Можно ли представить мир без чисел? Вспомните, что мы с вами делаем изо дня в день: без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие достижения! Они были бы попросту невозможны, если бы не наука о числах.
Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.
Люди так часто пользуются числами и счетом, что даже не задумываются, что они существовали не всегда, а были изобретены человеком.
Таким образом, возникновение чисел – это многовековой путь познания человечеством своего времени, осознания прошлого, настоящего и будущего в их многогранной взаимосвязи, которое в настоящее время утратило свое значение и понимание.
Данные противоречия побудили нас выбрать проблему исследования, которая заключается в теоретическом осмыслении истории зарождения и развития натуральных чисел.
Актуальность вышеизложенных противоречий и проблемы определили выбор темы исследования – «Числа. От истоков до наших дней».
Цель исследования: теоретически обосновать многовековой путь познания человечеством чисел.
Объект исследования: история происхождения и развития чисел.
Предмет исследования: процесс возникновения и развития чисел.
Для реализации поставленной цели исследования намечены задачи:
1. Проанализировать литературу по исследуемой проблеме.
2. Проследить историю происхождения чисел.
3. Дать понятие терминам: «число», «цифра», «счет».
4. Обобщить материал о происхождении чисел разных народов.
5. Рассмотреть первичные формы числа и появление их имен.
6. Отследить многовековой путь возникновения натурального числа.
Вложение | Размер |
---|---|
Исследовательская работа Числа. "От истоков до наших дней" | 698.5 КБ |
Презентация "Числа. От истоков до наших дней" | 2.67 МБ |
МБОУ «Акбулакская средняя общеобразовательная школа № 3
Акбулакского района Оренбургской области»
Районный фестиваль детского творчества
«Здравствуй мир»
Секция «Юный профессор»,
номинация «Математика и информатика в жизни»
Выполнил ученик 6 а класса
Черноморец Михаил
Руководитель
Родионова О.А., к.п.н.,
учитель информатики
Акбулак, 2013
Содержание:
1. История происхождения чисел
4. Числа начинают получать имена
Можно ли представить мир без чисел? Вспомните, что мы с вами делаем изо дня в день: без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие достижения! Они были бы попросту невозможны, если бы не наука о числах.
Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.
Люди так часто пользуются числами и счетом, что даже не задумываются, что они существовали не всегда, а были изобретены человеком.
Таким образом, возникновение чисел – это многовековой путь познания человечеством своего времени, осознания прошлого, настоящего и будущего в их многогранной взаимосвязи, которое в настоящее время утратило свое значение и понимание.
Данные противоречия побудили нас выбрать проблему исследования, которая заключается в теоретическом осмыслении истории зарождения и развития натуральных чисел.
Актуальность вышеизложенных противоречий и проблемы определили выбор темы исследования – «Числа. От истоков до наших дней».
Цель исследования: теоретически обосновать многовековой путь познания человечеством чисел.
Объект исследования: история происхождения и развития чисел.
Предмет исследования: процесс возникновения и развития чисел.
Для реализации поставленной цели исследования намечены задачи:
Практическая значимость данного исследования заключается в использовании материалов учителями-предметниками, классными руководителями в урочной и внеклассной работе, учащимися школ.
В процессе решения поставленных задач были использованы следующие методы исследования: анализ литературы по проблеме исследования; работа с Интернет материалами, системный анализ и статистическая обработка материала.
История происхождения цифр, их названий, и времени их появления, чрезвычайно туманна, взять хотя бы тот факт, что привычные нам цифры, называемые арабскими, таковыми по факту не являются. Считается, что традиционные арабские цифры являются видоизменёнными начертаниями индийских цифр, приспособленных к арабскому письму.
Вот, что о происхождении цифр, нам сообщает Большая Советская Энциклопедия: "Древнейшие известные нам Ц. — цифры вавилонян и египтян. Вавилонские Ц. (2-е тыс. до н. э. — начало н. э.) представляют собой клинописные знаки для чисел 1, 10, 100 (или только для 1 и 10), все остальные натуральные числа записываются посредством их соединения. В египетской иероглифической нумерации (возникновение её относится к 2500 — 3000 до н. э.) существовали отдельные знаки для обозначения единиц десятичных разрядов (вплоть до 107). Нумерациями типа египетской иероглифической являются финикийская, сирийская, пальмирская, греческая, аттическая или геродианова».
