Синтез лёгких ядер. Создание и принцип действия водородной бомбы.
Вложение | Размер |
---|---|
prezentatsiya_termoyadernye_reaktsii_tumanov.ppsx | 390.7 КБ |
Слайд 1
Презентация по физике на тему: «Термоядерные реакции» у ченика 11 «А» класса ГБОУ СОШ № 1465 Туманова Павла Учитель физики Л.Ю. КругловаСлайд 2
Термоядерные реакции Термоядерная реакция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения.
Слайд 3
Происхождение термина Для того чтобы произошла ядерная реакция , исходные атомные ядра должны преодолеть так называемый « кулоновский барьер » — силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин «термоядерная реакция».
Слайд 4
Кулоновский барьер Кулоновский барьер — потенциальный барьер , который необходимо преодолеть атомным ядрам (которые заряжены положительно) для того, чтобы сблизиться друг с другом для возникновения притяжения, вызванного короткодействующим сильным взаимодействиям кулонов (ядерными силами). Кулоновский барьер есть следствие того, что, согласно закону Кулона , одноимённо заряженные тела отталкиваются. На малых расстояниях ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убывают с ростом расстояния значительно быстрее кулоновских сил. В результате зависимость суммарного потенциала взаимодействия ядер от расстояния имеет максимум (вершину кулоновского барьера) на некотором расстоянии.
Слайд 5
Мюонный катализ Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов . Мюоны µ − вступая в взаимодействие с термоядерным топливом образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер. Мюон – элементарная частица, образующаяся в космическом излучении на высоте 300км над поверхностью земли.
Слайд 6
Термоядерные реакции (1)D+T→ 4He(3.5 MeV)+ n(14.1 MeV) (2а)D+D→ T(1.01 MeV)+ p(3.02 MeV) (2б) → 3He(0.82 MeV)+ n(2.45 MeV) (3)D+3He→ 4He(3.9 MeV)+ p(14.7 MeV) (4)T+T→ 4He +2 n+ 11.3 MeV (5)3He+3He→ 4He +2 p (6а)3He+T→ 4He + p +n+ 12.1 MeV (6б) → 4He(4.8 MeV)+ D(9.5 MeV) (6в) → 4He(0.5 MeV)+ n(1.9 MeV)+p(11.9 MeV)
Слайд 7
Водородная бомба Термоядерное оружие ( она же водородная бомба ) — тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется колоссальное количество энергии.
Слайд 8
Общее описание Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого . Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6 . Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, Li-6 — единственный промышленный источник получения трития :
Слайд 9
В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.
Слайд 10
Триггер Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление.
Слайд 11
Контейнер с термоядерным горючим Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.
Слайд 12
A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола . D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера . Огненный шар расширяется…
Слайд 13
История Первая в мире водородная бомба — советская РДС-6 была взорвана 12 августа 1953 года на полигоне в Семипалатинске. 1 ноября 1952 года США взорвали первый термоядерный заряд на атолле Эниветок . Устройство, испытанное США в 1952 году, фактически не являлось «бомбой», а представляла собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же ученые разработали именно бомбу — законченное устройство, пригодное к практическому применению. РДС-6
Слайд 14
Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная « царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила. Царь-бомба
Слайд 15
Использованные материалы : Википедия Google.ru
Астрономический календарь. Март, 2019
Карты планет и спутников Солнечной системы
Лиса и волк
Ледяная внучка
По морям вокруг Земли