Оглавление
1. Введение
2. Характеристика жидкого состояния
3. Ньютоновские и Неньютоновские жидкости
4. Свойства жидкости
a. Вязкость
b. Плотность
c. Кипение
5. Методика определения свойств жидкости
6. Образование свободной поверхности и поверхностное натяжение
7. Эксперименты
8. Применение Неньютоновских жидкостей
Литература
Вложение | Размер |
---|---|
doklad.doc | 99.5 КБ |
Муниципальное автономное общеобразовательное учреждение
Средняя общеобразовательная школа №3
Неньютоновская жидкость
Учебно-исследовательская работа по физике
Исполнители:
Маслов Александр, уч. 10А кл.
Терёшин Владислав, 10В кл.
Носарев Сергей, 10А кл.
Руководители:
Игумнова И.О.
Учитель физики.
Кировград
2013 г.
Оглавление
1. Введение
2. Характеристика жидкого состояния
3. Ньютоновские и Неньютоновские жидкости
4. Свойства жидкости
a. Вязкость
b. Плотность
c. Кипение
5. Методика определения свойств жидкости
6. Образование свободной поверхности и поверхностное натяжение
7. Эксперименты
8. Применение Неньютоновских жидкостей
Литература
1. Введение
Цель: изучить современные проблемы использования неньютоновской жидкости в современном мире
Задачи: - изучить разновидности жидкостей;
-изучить свойства неньютоновской жидкости;
- экспериментально показать свойства неньютоновской жидкости
Методы исследования: изучение научной литературы по проблеме (Интернет-ресурсы), экспериментальные исследования.
Необходимо уметь: пользоваться ресурсами сети Интернет, уметь видеть проблемы, проводить эксперименты.
Актуальность выбранной темы: В курсе физики 9-10 класса мы изучали вопросы, которые когда-то были проблемами в науке, но были решены на определенном этапе. Нас заинтересовал тот вопрос, что при открытии новых физических явлений постоянно происходит переосмысление физической картины мира. Каждое новое открытие является революционным и продвигает науку на новый виток развития. Очень интересно, что сегодня еще может человечество узнать о природе. Может ли полезное применение неньютоновской жидкости упростить жизнь человека и помочь в освоении науки?
Последовательность выполнения исследования
Жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Но что же такое жидкость, с научной точки зрения жидкость это - одно из агрегатных состояний вещества. Основным свойством жидкости является, то, что она способна менять свою форму под действием механического воздействия. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.
2. Характеристика жидкого состояния: Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими).
3. Ньютоновские и Неньютоновские жидкости: Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости, то такие жидкости называют ньютоновскими. К ним относятся однородные жидкости. Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но и даже звуковыми волнами. Если воздействовать механически на обычную жидкость то чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, в следствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости
ПУЗЫРЬ, ПОДНИМАЮЩИЙСЯ В НЬЮТОНОВСКОЙ И НЕНЬЮТОНОВСКОЙ ЖИДКОСТЯХ
4. Свойства жидкости: Как у всего сущего на земле, у жидкости есть свои свойства, такие как вязкость, плотность, текучесть, температура кипения и замерзания и многие другие. Данная работа больше основана на изучении вязкости жидкости, но стоит упомянуть и о других ее свойствах
a. Вязкость (внутреннее трение) - одно из трёх явлений переноса, свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Различают динамическую вязкость(первая) [единицы измерения: пуаз, Па*с], вторая, вязкость жидкостей, вязкость полимера, разряжённых газов, и кинематическую вязкость [единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера].Вторая вязкость (коэффициент второй вязкости) ζ, подобно динамической (первой) вязкости η, является положительной величиной и зависит от химической природы вещества, давления и температуры. Вязкость в жидкостях подчиняется тем же дифференциальным уравнениям, что и соответствующие явления в газах. Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести. Вязкость полимерных растворах характеризуется следующими величинами: относительной вязкостью, или вязкостным отношением. Внутреннее трение разряжённых газовотсутствует и существует лишь внешнее трние движущегося газа. Прибор для измерения вязкости называется вискозиметром.
b. Плотность - физическая величина, определяемая для однородного вещества массой его единичного объёма. Плотность воды при температуре 4оС равна 1г/см3.
c. Кипение - процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.
