Аликвотные дроби - самые первые древние дроби, которые человек научился использовать на практике для математических расчетов. В современное время они с успехом применяются. Решение задач с применением аликвотных дробей развивает мышление и логику.
Вложение | Размер |
---|---|
referat_dyachenko_sergeya_alikvotnye_drobi.docx | 235.44 КБ |
История возникновение дробей
Многочисленные историко-математические исследования показывают, что дробные числа появились у разных народов в древние времена вскоре после натуральных чисел. Появление дробей связывается с практическими потребностями: задачи, где нужно производить деление на части, были очень распространены. Кроме того, в жизни человеку приходилось не только считать предметы, но и измерять величины. Люди встретились с измерениями длин, площадей земельных участков, объемов, массы тел. При этом случалось, что единица измерения не укладывалась целое число раз в измеряемой величине. Например, измеряя длину участка шагами, человек встречался с таким явлением: в длине укладывалось десять шагов, и оставался остаток меньше одного шага. Поэтому второй существенной причиной появления дробных чисел следует считать измерение величин при помощи выбранной единицы измерения.
Таким образом, во всех цивилизациях понятие дроби возникло из процесса дробления целого на равные части. Первой дробью, с которой познакомились люди, была половина.
Система записи дробей, правила действий с ними заметно различались как у разных народов, так и в разные времена у одного и того же народа. Важную роль играли также многочисленные заимствования идей при культурных контактах различных цивилизаций.
Дроби в Древнем Египте
В древнем Египте пользовались только простейшими дробями, у которых числитель равен единице (те, которые мы называем «долями»). Математики называют такие дроби аликвотными (от лат. aliquot – несколько). Так же используется название основные дроби или единичные дроби.
Египтяне ставили иероглиф
(ер, «[один] из» или ре, рот) над числом для обозначения единичной дроби в обычной записи, а в священных текстах использовали линию. К примеру:
Египтяне использовали только две дроби не являющиеся долями – две трети и три четверти. Эти дроби часто встречались в вычислениях. Для них существовали специальные символы, был специальный знак и для дроби 1/2.
Кроме того, египтяне использовали формы записи, основанные на иероглифе Глаз Гора (Уаджет). Для древних характерно переплетение образа Солнца и глаза. В египетской мифологии часто упоминается бог Гор, олицетворяющий крылатое Солнце и являющийся одним из самых распространенных сакральных символов. В битве с врагами Солнца, воплощенными в образе Сета, Гор сначала терпит поражение. Сет вырывает у него Глаз — чудесное око — и разрывает его в клочья. Тот — бог учения, разума и правосудия — снова сложил части глаза в одно целое, создав "здоровый глаз Гора". Изображения частей разрубленного Ока использовались при письме в Древнем Египте для обозначения дробей от 1/2 до 1/64 . [7]
Сумма шести знаков, входящих в Уаджет, и приведенных к общему знаменателю: 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64 = 63/64
Такие дроби использовались вместе с другими формами записи египетских дробей для того, чтобы поделить хекат, основную меру объёма в Древнем Египте. Эта комбинированная запись также использовалась для измерения объёма зерна, хлеба и пива. Если после записи количества в виде дроби Глаза Гора оставался какой-то остаток, его записывали в обычном виде кратно ро, единице измерения, равной 1/320 хеката.
Например, так: |
При этом «рот» помещался перед всеми иероглифами.
Хекат ячменя: 1/2 + 1/4 + 1/32 (то есть 25/32 сосуда ячменя).
Хекат равнялся примерно 4,785 литрам.
Всякую другую дробь египтяне представляли как сумму аликвотных дробей, например 9/16 = 1/2+1/16; 7/8=1/2+1/4+1/8 и так далее.
Это записывалось так: /2 /16; /2 /4 /8.
В некоторых случаях это кажется, достаточно просто. Например, 2/7 = 1/7 + 1/7. Но ещё одним правилом египтян было отсутствие в ряду дробей повторяющихся чисел. То есть 2/7 по их мнению было 1/4+1/28.
Сейчас сумма нескольких аликвотных дробей называется египетской дробью. Другими словами, каждая дробь суммы имеет числитель, равный единице, и знаменатель, представляющий собой натуральное число.