«Возникновение аттической нумерации относится к 6 в. до н. э.: нумерация употреблялась в Аттике до 1 в. н. э., хотя в других греческих землях она была задолго до этого вытеснена более удобной алфавитной ионийской нумерацией, в которой единицы, десятки и сотни обозначались буквами алфавита, все остальные числа до 999 — их соединением (первые записи чисел в этой нумерации относятся к 5 в. до н. э.). Алфавитное обозначение чисел существовало также и у др. народов; например у арабов, сирийцев, евреев, грузин, армян. Старинная русская нумерация (возникшая около 10 в. и встречавшаяся до 16 в.) также была алфавитной с применением славянской азбуки кириллицы. Наиболее долговечной из древних цифровых систем оказалась римская нумерация, возникшая у этрусков около 500 до н. э.: она употребляется иногда и в настоящее время».
«Прообразы современных цифр (включая нуль) появились в Индии, вероятно, не позднее 5 в. н. э Термин «число» возникло в древние времена, когда у людей впервые получилось посчитать предметы. Первое время счёт вёлся на пальцах. Затем начали считать по зарубкам на палочках. Со временем люди стали понимать числа свободно от предметов и лиц, которые могли подвергаться счёту. Поэтому у славян возникло слово «число».
В каменном веке, когда люди собирали плоды, ловили рыбу и охотились на животных, потребность в счёте возникла так же естественно, как и потребность в добывании огня. Записывать числа люди научились гораздо позже, чем считать.
Сначала люди научились узнавать число предметов или животных, делая особые зарубки на счетных палочках, вести счет.
Мысль о счете пришла людям в голову раньше, чем появились цифры. Люди могли сообщить друг другу, что в одном стаде животных больше чем в другом, а вот, сколько именно – сосчитать не умели. Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, - было совсем немного: один топор, одно копь. Постепенно количество вещей увеличивалось, обмен ими все усложнялся, и возникла потребность в счете.
Никто не знает, как впервые появилось число, как первобытный человек начал считать. Однако десятки тысяч лет назад первобытный человек собирал плоды деревьев, ходил на охоту, ловил рыбу, научился делать каменные топор и нож. И ему приходилось считать различные предметы, с которыми он встречался в повседневной жизни. Постепенно возникла необходимость отвечать на жизненно важные вопросы: по сколько плодов достанется каждому, чтобы хватило всем; сколько расходовать сегодня, чтобы оставить про запас; сколько нужно сделать ножей и т.п. Таким образом, сам не замечая, человек начал считать и вычислять.
Несколько десятков лет назад ученые-археологи обнаружили стойбище древних людей. В нем они нашли волчью кость, на которой 30 тысяч лет тому назад какой-то древний охотник нанес 55 зарубок. Видно, что, делая эти зарубки, он считал по пальцам. Узор на кости состоял из 11 групп, по 5 зарубок в каждой. При этом первые 5 групп он отделил от остальных длинной чертой. Позднее в Сибири и других были найдены сделанные в ту далекую эпоху каменного века (каменные орудия) и украшения, на которых тоже были черточки и точки, сгруппированные по 3, по 5 или по 7.
Много тысячелетий прошло с того времени. Но и сейчас швейцарские крестьяне, отправляя молоко на сыроварни, отмечают число фляг такими же зарубками. До сих пор в русском языке сохранилось слово «бирка». Теперь так называют дощечку с номером или надписью, которую привязывают к кулям с товаром, ящикам и тюкам и т.д. А еще двести – триста лет назад это слово означало совсем иное. Так называли куски дерева, на которых зарубками отмечали сумму долга и подати. Бирку с зарубками раскладывали пополам, после чего одна половинка оставалась у должника, а другая у сборщика податей. При счёте половинки складывали вместе, и это позволяло определить сумму долга или подати без спора и сложных вычислениях.
Развитие счёта пошло значительно быстрее, когда человек догадался обратиться к самому близкому ему, самому естественному счётному аппарату – к своим пальцам. Быть может, первым актом счёта по пальцам было оказание предмета, указательным пальцем; тут палец сыграл роль единицы. Участие пальцев в счёте помогло человеку переступить за число четыре, так как когда все пальцы на одной руке стали считаться равноценными единицами, это сразу позволило довести счёт до пяти. Дальнейшее развитие счёта потребовало усложнения счётного аппарата, и человек нашёл выход, привлекая к счёту сначала пальцы второй руки, а затем, распространяя свой приём на пальцы ног: для племён, не носивших обуви, использование пальцев ног было вполне естественным. При этом такое расширение счётных этапов, очевидно, произошло в следствии возможности привести в однозначное соответствие пальцы рук и ног, что и отмечается у некоторых народов.
Так, для выражения числа «двадцать» индейцы из Южной Америки противопоставляют пальцы на руках пальцам на ногах.
