симметрия
Вложение | Размер |
---|---|
симметрия | 1.19 МБ |
simmetriya_mikheeva.pptx | 1.19 МБ |
Слайд 1
Симметрия Презентацию подготовила ученица 6 класса ш колы «Обрзование+1» Михеева ВикторияСлайд 2
Что такое симметрия? Геометрическая симметрия — это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию). Виды симметрий возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того какие свойства объекта должны оставаться неизменными после преобразования.
Слайд 3
Симметрия
Слайд 4
Виды симметрии Зеркальная симметрия или отражение — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью). Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя. Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале, а также многие законы симметрии (в кристаллографии, химии, физике, биологии и т. д., а также в искусстве и искусствоведении).
Слайд 5
Зеркальная симметрия
Слайд 6
Осевая симметрия- в размерности 2 (то есть на плоскости) гиперплоскость представляет собой прямую, говорят об осевой симметрии или симметрии относительно прямой. Для фигуры, переходящей в себя при осевой симметрии, прямая, образованная неподвижными точками движения, называется осью симметрии этой фигуры. Примером оси симметрии отрезка является его серединный перпендикуляр. Любое движение плоскости можно представить в виде композиции не более чем трёх осевых симметрий.
Слайд 7
Осевая симметрия
Слайд 8
Вращательная симметрия- термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m-мерного евклидова пространства. Собственными вращениями называются разновидности изометрии, сохраняющие ориентацию. Таким образом, группа симметрии, отвечающая вращениям, есть подгруппа группы E + (m) (см. Евклидова группа).
Слайд 9
Центральной симметрией (иногда центральной инверсией) относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через , в то время как обозначение можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры.
Слайд 10
Центральная симметрия
Слайд 11
Симметрия в природе Природа не терпит точной симметрии . Всегда есть хотя бы незначительные отклонения. Так, наши руки, ноги, глаза и уши не полностью идентичны друг другу, пусть и очень похожи. И так для каждого объекта. Природа создавалась не по принципу однотипности, а по принципу согласованности, соразмерности. Именно соразмерность является древним значением слова «симметрия». Философы античности считали симметрию и порядок сущностью прекрасного. Архитекторы, художники и музыканты с древнейших времён знали и пользовались законами симметрии. И в то же время лёгкое нарушение этих законов может придать объектам неповторимый шарм и прямо-таки волшебное очарование.
Слайд 12
Симметрия в природе
Слайд 13
Спасибо за внимание!
Слайд 1
Симметрия Презентацию подготовила ученица 6 класса ш колы «Обрзование+1» Михеева ВикторияСлайд 2
Что такое симметрия? Геометрическая симметрия — это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию). Виды симметрий возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того какие свойства объекта должны оставаться неизменными после преобразования.
Слайд 3
Симметрия
Слайд 4
Виды симметрии Зеркальная симметрия или отражение — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью). Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя. Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале, а также многие законы симметрии (в кристаллографии, химии, физике, биологии и т. д., а также в искусстве и искусствоведении).
Слайд 5
Зеркальная симметрия
Слайд 6
Осевая симметрия- в размерности 2 (то есть на плоскости) гиперплоскость представляет собой прямую, говорят об осевой симметрии или симметрии относительно прямой. Для фигуры, переходящей в себя при осевой симметрии, прямая, образованная неподвижными точками движения, называется осью симметрии этой фигуры. Примером оси симметрии отрезка является его серединный перпендикуляр. Любое движение плоскости можно представить в виде композиции не более чем трёх осевых симметрий.
Слайд 7
Осевая симметрия
Слайд 8
Вращательная симметрия- термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m-мерного евклидова пространства. Собственными вращениями называются разновидности изометрии, сохраняющие ориентацию. Таким образом, группа симметрии, отвечающая вращениям, есть подгруппа группы E + (m) (см. Евклидова группа).
Слайд 9
Центральной симметрией (иногда центральной инверсией) относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через , в то время как обозначение можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры.
Слайд 10
Центральная симметрия
Слайд 11
Симметрия в природе Природа не терпит точной симметрии . Всегда есть хотя бы незначительные отклонения. Так, наши руки, ноги, глаза и уши не полностью идентичны друг другу, пусть и очень похожи. И так для каждого объекта. Природа создавалась не по принципу однотипности, а по принципу согласованности, соразмерности. Именно соразмерность является древним значением слова «симметрия». Философы античности считали симметрию и порядок сущностью прекрасного. Архитекторы, художники и музыканты с древнейших времён знали и пользовались законами симметрии. И в то же время лёгкое нарушение этих законов может придать объектам неповторимый шарм и прямо-таки волшебное очарование.
Слайд 12
Симметрия в природе
Слайд 13
Спасибо за внимание!
Человек несгибаем. В.А. Сухомлинский
Растрёпанный воробей
Сказка про Серого Зайку
Лиса-охотница
Глупый мальчишка