Проводить различные вычисления, выражая все дроби через единичные, было, конечно, очень трудно и отнимало много времени. Поэтому египетские ученые позаботились об облегчении труда писца. Они составили специальные таблицы разложений дробей на простейшие. Математические документы древнего Египта это не научные трактаты по математике, а практические учебники с примерами, взятыми из жизни. Среди задач, которые должен был решать ученик школы писцов, - вычисления и вместимости амбаров, и объема корзины, и площади поля, и раздела имущества среди наследников, и другие. Писец должен был запомнить эти образцы и уметь быстро применять их для расчетов.
Одним из первых известных упоминаний о египетских дробях является Математический папирус Ринда. Три более древних текста, в которых упоминаются египетские дроби — это Египетский математический кожаный свиток, Московский математический папирус и Деревянная табличка Ахмима.
Самый большой математический документ - папирус по руководству к вычислениям писца Ахмеса - найден в 1858 году английским коллекционером Райндом. Папирус составлен в XVII веке до нашей эры. Его длина 20 метров, ширина 30 сантиметров. Он содержит 84 математических задачи, их решения и ответы, записанные в виде египетских дробей.
Часто встречающаяся задача из папируса Ахмеса: «Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками; разница между каждым человеком и его соседом составляет - 1/8 меры. Средняя доля есть одна мера. Вычти одну из 10; остаток 9. Составь половину разницы; это есть 1/16. Возьми ее 9 раз. Приложи это к средней доле; вычитай для каждого лица по 1/8 меры, пока не достигнешь конца».
Еще одна задача из папируса Ахмеса, демонстрирующая применение аликвотных дробей: «Разделить 7 хлебов между 8 людьми».
Если резать каждый хлеб на 8 частей, придется провести 49 разрезов.
А по-египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: 1/2 + 1/4 + 1/8. Значит, каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезаем пополам, два хлеба - на 4 части и один хлеб - на 8 долей, после чего каждому даем его часть.
Египетские дроби продолжали использоваться в древней Греции и впоследствии математиками всего мира до средних веков, несмотря на имеющиеся к ним замечания древних математиков. К примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой (позиционная система исчисления). Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи в своём труде «Liber Abaci» - это вычисления, использующие десятичные и обычные дроби, вытеснившие со временем египетские дроби.
В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали. В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам, механикам и другому «черному люду». «Если ты захочешь делить единицу, математики высмеют тебя и не позволят это делать»,- писал основатель афинской академии Платон.
Но не все древнегреческие математики соглашались с Платоном. Так в трактате «Об измерении круга» Архимед употребляет дроби. С дробями свободно обращался и Герон Александрийский. Он подобно египтянам разбивает дробь на сумму основных дробей. Вместо 12/13 он пишет 1/2 + 1/3 + 1/3 + 1/78, вместо 5/12 пишет 1/3 + 1/12 и.т.п. Даже Пифагор, со священным трепетом относившийся к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Правда, самим понятием дроби Пифагор и его ученики не пользовались. Они позволяли себе говорить лишь об отношениях целых чисел.
Природный звукоряд
Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор — «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой. Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовый тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.
С точки зрения физики тетива и струна — одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети — втрое, четверти — вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется — натуральный, т.е. природный, звукоряд.
1 | |||||||||||||||
24 | 48 | 72 | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 | 288 | 321 | 336 | 360 | 384 |
Дроби на Руси
Первый русский математик, известный нам по имени, монах Новгородского монастыря Кирик занимался вопросами хронологии и календаря. В его рукописной книге «Учение им же ведати человеку числа всех лет» (1136 г.), т.е. «Наставление, как человеку познать счисление лет» применяется деление часа на пятые, двадцать пятые и т.д. доли, которые он называл «дробными часами» или «часцами».
В первых учебниках математики (VII в.) дроби называли долями, позднее «ломаными числами». В русском языке слово дробь появилось в VIII веке, оно происходит от глагола «дробить» — разбивать, ломать на части. При записи числа использовалась горизонтальная черта.
