойства. Алгебраист имеет возможность исследовать изначальную сущность операции сложения путем выделения специфических арифметических свойств натуральных чисел, а затем изучать операцию сложения в ее чистой форме. Напротив, другие области математики заинтересованы в особенностях, деталях, как образный художник.
В этой перспективе художники и математики работают, используя, по большому счету, аналогичные подходы к анализу реальности. И те и другие, однако, должны по идее привязать как-то результат их работы к реальности. Физическая, непосредственная реальность, всегда вносит ограничения в творчество весьма специфическим образом, когда вопрос перед художником или математиком стоит в передаче какого-нибудь конкретного объекта. Но зачастую ограничения, накладываемые природой на творчество художника или математика, не связаны напрямую с объектом как таковым, но с выбором способа его описания.
Математик также может делать любые мыслимые определения и работать с любыми абстрактными конструкциями. Но ни картина, ни математическая конструкция не обретут смысл, если они не согласованны и непоследовательны. Соответствующие требования очень сложно определить функциональным путем, но, во всяком случае, в математике это сделать, по-видимому, проще, чем в живописи.
В данной работе рассматривались взаимосвязи живописи и математики и были проведены параллели путем анализа конкретных примеров.
Первой рассматриваемой работой стала «Мона Лиза (Джоконда)», написанная Леонардо да Винчи в 1503-1506 годы, возможно, самой известной картины в истории. Наверное, самым математическим объяснением легендарной привлекательности Моны Лизы является то, что композиция рисунка построена на "золотых треугольниках", точнее на треугольниках, являющихся частями правильного звездчатого пятиугольника.
Отечественный исследователь Михаил Алпатов отмечает, что «Джоконда превосходно вписана в строго пропорциональный четырёхугольник, полуфигура её образует нечто целое, сложенные руки придают её образу завершенность…». Впрочем, как ни смягчены все контуры, волнистая прядь волос Джоконды созвучна прозрачной вуали, а брошенная через плечо свесившаяся ткань находит себе отзвук в плавных извивах далекой дороги. Во всем этом Леонардо проявляет своё умение творить согласно законам ритма и гармонии.
Следующая исследуемая репродукция Леонардо да Винчи, стала «Тайная вечеря», написанная в 1495-1498 годы.
Эта картина – один из памятников широты гения Леонардо да Винчи. Композиция картины математически строга и проста. 12 апостолов расположены вокруг своего учителя 4 группами: по 2 группы с каждой стороны от него и по 3 человека в каждой группе. 2 ближние к Христу группы компактны и более динамичны: они словно вписаны в 2 треугольника, обрамляющих треугольник центральной фигуры. 2 крайние группы показаны более спокойно и широко: они образуют статичные фигуры - четырехугольники. Наконец, 2 крайние фигуры, завершающие композицию, нарисованы в профиль и прямо: они как бы останавливают волны движения, идущие от центра к краям. Вся композиция строго симметрична и строго уравновешена относительно вертикальной оси, проходящей через ее главную точку. Главная точка картины, куда ведут образы параллельных линий стен и потолка, приходится на правый глаз Христа, который в наклоне головы расположен чуть выше и ближе к зрителю.
Таким образом, геометрический центр картины и ее смысловой центр строго совпадают, а лучи, сходящиеся в главной точке, еще более нацеливают зрителя в этот центр. Впрочем, порой кажется наоборот; будто из центра картины, из глаз Христа, расходятся во все стороны эти лучи, словно потоки мысли.
Следующая рассматриваемая одноименная картина Сальвадора Дали «Тайная вечеря», написанная в 1955 году.
Композиция относительно современной картины Дали явно отсылает к работе Леонардо, но она более рационалистична и геометрически выверена. Дали изобразил Господа во всех трёх ипостасях: Иисус (Бог Сын) показан по пояс в воде (то есть крестится Духом Святым) на фоне огромного додекаэдра. Сверху же Бог Отец распростёр руки над Христом с учениками и всем миром.
Далее была проанализирована работа Рафаэля Санти «Обручение Марии», написанная в 1504 году.
Картина Рафаэля - не только результат вдохновенного порыва художника, но и плод его скрупулезных вычислений и геометрических построений. Были выделены следующие детали:
Следующая исследуемая работа Альбрехта Дюрера «Меланхолия I», созданная в1514 году.
Помимо высочайших художественных достоинств этот шедевр великого мастера Возрождения является и своеобразным учебником по перспективе, учебником геометрии живописи. Главным персонажем является молодая девушка с большими сильными крыльями за спиной. На первом плане разбросаны многочисленные измерительные инструменты, среди которых лежит идеально сложенный шар. Девушка словно знает: хаос можно превратить в порядок, измеряя и рассчитывая, опираясь на достижения науки. Перекладины лестницы параллельны линии горизонта, поскольку лестница прислонена к плоскости, параллельной плоскости картины.
