Математические фокусы – это эксперименты, основанные на математике, на свойствах фигур и чисел, и лишь обличенные в экстравагантную форму. И понять суть того или иного эксперимента – это значит понять пусть небольшую, но математическую закономерность.
Объектом исследования являются математические фокусы.
Предметом исследования являются математические закономерности как секрет любого математического фокуса.
Цель исследования: разобраться в тайнах некоторых математических фокусах и убедиться, что за каждым математическим фокусом стоят строгие математические правила или свойства.
Задачи исследования:
- изучить литературу по данной теме;
- узнать секрет некоторых математических фокусов и установить закономерность с математикой;
- составить свои математические фокусы.
Методы исследования: поиск, анализ различных источников информации; обобщение.
Математические игры и фокусы появились вместе с возникновением математики, как науки. Первое упоминание о математических фокусах можно встретить в книге русского математика Леонтия Филипповича Магницкого, опубликованной в 1703 году. Одна глава книги содержала математические игры и фокусы. Сам Магницкий пишет, что поместил эту главу в книгу для «утехи и особенно для изощрения ума учащихся».
Математические фокусы можно условно разделить на три вида:
1. С мелкими предметами: колода карт; игральные кости, домино; камешки.
2. С непосредственными расчётами: предсказывание результата; угадывание даты, номера; мгновенный устный счёт.
3. С готовыми таблицами: календарь; циферблат часов; таблицы рисунков или чисел.
Математические фокусы интересны именно тем, что каждый фокус основан на математических законах. Смысл их состоит в отгадывании чисел, задуманных зрителями, или в каких-нибудь операциях над ними. Главное — это то, что фокусник знает секрет: особые свойства чисел. Также фокусы тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять. В данной работе мы рассмотрели ряд математических фокусов, убедились, что за каждым из них стоят строгие математические правила или свойства, собрали копилку математических фокусов, составили свои фокусы.
Вложение | Размер |
---|---|
tekst.doc | 93.5 КБ |
mat_fokusydeg.ppt | 1.61 МБ |
Физико-математическое
«Математика»
Математические фокусы
Выполнила: Юничева Яна Юнировна
ученица 7В класса
МОУ «Гимназия №20»
Руководитель: Петропавловская О.А.
учитель математики
МОУ «Гимназия №20»
89093255547
petropav73@mail.ru
Содержание
Введение…………………………………………………………………………3
Глава 1. Математический фокус……………………………………………….4
1.1. Что такое фокус?...................................................................................4
1.2. История возникновения математически фокусов…………………4
1.3. Классификация математических фокусов…………………………5
Глава 2. Копилка математических фокусов…………………………………..7
2.1. Фокус «Предугадывание результата»……………………………..7
2.2. Фокус «Угадать зачеркнутую цифру»……………………………..7
2.3. Фокус «Угадать задуманное число»………………………………8
2.4. Фокус «Феноменальная память»…………………………………..9
2.5. Фокус «Волшебная таблица»………………………………………9
2.6. Фокус «У кого какая карточка?»………………………………….10
2.7. Фокус «Любимая цифра»…………………………………………..11
2.8. Фокус «Число в конверте».………………………………………..11
2.9. Фокус «Угадывание дня, месяца и года рождения»……………..11
2.10. Фокус «Угадать задуманный день недели»……………………...12
2.11. Фокус «Угадать возраст»………………………………………….12
2.12. Авторский фокус «Угадать задуманное число»…………………12
2.13. Авторский фокус «Неизменяемая цифра»……………………….13
Заключение ……………………………………………………………………..14
Список использованных источников ...……………………………………….15
Введение
Мы все привыкли, что основными инструментами фокусника являются карты, шарики, бумага, разнообразные животные и даже люди, но однажды я узнала, что инструментом фокусника могут быть простые числа! Такие фокусы называются математическими.
Математические фокусы – это эксперименты, основанные на математике, на свойствах фигур и чисел, и лишь обличенные в экстравагантную форму. И понять суть того или иного эксперимента – это значит понять пусть небольшую, но математическую закономерность.
Удивлять друзей и знакомых с помощью знаний некоторых математических закономерностей очень просто. Да еще и чрезвычайно интересно! Я решила примерить на себя роль волшебника и попытаться разобраться в тайнах некоторых математических фокусах.
Мы поставили перед собой цель: разобраться в тайнах некоторых математических фокусах и убедиться, что за каждым математическим фокусом стоят строгие математические правила или свойства.
Объект исследования – математические фокусы.
Предмет исследования – математические закономерности как секрет любого математического фокуса.