В старых руководствах есть следующие названия дробей на Руси:
1/2 - половина, полтина
1/3 – треть
1/4 – четь
1/6 – полтреть
1/8 - полчеть
1/12 –полполтреть
1/16 - полполчеть
1/24 – полполполтреть (малая треть)
1/32 – полполполчеть (малая четь)
1/5 – пятина
1/7 - седьмина
1/10 – десятина.
Аликвотные дроби
Задачи с использованием аликвотных дробей составляют обширный класс нестандартных задач, в том числе пришедших из глубины веков. Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого. Разложение дробей вида 2/n и 2/(2n +1) на две аликвотные дроби систематизировано в виде формул
2/n=1/n + 1/n; например, при n = 9 2\9 = 1\9 + 1\9
2/(2n+1)=1/(n+1) + 1/(2n+1)(n+1), например, при n = 2 2/5=1/3 + 1/15
2/(2n+1)=1/(2n+1) + 1/(2n+1) например, при n = 5 2/11=1/6 + 1/66 .
Разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести, разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.
Чтобы представить какое-либо число в виде суммы аликвотных дробей, порой приходится проявлять незаурядную изобретательность. Скажем, число 2/43 выражается так: 2/43=1/42+1/86+1/129+1/301. Производить арифметические действия над числами, раскладывая их в сумму долей единицы, очень неудобно. Поэтому в процессе решения задач для разложения аликвотных дробей в виде суммы меньших аликвотных дробей возникла идея систематизировать разложение дробей в виде формулы. Эта формула действует, если требуется разложение аликвотной дроби на две аликвотные дроби.
Формула выглядит следующим образом:
1/n=1/(n+1) + 1/n ·(n+1)
Примеры разложения дробей:
1/3=1/(3+1)+1/3·(3+1)=1/4 +1/12;
1/5=1/(5+1)+1/5·(5+1)=1/6 +1/30;
1/8=1/(8+1)+1/8·(8+1)=1/9+ 1/72.
Эту формулу можно преобразовать и получить следующее полезное равенство: 1/n·(n+1)=1/n -1/(n+1)
Например, 1/6=1/(2·3)=1/2 -1/3
То есть аликвотную дробь можно представить разностью двух аликвотных дробей, или разность двух аликвотных, знаменателями которых являются последовательные числа равные их произведению.
Пример. Представить число 1 в виде сумм различных аликвотных дробей
а) трех слагаемых 1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6
б) четырех слагаемых
1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)= 1/2+1/3+1/7+1/42
в) пяти слагаемых
1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)=1/2+1/3+1/7+1/42=1/2+(1/4+ +1/12) +1/7+1/42=1/2+1/4+1/12 +1/7+1/42
Применение аликвотных дробей
На машиностроительных заводах есть очень увлекательная профессия, называется она - разметчик. Разметчик намечает на заготовке линии, по которым эту заготовку следует обрабатывать, чтобы придать ей необходимую форму.
Разметчику приходится решать интересные и подчас нелегкие геометрические задачи, производить арифметические расчеты и т. д.
"Понадобилось как-то распределить 7 одинаковых прямоугольных пластинок равными долями между 12 деталями. Принесли эти 7 пластинок разметчику и попросили его, если можно, разметить пластинки так, чтобы не пришлось дробить ни одной из них на очень мелкие части. Значит, простейшее решение - резать каждую пластинку на 12 равных частей - не годилось, так как при этом получалось много мелких долей. Как же быть?
Возможно ли деление данных пластинок на более крупные доли? Разметчик подумал, произвел какие-то арифметические расчеты с дробями и нашел все-таки самый экономный способ деления данных пластинок.
Впоследствии он легко дробил 5 пластинок для распределения их равными долями между шестью деталями, 13 пластинок для 12 деталей, 13 пластинок для 36 деталей, 26 для 21 и т. п.
Оказывается, разметчик представил дробь 7/12 в виде суммы единичных дробей 1/3 + 1/4. Значит, если из 7 данных пластинок 4 разрезать на три равные части каждую, то получим 12 третей, то есть по одной трети для каждой детали. Остальные 3 пластинки разрежем 4 равные части каждую, получим 12 четвертей, то есть по одной четверти для каждой детали. Аналогично, используя представления дробей в виде суммы единичных дробей 5/6=1/2+1/3; 13/12=1/3+3/4=1/2+1/3+1/4; 13/36=1/4+1/9.
