Исследовательская работа
Вложение | Размер |
---|---|
istoriya_razvitiya_kompyuternoy_tekhniki.doc | 174 КБ |
Муниципальное общеобразовательное учреждение Ореховская средняя общеобразовательная школа
Школьная научно – практическая конференция школьников «Шаг в будущее»
Выполнил: Рапанович Иван
ученик 6 класса
Руководитель: Демидова
Надежда Александровна
Орехово 2009 год
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Счётно - решающие средства до появления ЭВМ
Поколение первое. Компьютеры на электронных лампах
Поколение второе. Транзисторные компьютеры
Поколение третье. Интегральные схемы
ПоКОЛЕНИЕ ЧЕТВЁРТОЕ. бОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ
Сравнение разных поколений компьютеров.
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Введение.
Необходимость производить вычисления существовала всегда. Люди в стремлении усовершенствовать процесс вычисления изобретали всевозможные приспособления. Об этом свидетельствуют и греческий абак ,и русские щоты,и японский серобян, и ещё множество разнообразных устройств. В 17веке были созданы первые механические счётные машины, в 19веке они получили широкое распространение.
Самое удивительное устройство, названное сначала электронно – вычислительной машиной (ЭВМ), а затем компьютером, подарил человеку 20век.
Идея классифицировать машины по поколениям вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появление новых возможностей, расширение областей применения и характера использования.
Цель данной работы заключается: в исследовании истории развития компьютерной техники
Задачи:
выяснить как совершенствовались компьютеры по мере развития;
выяснить, что понимается под «поколением ЭВМ»;
сделать вывод о проделанной работе;
сформировать позитивный интерес к информатике
Счётно - решающие средства до появления ЭВМ.
История вычислений уходит своими корнями в глубь веков так же, как и история человечества. Накопление запасов, делёж добычи, обмен – все эти действия связаны с вычислениями. Для подсчётов люди использовали пальцы, камешки, палочки узелки и т.д.
Одним из первых устройств (5 – 4 века до н.э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком. Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заострённой палочкой можно было писать буквы и цифры. Впоследствии абак был усовершенствован и вычисления на нём уже проводились путём перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. У японцев этот прибор назывался «серобян», у китайцев – «суан - пан».
В Древней Руси при счёте применялось устройство, похожее на абак, и называлось оно «русский щот». В 17 веке этот прибор уже имел вид русских счётов, которые можно встретить и в наши дни.
В начале 17 столетия молодым французским математиком и физиком Блезом Паскалем была изобретена первая в мире счётная машина, названная Паскалиной.
Которая выполняла сложение и вычитание.
В 1970 – 1980 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину, которая выполняла все четыре арифметических действия.
В 1978 году русский учёный П. Чебышев сконструировал счётную машину, выполнявшую сложение и вычитание многозначных чисел.
В 1984 году петербургский инженер Однер сконструировал арифмометр, который выполнял все четыре арифметических действия.
В 30 – е столетия в нашей стране был разработан более совершенный арифмометр «Феликс».
Важным событием 20 столетия было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины – прообраза современного компьютера. В 1812 г. Он начал работать над так называемой «разностной» машиной. К 1822 г. Он построил небольшую действующую модель и
рассчитал на ней таблицу квадратов. В 1833 году приступил к разработке аналитической машины. Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Машину предполагалось приводить в действие силой пара.
К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован.
Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором, в котором информация, нанесённая на перфокарты, расшифровывалась с помощью электрического тока. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.
Поколение первое.
Компьютеры на электронных лампах.
Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер , изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры.
Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.
Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.
Примерами машин I-го поколения могут служить MARK 1, ENIAC EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.
Поколение второе.
Транзисторные компьютеры.
1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.
Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .
Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.
И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а, магнитную ленту впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).
Поколение третье.
Интегральные схемы.
Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2.
Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!
Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.
Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.
Поколение четвертое.
Большие интегральные схемы.
Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние – интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?
Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.
Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.
Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.
Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.
Сравнение разных поколений компьютеров.
Во время развития компьютеров четко обозначилась тенденция к уменьшению размеров и увеличению производительности. Чем более совершенствовалась элементная база компьютеров, тем меньше и быстрее они становились. Это можно показать на примере следуюшего сравнения и таблицы:
|
|
Характеристика | Поколения | |||
Годы примения | 1946-1960 | 1950-1964 | 1964-1970 | 1970-1990-e |
Основной элемент | Электронная лампа | Транзистор | Интегральная схема | Большая интегральная схема |
Количество ЭВМ в мире, шт | Сотни | Тысячи | Сотни тысяч | Десятки миллионов |
Размеры | Очень большие | Значительно меньшие | Миникомпьютеры | Микрокомпьютеры |
Быстротдействие | 1 (условно) | 10 | 1 000 | 100 000 |
Носитель информации | Перфорированная лента | Магнитный диск, м. лента | Диск | Гибкий диск |
ЗАКЛЮЧЕНИЕ
Какими должны быть компьютеры пятого поколения?
Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идёт также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.
В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний.
Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок, так называемый интеллектуальный интерфейс. Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.
В настоящее время очень многие области деятельности человека связаны с применением компьютеров. Почему же эти электронные машины так плотно внедряются в нашу жизнь. Все довольно тривиально. Они выполняют рутинную расчетную и оформительскую работу, освобождая наш мозг для более необходимых и ответственных задач. В результате утомляемость резко снижается, и мы начинаем работать гораздо производительнее, нежели без применения компьютера.
Возможности современных компьютеров поражают самое богатое воображение. Они способны параллельно выполнять несколько задач, сложность которых довольно велика. Поэтому некоторые производители задумываются над созданием искусственного интеллекта. Да и сейчас работа компьютера напоминает работу интеллектуального электронного помощника человека.
Мать-и-мачеха
Астрономы получили первое изображение черной дыры
Разноцветное дерево
Как зима кончилась
Пятёрки