5. Методика определения свойств жидкости
a. определение вязкости: Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы: Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами. Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) - Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683
6. Образование свободной поверхности и поверхностное натяжение. Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться. Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости. Маленькие объекты с плотностью, большей плотности жидкости, способны "плавать" на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.
Эксперимент №1
Цель: изучение некоторых свойств неньютоновских жидкостей
Реактивы: крахмал картофельный, вода
Посуда: глубокая чашка, металлическая палочка
Ход работы:
1. Взять крахмал
2. Налить небольшое количество воды и размешать с помощью металлической палочки (не использовать стеклянные палочки, из-за их хрупкости)
3. Постепенно подливать воды и мешать, пока не получится однородная масса
Получившуюся жидкость можно налить в руку и попробовать скатать шарик, при воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связанно это будет с тем, что, после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы.
Если налить получившейся жидкости в высокий резервуар, и положить
сверху бросок дерева, в него свободно можно будет забить гвоздь. Так же можно просто свободно без усилий погрузить палец в данный раствор, но если попробовать быстро ткнуть в него, палец остановится именно на поверхности раствора, не проникнув внутрь, и чем быстрее и сильнее пробовать пробить верхнюю мембрану, тем большее сопротивление мы будем получать в замен.
Применение Неньютоновских жидкостей: Так же Неньютоновские жидкости используются в автопроме, моторные масла синтетического производства на основе неньютоновских жидкостей уменьшают свою вязкость в несколько десятков раз, пи повышении оборотов двигателя, позволяя при этом уменьшить трение в двигатели.
Данный эксперимент позволяет нам не только познакомится с неньютоновскими жидкостями, но и изучить некоторые свойства данных жидкостей, а так позволяют наглядно продемонстрировать свойства жидкости, наглядные примеры помогают лучше запомнить данную преподавателем теорию.
"Эффект Кайе"
Введение: В 1963 году ученый химик и физик Артур Кайе проводил опыты на основе неньютоновских жидкостей и наблюдал интересные изменения. Ученый заметил, что если жидкость вливать с небольшой высоты в такую же жидкость или в жидкость с одинаковой плотностью и вязкостью, то струйка не растворяется в жидкости, а как бы отскакивает от самой себя. Связанно данное явление с тем, что струя жидкости, падающая вниз не может пробить поверхностное натяжение верхнего слоя и отскакивает в сторону. Это явление назвали "Эффект Кайе".
Цель: изучение образования слоя поверхностного натяжения
Реактивы: жидкое мыло (шампунь)
Посуда: глубокая, широкая чашка, бюретка, штатив, металлическая пластина
Ход работы:
1. установить штатив на ровную поверхность и закрепить на ней бюретку на высоте 20-25 см от поверхности стола
2. под бюретку установить кристаллизатор
3. налить в кристаллизатор исследуемую жидкость слоем в 3-5 см
4. аккуратно заполнить бюретку исследуемой жидкостью, ровным слоем, без образования воздушных пузырьков
После того как жидкость через бюретку падает с высоты 20 см вниз в себе подобную жидкость, мы можем наблюдать интересное явление связанное с поверхностным натяжением. Струйка жидкости, падающая вниз, начинает отскакивать от поверхности жидкости находящейся внизу. Объяснить это можно тем что, проникая внутрь жидкости, находящейся в кристаллизаторе, струйка несет в себе запас кинетической энергии, а поскольку жидкость имеет высокую плотность и вязкость, и по закону сохранения энергии, кинетическая энергия, внесенная в уравновешенную систему, должна, куда-то перейти, и выстреливает такой же струйкой из жидкости. Если поставить под струйку металлическую пластину под углом примерно 450 и смочить ее тем же жидким мылом, то струйка падающая вниз будет по наклонной траектории падать отскакивая пару раз от пластины.
Данный опыт дает представление о кинетической энергии и уравновешенных системах, так же данный опыт очень эффектно выглядит и запоминается надолго, что позволяет лучше воспринять пройденный теоретический материал.
Литература
Интернет-ресурсы:
Фильм "Золушка"
Гораздо больше риска в приобретении знаний, чем в покупке съестного
Астрономы получили первое изображение черной дыры
Иван Васильевич меняет профессию
Новый снимок Юпитера