Есть известная восточная притча о том, что отец оставил сыновьям 17 верблюдов и велел разделить между собой: старшему половину, среднему - треть, младшему- девятую часть. Но 17 не делится ни на 2, ни на 3, ни на 9. Сыновья обратились к мудрецу. Мудрец был знаком с дробями и смог помочь в этой затруднительной ситуации.
Он пустился на уловку. Мудрец прибавил к стаду на время своего верблюда, тогда их стало 18.
Разделив это число, как сказано в завещании, мудрец забрал своего верблюда обратно. Секрет в том, что части, на которые по завещанию должны были делить стадо сыновья, в сумме не составляют 1, т.е. 18/18. Действительно,18:2=9, 18:3=6, 18:9=2, если всё это сложить 9+6+2=17, то получится 1/2 + 1/3 + 1/9 = 17/18.
Таких задач достаточно много. Например, задача из русского учебника о 4 друзьях, нашедших кошелек с 8 кредитными билетами: по одному в один, три, пять рублей, а остальные десятирублевые:1, 3, 5, 10, 10, 10, 10, 10, итого 59 рублей. По обоюдному согласию один хотел третью часть, второй-четверть, третий- пятую, четвертый-шестую. Однако самостоятельно они этого сделать не смогли: помог прохожий, предварительно добавив свой 1 рубль. Чтобы разрешить эту трудность прохожий сложил единичные дроби 1/3 + 1/4 + 1/5 + 1/6 = 57/60. 1/3=20 рублей, 1/4=15 рублей, 1/5=12 рублей, 1/6=10 рублей, всего 57 рублей. Удовлетворив запросы друзей, он заработал 2 рубля для себя.
Решение задач с
аликвотными дробями
1. Стас принёс в школу 5 яблок. Как разделить их поровну между 12 мальчиками, не разрезая ни одного из них на 12 части?
Решение. Каждый должен получить по яблока. Но , значит, 3 яблока нужно разделить на 4 части и 2 яблока на 6 частей.
2. Квадрат со стороной, равной 1, разделили пополам, затем одну его половину опять разделили пополам, одну из получившихся половинок еще раз разделили пополам и т. д. (рис. 1). Используя рисунок, докажите, что
.
Решение. Площадь квадрата со стороной равной 1, так же равна 1. На рисунке видно, что одна часть квадрата (закрашенная) остаётся, т. е. сумма площадей указанных частей меньше площади всего квадрата.
На сколько сумма аликвотных дробей, записанных в левой части неравенства, отличается от 1?
Ответ: на , так как часть нового разбиения (закрашенная часть) осталась не учтённой.
3. Не выполняя сложения дробей, объясните, почему верно каждое неравенство:
; .
Подметьте закономерность и запишите следующее неравенство.
Решение. В левой стороне первого неравенства каждая дробь больше , следовательно, . Во втором неравенстве каждая дробь больше . Третье неравенство будет таким: .
4. Представьте в виде суммы различных аликвотных дробей следующую дробь:
а) ; б) ; в) ; г) .
Решение. а) ; б) ;
в) ; г) .
5. В детский сад утром привели 90 детей. В 17.00 забрали из сада половину детей. В 18.00 забрали третью часть детей. В 19.00 забрали шестую часть детей. Сколько детей забирали из сада в разное время?
Решение. , 1/2=45 детей, 1/3=30 детей, 1/6=15 детей.
Ответ. В 17.00 из сада забрали 45 детей, в 18.00 – 30 детей, в 19.00 – 15 детей.
Заключение
На уроках математики я познакомился с аликвотными дробями. Поискав информацию в книгах по математике и в интернете, я узнал, что аликвотные дроби это самые первые древние дроби, которые человек научился использовать на практике для математических расчетов. В современное время они тоже с успехом применяются. Решение задач с применением аликвотных дробей занимательное и нестандартное, развивает мышление и логику.
Использовалась литература:
Сочини стихи, Машина
Анатолий Кузнецов. Как мы с Сашкой закалялись
Рисуем ананас акварелью
Лупленый бочок
Как Дед Мороз сделал себе помощников