Что такое кристаллы? Какими свойствами они обладают? Что такое кристаллическая решётка? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали нас, и мы попытались найти на них ответы сами, так как в учебнике об этом мало говорится и ответов на эти вопросы мы не нашли.
Вложение | Размер |
---|---|
kristally.doc | 371 КБ |
НОУ школа – интернат № 26 ОАО «РЖД»
Авторы: Кузьменкова Мария,
учащиеся 7 класса
Научный руководитель:
Прокушева Наталья Анатольевна,
учитель физики
Нижнеудинск, 2010
Содержание
Введение 3
1 Понятие «кристалл». Строение кристаллов 4
2 Виды кристаллов 7
3 Образование кристаллов 8
4 Применение кристаллов 9
5 Выращивание кристаллов в домашних условиях 14
Заключение 16
Литература 19
Введение
Поэзия! Завидуй кристаллографии!
Кусай ногти в гневе и бессилии!
О. Мандельштам
Мы живём в мире, в котором большая часть веществ находится в твёрдом состоянии. Мы пользуемся различными механизмами, инструментами, приборами. Мы живём в домах и квартирах. Имеем мебель, бытовые приборы, современнейшие средства связи: радио, телевидение, компьютеры и т.д. А ведь всё это твёрдые тела. С физической точки зрения, человек – твёрдое тело. В отличие от жидкостей, твёрдые тела сохраняют не только объём, но и форму, так как положение в пространстве частиц, составляющих тело, стабильно. Из-за значительных сил межмолекулярного воздействия частицы не могут удаляться друг от друга на значительные расстояния.
В природе часто встречаются твёрдые тела, имеющие форму правильных многогранников. Такие тела назвали кристаллами. Изучение физических свойств кристаллов показало, что геометрически правильная форма – не главная их особенность.
Знаменитое изречение академика А.Е.Ферсмана «Почти весь мир кристалличен. В мире царит кристалл и его твёрдые прямолинейные законы» полностью согласуется с неугасающим научным интересом учёных всего мира и всех областей знания к данному объекту исследования. Так, в конце 60-х годов прошлого века начался серьёзный научный прорыв в области жидких кристаллов, породивший «индикаторную революцию» по замене стрелочных механизмов на средства визуального отображения информации. Позже в науку вошло понятие биологический кристалл (ДНК, вирусы и т.д.), а в 80-х годах XX века – фотонный кристалл.
Что такое кристаллы? Какими свойствами они обладают? Что такое кристаллическая решётка? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали нас, и мы попытались найти на них ответы сами, так как в учебнике об этом мало говорится и ответов на эти вопросы мы не нашли.
Цели нашей работы:
1 Понятие «кристалл». Строение кристаллов
Физика твёрдого тела (раздел физики, изучающий структуру и свойства твёрдых тел) – это одна из основ современного технологического общества. В сущности, огромная армия инженеров всего мира работает над созданием твёрдых материалов с заданными свойствами, необходимыми для использования в самых разнообразных станках, механизмах и устройствах в области связи, транспорта и компьютерной техники.
Кристаллы (от греч. krýstallos, первоначально — лёд, в дальнейшем — горный хрусталь, кристалл) твёрдые тела, имеющие естественную форму правильных многогранников (рис. 1). Эта форма — следствие упорядоченного расположения в кристаллах атомов, образующих трёхмерно-периодическую пространственную укладку — кристаллическую решетку (рис. 2). Кристаллам ряда химических элементов и их соединений присущи замечательные механические, электрические, магнитные и оптические свойства.
Кристалл — равновесное состояние твёрдых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определённая кристаллическая атомная структура. Кристаллы обладают той или иной симметрией атомной структуры, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией физических свойств. Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки или потерявший её в результате той или иной обработки, сохраняет основной признак кристаллического состояния — решётчатую атомную структуру и все определяемые ею свойства.
Большинство природных или технических твёрдых материалов являются поликристаллическими, они состоят из множества отдельных, беспорядочно ориентированных, мелких кристаллических зёрен, иногда называемых кристаллитами. Таковы, например, многие горные породы, технические металлы и сплавы. Одиночные кристаллы (природные или синтетические) называются монокристаллами.
Рис. 1 Разнообразие кристаллов в природе
Рис. 2 Примеры простых кристаллических решёток: 1 – простая кубическая; 2 – гранецентрированная кубическая; 3 – объёмно-центрированная кубическая; 4 – гексагональная
Русский учёный Е.С.Фёдоров установил, что в природе может существовать только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры. Большинство из них (но не все) обнаружены в природе или созданы искусственно. Кристаллы могут иметь форму различных призм, основанием которых могут быть правильный треугольник, квадрат, параллелограмм и шестиугольник.
Кристаллические решётки металлов часто имеют форму гранецентрированного (медь, золото) или объёмно-центрированного куба (железо), а также шестигранной призмы (цинк, магний).
В основе классификации кристаллов и объяснения их физических свойств может лежать не только форма элементарной ячейки, но и другие виды симметрии, например, поворот вокруг оси. Осью симметрии называют прямую, при повороте вокруг которой на 360° кристалл несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси. Существуют кристаллические решётки, обладающие осями симметрии 2-го, 3-го, 4-го и 6-го порядков. Возможна симметрия кристаллической решётки относительно плоскости симметрии, а также комбинация разных видов симметрии (рис. 3).
