Творческая тема проекта «Функции в устном народном творчестве». Эпиграф к работе высказывание немецкого математика, одного из основоположников современной топологии Феликса Хаусдорфа «Понятие функции такое же основное и первоначальное, как и понятие множества».
Актуальность исследования обусловлена стремлением углублять знания об окружающим мире, через применение положений естественных наук. Проблемный вопрос: Возможно, ли установить связь между функциями и устным народным творчеством?
Гипотеза: возможно установить связь между основными свойствами функций и некоторыми пословицами и поговорками. Цель работы: обнаружить взаимосвязь математики с устным народным творчеством.
Вложение | Размер |
---|---|
svoystva_funkcii.rar | 2.89 МБ |
Слайд 1.
Творческая тема моего проекта «Функции в устном народном творчестве».
Эпиграфом к работе я взял высказывание немецкого математика, одного из основоположников современной топологии Феликса Хаусдорфа «Понятие функции такое же основное и первоначальное, как и понятие множества».
Актуальность исследования обусловлена стремлением углублять знания об окружающим мире, через применение положений естественных наук.
Слайд 2. В соответствии с темой проекта, естественно возникает вопрос: Возможно, ли установить связь между функциями и устным народным творчеством?
Я предполагаю, что возможно установить связь между основными свойствами функций и некоторыми пословицами и поговорками.
Слайд 3. Работая над темой проекта, я поставила цель: обнаружить взаимосвязь математики с устным народным творчеством.
Для достижения поставленной цели, на мой взгляд, необходимо решить следующие задачи:
историю развития понятия «функция»;
определение функции;
свойства функций.
Слайд 4.
Функция – это одно из основных математических и общенаучных понятий, выражающее зависимость между переменными величинами.
Понятие функции уходит своими корнями в ту далёкую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. Они ещё не умели считать, но уже знали, что, чем больше оленей удастся убить на охоте, тем дольше племя будет избавлено от голода, чем сильнее натянута тетива лука, тем дальше полетит стрела, чем дольше горит костёр, тем теплее будет в пещере.
С развитием скотоводства и земледелия, ремесла и обмена увеличилось количество известных людям зависимостей между величинами.
Слайд 5. Явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут своё начало в первой половине XVII в. в связи с развитием механики. В это время начинает складываться представление о функции как о зависимости одной переменной величины от другой. Так французские математики Пьер Ферма и Рене Декарт представляли себе функцию как зависимость ординаты точки от её абсциссы.
Слайд 6. Термин "функция", впервые ввел немецкий математик Лейбниц. У него функция связывалась с геометрическим образом (графиком функции).
Слайд 7. В дальнейшем швейцарский математик Иоганн Бернулли и член Петербургской Академии наук знаменитый математик XVIII века Леонард Эйлер рассматривали функцию как аналитическое выражение. У Эйлера имеется и общее понимание функции как зависимости одной переменной величины от другой.
Слайд 8. Эта точка зрения получила дальнейшее развитие в трудах русского математика Н.И.Лобачевского
В формировании современного понимания функциональной зависимости приняли участие многие крупные математики.
Слайд 9. В школьном учебнике математики дается следующее определение функции: Зависимость переменной y от переменной x называется функцией, если каждому значению x соответствует единственное значение у. Переменную x называют независимой переменной или аргументом, а переменную у – зависимой переменной.
Функции – это математические портреты устойчивых закономерностей, познаваемых человеком. Чтобы проиллюстрировать характерные свойства функций обратимся к пословицам и поговоркам. Ведь пословицы – это тоже отражение устойчивых закономерностей, выверенное многовековым опытом народа.
Слайд 10. Определение возрастающей функции. Функция возрастает на промежутке Х, если большему значению аргумента соответствует большее значение функции.