Для достижения поставленной цели мы решали следующие задачи:
- изучить литературу по данной теме;
- узнать секрет некоторых математических фокусов и установить закономерность с математикой;
- составить свои математические фокусы.
Методы исследования: поиск, анализ различных источников информации; обобщение.
Глава 1. Математический фокус.
1.1. Что такое фокус?
Фокус или иллюзионное искусство - один из видов деятельности человека. В основном - это выступления артистов в виде концертных номеров, аттракционов, спектаклей и шоу.
Иллюзионное искусство привлекает зрителей своей фантастичностью происходящего на сцене. Зритель сам может убедиться в том, что на сцене происходит невероятное, невозможное действие. Показывая и наблюдая фокусы, люди развлекаются. Но не только. Один человек создал фокус, другие удивляются ему, пытаются разобраться в фокусе, понять его и добраться до истины. Действия фокусника, на самом деле, не представляют собой чего-то необыкновенного, сверхъестественного. Они просты, естественны и логичны, но зрителю они представляются невероятными потому, что фокусник применил приём, в результате чего зритель сам сделал ошибочный вывод и поверил в него. Не всё, что летает — самолёт. Так и в фокусах. Не всё, что непонятно — обязательно фокус.
1.2. История возникновения математических фокусов.
С глубокой древности людей интересовали мистические и загадочные вещи, иллюзионизм и магические искусства. Великие Тайны этих искусств были известны лишь избранным. Иллюзионисты и фокусники ревниво охраняли их, хорошо зная, что, чем не доступнее ключ к их таинствам, тем эти таинства более ценны.
Изначально фокусы использовали колдуны и знахари. Жрецы Вавилона и Египта создавали огромное количество уникальных трюков с помощью прекрасных знаний математики, физики, астрономии и химии. В перечень чудес исполняемых жрецами можно включить, например такие: раскаты грома, сверкание молний, сами собой раскрывающиеся двери храмов, появляющиеся вдруг из-под земли статуи богов, сами звучащие музыкальные инструменты и т. д.
Фокусники того времени заставляли исчезать и появляться драгоценности, в толпе у народа пропадало множество вещей и оказывалось в наличии у фокусника, при этом он все время был на виду. Ремесло фокусника могло караться смертью - в средневековой Европе фокусы считались колдовством и за это фокусники расплачивались своей жизнью.
В Россию иллюзионное искусство пришло из Византии.
Математические игры и фокусы появились вместе с возникновением математики, как науки. Первое упоминание о математических фокусах можно встретить в книге русского математика Леонтия Филипповича Магницкого, опубликованной в 1703 году. Одна глава книги содержала математические игры и фокусы. Сам Магницкий пишет, что поместил эту главу в книгу для “утехи и особенно для изощрения ума учащихся”.
Все мы знаем великого русского поэта М.Ю. Лермонтова, но не каждому известно, что он был большим любителем математики, особенно его привлекали математические фокусы, которых он знал великое множество, причем некоторые из них он придумывал сам.
Математические фокусы интересны именно тем, что каждый фокус основан на математических законах. Смысл их состоит в отгадывании чисел, задуманных зрителями, или в каких-нибудь операциях над ними. Главное — это то, что фокусник знает секрет: особые свойства чисел. Миллионы людей во всех частях света увлекаются математическими фокусами. И это не удивительно. “Гимнастика ума” полезна в любом возрасте. А фокусы тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять. Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, ребусы и загадки.
1.3. Классификация математических фокусов.
Существует большое разнообразие фокусов, основанных на применении математических правил и свойств чисел и действий над ними. Для некоторых из них требуются мелкие предметы: шашки, спички, фишки. Для других используются наборы для игр: игральные кости, домино, колода крат. Есть фокусы, проводимые с календарем, циферблатом часов или требующие специально подготовленных таблиц чисел или рисунков. Можно условно разделить математические фокусы на три вида:
1. С мелкими предметами:
∙колода карт;
∙игральные кости, домино;
∙камешки.
2. С непосредственными расчётами:
∙предсказывание результата;
∙угадывание даты, номера;
∙мгновенный устный счёт.
3. С готовыми таблицами:
∙календарь;
∙циферблат часов;
∙таблицы рисунков или чисел.
Глава 2. Копилка математических фокусов.
2.1. Фокус «Предугадывание результата».
«Фокусник» пишет на доске шестизначное число и предлагает записать зрителю под этим числом ещё любое шестизначное число. Затем эта операция повторяется и «фокусник» дописывает ещё одно шестизначное число. А перед этим «фокусник» записал ответ на листе бумаги. Затем он предлагает зрителю найти суммы всех пяти чисел. Когда зритель сосчитал ответ, «фокусник» его удивил, так как ответ совпал с число на бумаге.