А вот и чистая математика "Меланхолии": в правом верхнем углу гравюры изображен магический квадрат - квадрат, составленный из первых чисел натурального ряда, сумма которых по любой строке, столбцу или диагонали одна и та же. Сумма чисел по вертикали, горизонтали, всем диагоналям, в каждой четверти равна тридцати четырём.
Любопытно, что из 880 магических квадратов размером 4x4 выбран тот, у которого средние числа в последней строке изображают 1514 - год создания гравюры.
Василий Васильевич Кандинский «Композиция VIII», написана в 1923 году.
В работе использованы точки, окружности, прямые (параллельные и пересекающиеся), углы (преимущественно острые и тупые), треугольники и фигуры, образованные пересечениями этих основных элементов. Одной из важных составляющих здесь является точка, разрастающаяся до окрашенных в разные цвета окружностей. Картину интересно «читать» одновременно с трактатом Кандинского «Точка и линия на плоскости», где подробно говорится о психологическом значении каждого из элементов.
Для расшифровки своих картин и мировоззрения, В.В. Кандинский даже специально написал несколько книг, в основной из которых – «Точка и линия на плоскости» – даны следующие определения. Геометрическая точка - это невидимый объект. И таким образом он должен быть определен в качестве объекта нематериального. В материальном отношении точка равна нулю. В этом нуле скрыты, однако, различные «человеческие» свойства. В нашем представлении этот нуль - геометрическая точка - связан с высшей степенью самоограничения, то есть с величайшей сдержанностью, которая, тем не менее, говорит. Таким образом, геометрическая точка в нашем представлении является теснейшей и единственной в своем роде связью молчания и речи.
Геометрическая линия – это невидимый объект. Она – след перемещающейся точки, то есть ее произведение. Она возникла из движения – а именно вследствие уничтожения высшего, замкнутого в себе покоя точки. Здесь произошел скачок из статики в динамику.
Таким образом, линия – величайшая противоположность живописного первоэлемента – точки. И она с предельной точностью может быть обозначена как вторичный элемент.
Следующая анализируемая живопись стала «Чёрный супрематический квадрат», написанная Казимиром Северинович Малевичом написанная в 1915 году.
Известны слова К. Малевича …«Я долгое время не мог ни есть, ни спать я сам не понимал, что такое сделал»…
В итоге сам автор одного из самых неоднозначных произведений в мировой живописи остановился на следующих оценке: «вот стул — его в природе нет, его изобрел человек. Геометризм нового направления также связан с противоборством, а не с подражанием природным формам».
Квадрат написан исключительно с помощью глазомера. Художественный эффект абсолютно уничтожается при любой попытке создать подобное изображение, прибегнув к линейке и угольнику.
Далее была рассмотрена репродукция Леонардо да Винчи, «Витрувианский человек», созданная в 1490-1492 годы
Математика помогала художникам не только при работе с пространством, в частности, построении перспективы и симметрии, но и при определении реалистичности, пропорциональности изображаемых персонажей. Рисунок Леонардо да Винчи из анатомических рукописей, связавший совершенные геометрические фигуры с пропорциями человека, стал своеобразным символом синтеза математики и искусства.
Иероним Босх, «Блудный сын», 1510 год
Итак, можно убедиться, что для достижения успеха в том деле, которое привлекает именно тебя, без знания математики не обойтись.
Аналогичная ситуация отражена в указанной картине Босха. Её идеей является возвращение человека к праведной жизни, что символизируется кругом, в который включена вся композиция (круг – нимб, символ святости). То, что круг в свою очередь заключен в восьмиугольник, говорит о непременном духовном возрождении героя (восьмиугольник – форма нимба Бога-Отца, символизирует Его непогрешимость).
ЗАКЛЮЧЕНИЕ
В данной работе рассмотрено только несколько законов математики, применяемых живописцами. Но этого уже достаточно, чтобы убедиться во взаимосвязи двух на первый взгляд несовместимых понятий: математика и живопись. Основываясь на расчетах, используя геометрические законы, применяя математические методы, компьютерную графику и художники, и дизайнеры создают для нас такие произведения искусств, которые улучшают эмоциональное и психологическое состояние человека, повышают его работоспособность.
Таким образом, все поставленные в исследовательской работе задачи были решены, цель достигнута, в которой показана взаимосвязь математики с живописью.
СПИСОК ЛИТЕРАТУРЫ
Упрямый зяблик
Рисуем подснежники гуашью
Астрономический календарь. Март, 2019
Юрий Визбор. Милая моя
Военная хитрость