В описываемую эпоху хозяйственные расчёты людей ограничивались тем, что после распределения пищи и одежды, захваченных в результате стычки с врагом, уже не было потребности помнить числа, возникшие во время расчётов, а потому счёт и не нуждался в наименованиях для чисел, а производился главным образом путём соответствующих жестов. Например, туземные жители Андоманских островов, расположенных в Бенгальском заливе Индийского океана, не имели слов для выражения чисел и при счете объяснялись теми или иными жестами. Отсюда видно, что жестикуляция при счете как пережиток еще надолго сохранилось у многих народов, которые не вырабатывали словесную нумерацию.
Словесный счет начал развиваться, лишь когда ведущей формой производства стало сельское хозяйство. В ту пору постепенно возникла частная собственность, объектами которой служили поля, огороды, стада. Обладатели полей, домашних животных, будучи крепко связанными с ними, вынуждены были не только считать принадлежащие им объекты, но и запоминать их число, а это и толкнуло человека путь создания именованных чисел. Сначала запоминание проводилось весьма громоздким и неуклюжим способом: путем восстановления в памяти внешних признаков запоминаемых предметов. Например, обладатель стада волов запоминал количество принадлежащих ему животных по тем признакам, что один вол серый, другой – черный и т.д. Разумеется такой способ запоминания не мог быть пригоден, когда число запоминаемых объектов было большим.
Следующей ступенью в развития наименования чисел надо признать появление описательных выражений совокупность нескольких единиц. Например, вместо наименования числа, выражающего два предмета, употреблялась фраза «столько, сколько у меня рук», наименование четыре передавалось фразой: «столько, сколько ног у животного». Итак, словесными выражениями нескольких предметов явилось преимущественно части тела человека и животного.
В дальнейшем эти описания выражения у многих народов заменились наименованием соответствующих слов, и таким образом эти наименования закрепились за числами. Так, число два стало выражаться словами, обозначающими «уши», «руки», «крылья», четыре – «нога страуса» (четырехпалая) и пр.
Пальцевой счет постепенно приводил к упорядочению счета, и человек стихийно приходил к упрощению словесного выражения чисел. Так, например, выражение, которое должно соответствовать числу 11 – «десять пальцев на обеих руках и один палец на одной ноге» - упрощалось в «палец на ноге»; для выражения числа 23 вместо слов «десять пальцев на обеих руках, десять пальцев на обеих ногах и три пальца на руке другого человека» говорилось просто: «три пальца другого человека».
Подобного рода сокращения в то же время приводили как бы к выделению единиц из высшего разряда. В самом деле, такие называния, как «рука» - для обозначения пяти, «две руки» - для обозначения десяти, «нога» - для обозначения пятнадцати «человек» - для обозначения двадцати и т.п., служили для обозначения единиц высшего разряда, чем пальца, а пальцы играли роль единиц низшего разряда.
В этом смысле выражение «один на другой руке», означающее «шесть» можно рассматривать как «один из второго пятка» или как «пять и один», т.е. «рука» - единица высшего разряда. Точно также наименование «два на ноге», означающее «двенадцать», указывало на то, что две единицы взяты из второго десятка; это можно было бы передать и такой фразой: «две руки и два пальца», где «две руки» играют роль единицы высшего порядка по отношению к пальцам. Например, у некоторых племен с островов Торресова пролива существуют только единица – «урапун» и двойка – «оказа». При помощи этих чисел и происходит счет. На их языке три выражается, как «оказа урапун», четыре – «оказа оказа», пять – «оказа оказа урапун», шесть – «оказа оказа оказа» и т.д. Вот примеры счета некоторых австралийских племен: племя реки Муррей: 1 – «энэа», 2 – «петчевал», 3 – «петчевал энэа», четыре – «петчевал петчевал».
4. Числа начинают получать имена
Древние люди могли представить себе такие числа как один, два, три. Все другие числа они означали понятием «Много». Именно так считают и сейчас некоторые племена, живущие в джунглях Южной Америки.
Ещё недавно существовали племена, в языке которых были названия только двух чисел: «один» и «два». Туземцы островов, расположенных в Торресовом проливе, знали два числа: «урапун» - один, «окоза» - два и умели считать до шести. Островитяне считали так: «окоза-урапун» - три, «окоза-окоза» - четыре, «окоза-окоза-урапун» - пять, «окоза-окоза-окоза» - шесть. О числах, начиная с 7, туземцы говорили «много», «множество». Наши предки, наверняка, тоже начинали с этого. В старинных пословицах и поговорках как, например, «Семеро одного не ждут», «Семь бед – один ответ», «У семи нянек дитя без глазу», «Один с сошкой, семеро с ложкой» 7 тоже означало «много».