Секрет:
Например:
134532 – написал фокусник
316874 – написал зритель
683125 – написал фокусник
839013 – написал зритель
160986 – написал фокусник
Ответ получается, если из первого числа вычесть два и прибавить 2000000, т. к. два дополняет число 19999998 до 2000000.
2.2. Фокус «Угадать зачеркнутую цифру».
Пусть кто-либо задумает какое-нибудь многозначное число, например, число 847. Предложите ему найти сумму цифр этого числа (8+4+7=19) и отнять ее от задуманного числа. Получится: 847-19=828. в том числе, которое получится, пусть он зачеркнет любую цифру и сообщит вам все остальные. Вы немедленно назовете ему зачеркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.
Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммою вам сообщенных цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачеркнута первая цифра (8) и вам сообщили цифры 2 и 8, то, сложив 2+8, вы соображаете, что до ближайшего числа, делящегося на 9, т. е. до 18 – не хватает 8. Это и есть зачеркнутая цифра.
Почему так получается? Потому что если от какого-либо числа отнять сумму его цифр, то останется число, делящееся на 9 без остатка, иначе говоря такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе а – цифра сотен, в – цифра десятков, с – цифра единиц. Значит всего в этом числе единиц 100а+10в+с. Отнимая от этого числа сумму цифр (а+в+с), получим: 100а+10в+с-(а+в+с)=99а+9в=9(11а+в), т. е. число, делящееся на 9. При выполнении фокуса может случиться, что сумма сообщенных вам цифр сама делится на 9, например 4 и 5.Это показывает, что зачеркнутая цифра либо 0, либо 9.Тогда вы должны ответить: 0 или 9.
2.3. Фокус «Угадать задуманное число».
Фокусник предлагает кому-нибудь из учащихся написать на листе бумаги любое трехзначное число. Далее приписать к нему это же число еще раз. Получится шестизначное число. Передать лист соседу, пусть он разделит это число на 7. Передать листочек дальше, пусть следующий ученик разделит полученное число на 11. Снова передать результат дальше, следующий ученик пусть разделит полученное число на 13. Затем передать листочек “фокуснику”. Он может назвать задуманное число.
Разгадка фокуса. Когда мы к трехзначному числу приписали такое же число, то мы тем самым умножили его на 1001, а затем, разделив последовательно на 7, 11, 13, мы разделили его на 1001, то есть получили задуманное трехзначное число.
2.4. Фокус «Феноменальная память».
Для проведения этого фокуса необходимо заготовить много карточек, на каждой из которых поставить ее номер (двузначное число) и записать семизначное число по особому алгоритму. “Фокусник” раздает карточки участникам и объявляет, что он запомнил числа, записанные на каждой карточке. Любой участник называет номер каточки, а фокусник, немного подумав, говорит, какое на этой карточке записано число. Разгадка данного фокуса проста: чтобы назвать число “фокусник” проделывает следующие действия – прибавляет к номеру карточки число 5, переворачивает цифры полученного двузначного числа, затем каждая следующая цифра получается сложением двух последних, если получается двузначное число, то берется цифра единиц. Например: номер карточки – 46. Прибавим 5, получим 51, переставим цифры – получим 15, будем складывать цифры, следующая – 6, затем 5+6=11, т. е. возьмем 1, потом 6+1=7, дальше цифры 8, 5. Число на карточке: 1561785.
2.5. Фокус «Волшебная таблица».
На доске или экране таблица, в которой известным образом в пяти столбцах записаны числа от 1 до 31. Фокусник предлагает присутствующим задумать любое число из этой таблицы и указать, в каких столбиках таблицы находится это число. После этого он называет задуманное вами число.
Разгадка фокуса:
Например: вы задумали число 27. Это число находится в 1-ом, 2-ом, 4-ом и 5-ом столбиках. Достаточно сложить числа, расположенные в последней строке таблицы в соответствующих столбиках, и получим задуманное число. (1+2+8+16=27).
2.6. Фокус «У кого какая карточка?».
Для проведения фокуса необходим ассистент. На столе лежат три карточки с оценками: “3”, “4”, “5”. Три человека подходят к столу и каждый берет одну из карточек и показывает ее ассистенту “фокусника”. “Фокусник”, не глядя, должен угадать кто что взял. Ассистент говорит ему: “Угадывай” и “фокусник” называет у кого какая карточка.