Слайд 11. « Век живи, век учись», - гласит пословица. Я изобразила графиком, как накапливается жизненный опыт по мере жизни. Горизонтальная ось графика – это время жизни. Вертикальная - жизненный опыт. График представляет зависимость жизненного опыта от времени жизни. Согласно пословице эта функция неизменно возрастает. Такое свойство функции называется монотонным возрастанием. Этим требованиям отвечают и такие пословицы как «Чем больше в лес, тем больше дров», «Как аукнется, так и откликнется», «Каков поп, таков и приход».
Слайд 12. Определение неубывающей функции: Если для любых х1 и х2 из множества Х таких, что х1<х2, справедливо неравенство f(x1) ≤ f(x2) , то функцию f(x) называют неубывающей на множестве Х.
Слайд 13. «Кашу маслом не испортишь». Качество каши можно рассматривать как функцию от количества масла в ней. Согласно пословице эта функция не уменьшится с добавкой масла. Она, возможно, увеличится, но может оставаться и па прежнем уровне. Подобного рода функции называются монотонно неубывающими.
Слайд 14. Функция называется убывающей на промежутке Х, если большему значению аргумента соответствует меньшее значение функции.
Слайд 15. Убывающую функции иллюстрирует пословица « Матушкин гнев, что весенний снег: и много его выпадает, да скоро растает».Эта функция показывает, как зависит мера материнского гнева от меры материнской любви. Монотонно убывающими будут и графики функций, изображающие пословицы: «Тише едешь, дальше будешь», «Мал золотник, да дорог»
Слайд 16. Функция ограничена снизу, если весь ее график расположен выше некоторой горизонтальной прямой y=m.
Функция ограничена сверху, если весь ее график расположен, ниже некоторой горизонтальной прямой y=M.
Слайд 17. Пословица «Выше головы не прыгнешь». Если изобразить траекторию прыжков, то их высота в полном соответствии с пословицей будет ограничена сверху некоторой «мерой»
Слайд 18. Максимум функции соответствует пословице
«Недосол на столе – пересол на спине». Качество пищи является функцией от количества соли в ней. Мало соли – невкусно, много – тоже в рот не возьмёшь. А где-то в промежутке, в золотой середине, когда соли в самый раз, кушанье становится особенно лакомым. В этой точке кулинарная функция достигает максимума. Малейший щепотью соли больше или меньше – и дегустатор с утончённым вкусом скажет, что качество пищи снизилось.
Слайд 19. Выпуклость функции можно продемонстрировать пословицей «Не круто начинай, круто кончай», а вогнутость «Горяч на почине, да скоро остыл».
Слайд 20. Периодичность
« Жизнь как зебра. Черная полоса, белая полоса, черная полоса, белая полоса, …».
Слайд 21. В ходе исследования я выяснила, что между основными свойствами функций и некоторыми пословицами и поговорками можно установить связь. Таким образом, выдвинутая гипотеза нашла в работе свое подтверждение, а все поставленные цели и задачи достигнуты.
Слайд 22. Благодарю вас за внимание и желаю, чтоб в вашей жизни было как можно меньше черных полос!
Слайд 23. При работе над проектом я использовала следующие источники информации
Литература:
Лиса-охотница
Убунту: я существую, потому что мы существуем
Рисуем акварельное мороженое
Попробуем на вкус солёность моря?
Зимний дуб
Комментарии
Спасибо, за идею!
Очень интересная и увлекательное исследование. Спасибо, за идею. Предложу своим ученикам на уроках алгебры задуматься над этим вопросом. Начнем работу наверное в 7 классе, когда только знакомимся с понятием "функция". Желаю Вам и вашим ученикам дальнейших творческих успехов!
Я рада, что Вам понравился
Я рада, что Вам понравился материал. Творческих успехов Вам в исследоваиях!
Спасибо за подсказку. Очень
Спасибо за подсказку. Очень тяжело готовить интегрированные уроки, особенно математики и литературы. Воспользуюсь вашей идеей!
Я рада, что материал
Я рада, что материал востребован и будет кому то полезен.