В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» по-латински означает «камень».
Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.
Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета (Рис. 1). Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.
Рис. 1.
Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки (Рис. 2).
Рис. 2.
После счета по зарубкам люди изобрели особые символы, названные цифрами. Они стали применяться для обозначения различных количеств каких-либо предметов. Разные цивилизации создавали свои собственные цифры.
Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, изображенные на рис. 3.
Рис. 3.
Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы, представленные на рис.4.
Рис. 4.
Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.
Похожим образом обозначали числа на острове Крит, расположенном в Средиземном море. В критской письменности единицы обозначались вертикальной чёрточкой |, десятки – горизонтальной - , сотни – кружком, тысячи – знаком ¤.
Народы (вавилоняне, ассирийцы, шумеры), жившие в Междуречье Тигра и Евфрата в период от II тысячелетия до н.э. до начала нашей эры, сначала обозначали числа с помощью кругов и полукругов различной величины, но затем стали использовать только два клинописных знака – прямой клин (1) и лежащий клин (10). Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так: Число 60 снова обозначалось знаком , например число 92 записывали так:
В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой, например, запись ‗‗‗‗‗‗ означала 14. системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.
В Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.
Древние индийцы изобрели для каждой цифры свой знак. Их изображение представлено на рис.5.
Рис. 5.
Однако Индия была оторвана от других стран, - на пути лежали тысячи километров расстояния и высокие горы. Арабы были первыми «чужими», которые заимствовали цифры у индийцев и привезли их в Европу. Чуть позже арабы упростили эти значки, они стали выглядеть так, как показано на рис.6.
Рис. 6.
Эти числа похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2,3,4,5,6,7,8,9.
Постепенное превращение первоначальных цифр в наши современные цифры.
Из всех странных нумераций римская является единственной, сохранившейся до сих пор и довольно широко применяемой. Эти цифры встречаются на циферблатах часов, фронтонах старинных и современных зданий, памятниках, страницах книг.
Для записи чисел в римской нумерации надо запомнить изображение семи чисел:
I V X L C D M
1 5 10 50 100 500 1000
С помощью этих цифр можно записать любое число не больше 4000. Некоторые числа записываются при помощи повторения римских цифр:
III = 3 · 1 = 3, XX = 2 · 10 = 20.
Кроме того, используется принцип сложения и вычитания. Если меньшая по значению буква стоит после большей, то их значения складывают:
VI = 5 + 1 = 6, MC = 1000 + 100 = 1100
Если меньшая цифра стоит перед большей, то из большего вычитают меньшее:
IV = 5 – 1 = 4, СМ = 1000 – 100 = 900.
Например, (ХХХVI = 3 · 10 + (5 + 1) = 36, CXLV = 100 + (50 – 10) + 5 = 145.)
Восточно - славянские племена, древние предки русской, украинской и белоруской народностей начали формироваться около 2-3 т. лет до н.э. В VII и VIII вв. у славян появились первые города. Первыми большими городами Руси были Киев и Новгород.
В X в., в княжение Владимира Святославовича (1015), древнерусское государство (Киевская Русь) достигло наибольшего расцвета и могущества. По развитию культуры оно занимало одно из видных мест среди государств Европы.
На Руси в эту эпоху параллельно с общим развитием культуры шло сравнительно быстрое распространение сведений из математики.
Правда, до нашего времени не сохранилось никаких памятников математической литературы, которые давали бы нам возможность судить о развитии математики на Руси в IX-X вв., но документы другого характера позволяют делать некоторые выводы в этом отношении. Первым русским памятником математического содержания до настоящего времени считается рукописное сочинение новгородского монаха Кирика, написанное им в 1136 г. и носящее заголовок «Критика диакона и доместика Новгородского Антониева монастыря учение имже ведати человеку числа всех лет».
В этом сочинении Кирик выявил себя весьма искусным счетчиком и великим числолюбцем. Основные задачи, которые разрешаются Кириком, хронологического порядка: вычисление времени, протекшего между каким-либо событием. При вычислениях Кирик пользовался той системой нумерации, которая называлась малым перечнем и выражалась следующими наименованиями: 10000 – тьма, 100 000 – легион, или неведий, 1 000 000 – леодр.
Кроме малого перечня, в Древней Руси существовал еще больший перечень, который давал возможность оперировать с очень большими числами.
Наши предки пользовались алфавитной нумерацией, то есть числа изображались буквами, над которыми ставился значок ~ , называемый «титло». Чтобы отделить такие буквы – числа от текста, спереди и сзади ставились точки.