Разгадка фокуса. Рассмотрим возможные варианты. Карточки могут располагаться следующим образом: 3, 4, 5 4, 3, 5 5, 3, 4
3, 5, 4 4, 5, 3 5, 4, 3
Так как ассистент видит, какую карточку взял каждый человек, то он будет помогать “фокуснику”. Для этого нужно запомнить 6 сигналов. Пронумеруем шесть случаев:
Первый – 3, 4, 5
Второй – 3, 5, 4
Третий – 4, 3, 5
Четвертый – 4, 5, 3
Пятый – 5, 3, 4
Шестой – 5, 4, 3
Если случай первый, то ассистент говорит: “Готово!”
Если случай второй – то: “Так, готово!”
Если случай третий – то: “Угадывай!”
Если четвертый – то: “Так, угадывай!”
Если пятый – то: “Отгадывай!”
Если шестой – то: “Так, отгадывай!”.
Таким образом, если вариант начинается с цифры 3, то “Готово!”, если с цифры 4, то “Угадывай!”, если с цифры 5, то “Отгадывай!”, а карточки учащиеся берут по очереди.
2.7. Фокус «Любимая цифра».
Любой из присутствующих задумывает свою любимую цифру. Фокусник предлагает ему выполнить умножение числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то пусть умножит на 35. Получится произведение, записанное только любимой цифрой. Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45. Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.
2.8. Фокус «Число в конверте».
Фокусник пишет на бумажке число 1089, вкладывает бумажку в конверт и заклеивает его. Предлагает кому-нибудь, дав ему этот конверт, написать на нем трехзначное число такое, чтобы крайние цифры в нем были различны и отличались бы друг от друга больше, чем на 1. Пусть затем он поменяет местами крайние цифры и вычтет из большего трехзначного числа меньшее. В результате пусть он снова переставит крайние цифры и получившееся трехзначное число прибавит к разности двух первых. Когда он получит сумму, фокусник предлагает ему вскрыть конверт. Там он найдет бумажку с числом 1089, которое у него и получилось.
2.9. Фокус «Угадывание дня, месяца и года рождения».
Фокусник предлагает учащимся выполнить следующие действия: “Умножьте номер месяца, в котором вы родились, на 100, затем прибавьте день рождения, результат умножьте на 2, к полученному числу прибавьте 2, результат умножьте на 5, к полученному числу прибавьте 1, к результату припишите 0, к полученному числу прибавьте еще 1 и, наконец, прибавьте число ваших лет. После этого сообщите, какое число у вас получилось”. Теперь “фокуснику” осталось от названного числа отнять 111, а потом остаток разбить на три грани справа налево по две цифры. Средние две цифры обозначают день рождения, первые две или одна – номер месяца, а последние две цифры – число лет, зная число лет, фокусник определяет год рождения.
2.10. Фокус «Угадать задуманный день недели».
Пронумеруем все дни недели: понедельник – первый, вторник – второй и т. д. Пусть кто-нибудь задумает любой день недели. Фокусник предлагает ему следующие действия: умножить номер задуманного дня на 2, к произведению прибавить 5, полученную сумму умножить на 5, к полученному числу приписать в конце 0, результат сообщить фокуснику. Из этого числа он вычитает 250 и число сотен будет номером задуманного дня. Разгадка фокуса: допустим, задуман четверг, то есть 4 день. Выполним действия: ((4×2+5)*5)*10=650, 650 – 250=400.
2.11. Фокус «Угадать возраст».
Фокусник предлагает кому-нибудь из учащихся умножить число своих лет на 10, затем любое однозначное число умножить на 9, из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.
2.12. Авторский фокус «Угадать задуманное число».
1. Задумайте число от 1 до 9.
2. Справа от числа припишите число 11.
3. Умножьте число на 9.
4. Назовите полученное число.
Пример: 8=811*9=7 299
Последние три числа нам не нужны. А к первому числу нужно прибавить число 1.
Это и будет задуманное число.
2.13.Авторский фокус« Неизменяемая цифра».
1. Загадайте любое число от 1 до 9.
2. Умножьте его на 2.
3. Прибавьте 5.
4. Умножьте его на 9.
5. Найдите сумму цифр получившегося числа.
6. Умножьте на 5.
Ответ: 45-задуманное число.
Секрет: если любое число умножить на 9, а затем сложить сумму цифр получившегося числа, то сумма цифр будет равна 9. А при умножении числа 9 на 5 будет 45.
Заключение.
В данной работе мы рассмотрели ряд математических фокусов, убедились, что за каждым из них стоят строгие математические правила или свойства, собрали копилку математических фокусов, составили свои фокусы.
Разгадывание секретов ранее известных математических фокусов и создание своих, вызывает большой интерес у учащихся; побуждает их к самостоятельным исследованиям.
Научиться разгадывать секреты математических фокусов довольно-таки просто, главное вникнуть в суть происходящих математических преобразований. Пятиминутная интеллектуальная зарядка в виде математического фокуса может сделать математику любимым предметом! Для того чтобы эффектно выступать перед зрителем, нужно тренировать внимание, память, а также умение быстро и правильно считать в уме.
Список использованных источников.
1. Гарднер М. «Математические чудеса и тайны» М.: Наука, 1978. -103 с.
2. Кордемский Б.А. «Удивительный мир чисел» М.: Просвещение, 1986.-85 с.
3. Перельман Я.И. «Занимательные задачи и опыты» Минск: Беларусь,1994. 59 с.
4. 365 веселых игр и фокусов. М.: АСТ – пресс, 2005
5. Загадки для детей http://vsemzagadki.narod.ru/
6. Развлекательный портал «Фокусы.RU» http://trick.fome.ru/main-5.html
Слайд 1
МАТЕМАТИЧЕСКИЕ ФОКУСЫ Выполнила: Юничева Яна ученица 7В класса МОУ «Гимназия №20» Руководитель: Петропавловская О.А. учитель математики МОУ «Гимназия №20» Саранск 2017Слайд 2
Предмет математики настолько серьезен, что полезно не упускать случаев делать его немного занимательным. Б. Паскаль
Слайд 3
Цель исследования: разобраться в тайнах некоторых математических фокусах и убедиться, что за каждым математическим фокусом стоят строгие математические правила или свойства.
Слайд 4
Объектом исследования являются математические фокусы. Предметом исследования являются математические закономерности как секрет любого математического фокуса.
Слайд 5
Задачи исследования: - изучить литературу по данной теме; - узнать секрет некоторых математических фокусов и установить закономерность с математикой; - составить свои математические фокусы.
Слайд 6
Методы исследования : поиск, анализ различных источников информации; 2) обобщение.
Слайд 7
Математические фокусы – это эксперименты, основанные на математике, на свойствах фигур и чисел, и лишь обличенные в экстравагантную форму.
Слайд 9
Фокус « Угадывание возраста и дня рождения» 1. Порядковый номер месяца вашего рождения умножьте на 100. 2. К полученному произведению прибавьте число дня рождения. 3. Теперь полученную сумму умножьте на 2 и к новому произведению прибавьте 2. 4. Новую сумму надо умножить на 5 и к полученному произведению прибавить 1. 5. Умножьте опять полученную сумму на 10 и опять прибавьте 1. 6. Затем прибавьте полное число ваших лет. Назовите окончательный результат.
Слайд 10
. Если обозначить порядковый номер месяца буквой а, число месяца - в, число полных лет - с, то все производимые выше вычисления будут выражены следующей формулой: (((100а+в)·2+2)·5+1)·10+1+с=10000а+100в+111+с. Если отнять число 111, то получается: 10000а +100в + с. Например : дата рождения – 3 февраля, возраст 13 лет. Пусть а = 2, в = 3, с = 13. Выполним цепочку вычислений: 10000 · 2 + 100 · 3 + 13 = 2 03 13 месяц , день , возраст (в уме отнимаем от полученного числа число 111, и остаток разбиваем справа налево на группы по две цифры в каждой: последние две цифры показывают полное число лет ; вторая группа — число дня рождения , а первая группа - порядковый номер месяца).
Слайд 11
Фокус «Угадать задуманный день недели »
Слайд 12
1 . Пронумеруем все дни недели: понедельник – первый, вторник – второй и т. д. 2. Умножьте порядковый номер задуманного дня на 2. 3. К произведению прибавьте 5. 4. Полученную сумму умножьте на 5. 5. Умножьте полученное число на 10. 6. От полученного числа отнимите 250.
Слайд 13
Допустим, задуман четверг, то есть 4 день. Выполним действия: ((4×2+5)*5)*10=650, 650 – 250=400.
Слайд 14
Авторский фокус «Угадать задуманное число »
Слайд 15
1 . Задумайте число от 1 до 9. 2. Справа от числа припишите число 11. 3. Умножьте число на 9. 4. Назовите полученное число. Пример: 8=811*9=7 299 Последние три числа нам не нужны. А к первому числу нужно прибавить число 1. Это и будет задуманное число.
Лиса Лариска и белка Ленка
Одна беседа. Лев Кассиль
О путнике
Четыре художника. Осень
Вокруг света за 80 дней