Этот способ обозначения цифр называется цифирью. Он был заимствован славянами от средневековых греков – византийцев. Поэтому цифры обозначались только теми буквами, для которых есть соответствия в греческом алфавите. Эти цифры представлены на рис. 7.
Рис. 7.
Для обозначения больших чисел славяне придумали свой оригинальный способ:
Десять тысяч – тьма, десять тем – легион, десять легионов – леорд, десять леордов – ворон, десять воронов – колода. К XVI в. относится изобретение замечательного счетного прибора, получившего впоследствии название «русские счеты» (рис). Как полагают, идея создания этого прибора принадлежит русским купцам Строгоновым. Дроби в Древней Руси назывались долями, позднее «ломанными числами». В старых руководствах находим следующие названия дробей на Руси: - половина, полтина, - треть, - четь, - полтреть, - полчеть, - полполтреть, - полполчеть, - полполполтреть (малая треть), - полполполчеть, - пятина, - седьмина, - десятина.
Славянские нумерации употреблялись в России до XVI в., лишь в этом веке в нашу страну постепенно стала проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I. Пётр Ι ввёл в России привычные для нас десять цифр, отменив буквенную цифирь.
7. Самые натуральные числа
Ряд чисел 1,2,3,4,5,6,7,8,9 называется натуральным, сами числа - натуральными. Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как «толпа», «стадо», «куча» и т.д.
Источником возникновения понятия возникновения отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.
У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея – обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.
С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней «римские цифры», ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков – цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов в устной речи и в форме обозначения специальными знаками в письменной.
Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения. Сейчас все понимают, что натуральный ряд чисел бесконечен. В древности люди этого не знали. Сначала они умели считать до трех, потом до десяти, до сорока, до ста, а дальше была «тьма». Натуральный ряд был очень коротким. Расширить его удалось великому механику и математику древности Архимеду. Архимед написал знаменитый труд Псаммит, или Исчисление песчинок». В нем он подсчитал число песчинок, которые могли бы заполнить шар радиусом 15.000.000.000.000 километров. До Архимеда в Древней Греции самым большим числом считалось 10.000.000 мириад. Мириадой называлось число 10000, от греческого слова «мирос» - «неисчислимо большое». Архимед начал считать мириадами мириад и в результате вывел свою систему счисления. Наибольшее число его системы содержит 80.000.000.000.000.000 нулей. Это число так велико, что если напечатать его обыкновенным шрифтом на машинке, то этой лентой можно опоясать Земной шар по экватору более 2 миллионов раз. Даже ракете с первой космической скоростью (8км/с) пришлось бы лететь вдоль этой ленты более 300 лет.
Вот до какого огромного числа простирается натуральный ряд. Но и это число не последнее. За ним еще числа, числа, числа, числа… до бесконечности. Если натуральный ряд чисел кажется вам скучным и однообразным, всмотритесь в него повнимательнее, и вы найдете много удивительного и неожиданного.
Например, обыкновенное число 37. А теперь умножьте его на три, потом на шесть и так далее. На этом чудеса числа 37 не кончаются. Возьмем любое трехзначное число, которое делится на 37. Пусть это будет 185. И сделаем в нем круговую перестановку – последнюю цифру поставим на первое место, не изменив порядка остальных. Получим 518. Сделаем еще одну перестановку. Получим 851. Оба эти числа также делятся на 37. Вот вам и диковинка! Натуральные числа, кроме основной функции – характеристики количества предметов, несут ещё другую функцию – характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).
В работе мы рассмотрели историю возникновения и наименования чисел.
Определили, что понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб. Сначала счёт вели на пальцах. В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть — это рука, а на руке пять пальцев. Когда-то слово пять имело конкретное значение — пять пальцев пясти, то есть руки.
Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы.
Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.
В настоящее время используется десятичная система счета, потому что у нас десять пальцев. Система счета, которую мы используем сегодня, была изобретена в Индии тысячу лет назад. Арабские купцы распространили ее по всей Европе к 900 году. В этой системе использовались цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Это десятичная система, построенная на основе десятки.
Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал из низшей ступени первобытного общества, когда понятие отвлеченного числа отсутствовало до нашего времени.
Необходимость обозначения чисел привело к образованию специальных знаков-цифр.
Таким образом, данный материал мы будем использовать на уроках математики и информатики. В следующей исследовательской работе мы планируем рассмотреть историю происхождения и развития систем счисления, вплотную связанные с числами.
Разноцветное дерево
10 осенних мастер-классов для детей
Цветущая сакура
Нора Аргунова. Щенята
Воздух - музыкант