Рис.3 Симметрия кристаллов
Различают идеальные и реальные кристаллы. Идеальный кристалл является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани и т. д. Реальный кристалл всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.
Основной отличительный признак кристаллов — присущее им свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных (жидкостях, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят.
3 Образование кристаллов
Существует три способа образования кристаллов: кристаллизация из расплава, из раствора и из газовой фазы. Примером кристаллизации из расплава может служить образование льда из воды (ведь вода – это расплавленный лёд), а также образования вулканических пород. Пример кристаллизации из раствора в природе – выпадение сотен миллионов тонн соли из морской воды. При охлаждении газа (или пара) электрические силы притяжения объединяют атомы или молекулы в кристаллическое твёрдое вещество – так образуются снежинки.
Наиболее распространёнными способами искусственного выращивания монокристаллов являются кристаллизация из раствора и из расплава. В первом случае кристаллы растут из насыщенного раствора при медленном испарении растворителя или при медленном понижении температуры. Такой процесс можно продемонстрировать в лаборатории с водным раствором поваренной соли. Если дать воде возможность медленно испаряться, то, в конце концов, раствор станет насыщенным, и дальнейшее испарение приведёт к выпадению соли.
Рис. 4 Кристаллизация из раствора
Если твёрдое вещество нагреть, оно перейдёт в жидкое состояние – расплав. Трудности выращивания монокристаллов из расплавов связаны с высокой температурой плавления. Например, для получения кристалла рубина нужно расплавить порошок оксида алюминия, а для этого его нужно нагреть до температуры 2030 °С. Порошок высыпают тонкой струйкой в кислородно-водородное пламя, где он плавится и каплями падает на стержень из тугоплавкого материала. На этом стержне постепенно и вырастает монокристалл рубина.
Рис. 5 Кристаллизация из расплава
4 Применение кристаллов
Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Мы ограничились несколькими примерами.
1. Алмаз. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах. На алмазных подшипниках не обнаруживается никакого износа даже после 25 млн. оборотов. Высокая теплопроводность алмаза позволяет использовать его в качестве теплоотводящей подложки в полупроводниковых электронных микросхемах.
Конечно, алмазы используются и в ювелирных изделиях – это бриллианты.
2. Рубин. Высокая твёрдость рубинов, или корундов, обусловила их широкое применение в промышленности. Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни – нитеводители на фабриках по изготовлению химического волокна. Они практически не изнашиваются, в то время как нитеводители из самого твёрдого стекла при протяжке через них искусственного волокна изнашиваются за несколько дней.
Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.
3. Жидкие кристаллы. Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Подобно жидкостям они текучи, подобно кристаллам обладают анизотропией. Строение молекул жидких кристаллов таково, что концы молекул очень слабо взаимодействуют друг с другом, в то же время боковые поверхности взаимодействуют очень сильно и могут прочно удерживать молекулы в едином ансамбле.
Рис. 6 Жидкие кристаллы: смектические (слева) и холестерические (справа)
Наибольший интерес для техники представляют холестерические жидкие кристаллы. В них направление осей молекул в каждом слое немного отличается друг от друга. Углы поворота осей зависят от температуры, а от угла поворота зависит окраска кристалла. Эта зависимость используется в медицине: можно непосредственно наблюдать распределение температуры по поверхности человеческого тела, а это важно для выявления скрытых под кожей очагов воспалительного процесса. Для исследования изготовляют тонкую полимерную плёнку с микроскопическими полостями, заполненными холестериком. Когда такую плёнку накладывают на тело, то получается цветное отображение распределения температуры. Этот же принцип используется в жидкокристаллических термометрах.
Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Нужная цифра или буква воспроизводится с помощью комбинации небольших ячеек, выполненных в виде полосок. Каждая ячейка заполнена жидким кристаллом и имеет два электрода, на которые подаётся напряжение. В зависимости от величины напряжения, «загораются» те или иные ячейки. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии.
Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.
4. Полупроводники. Исключительная роль выпала на долю кристаллов в современной электронике. Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электричества, как металлы, но их нельзя отнести и к диэлектрикам, т.к. они не являются и хорошими изоляторами. Такие вещества относят к полупроводникам. Это большинство веществ, их общая масса составляет 4/5 массы земной коры: германий, кремний, селен и др., множество минералов, различные оксиды, сульфиды, теллуриды и др.
Наиболее характерным свойством полупроводников является резкая зависимость их удельного электрического сопротивления под воздействием различных внешних воздействий: температуры, освещения. На этом явлении основана работа таких приборов, как термисторы, фоторезисторы.
Объединяя полупроводники различного типа проводимости, можно пропускать электрический ток только в одном направлении. Это свойство широко используется в диодах, транзисторах.
Исключительно малые размеры полупроводниковых приборов, иногда всего в несколько миллиметров, долговечность, связанная с тем, что их свойства мало меняются со временем, возможность легко изменять их электропроводность открывают широкие перспективы использования полупроводников сегодня и в будущем.
5. Полупроводники в микроэлектронике. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов – транзисторов, диодов, резисторов, конденсаторов, соединительных проводов, изготовленных на одном кристалле. При изготовлении интегральной схемы на пластинку из полупроводника (обычно это кристаллы кремния) наносятся последовательно слои примесей, диэлектриков, напыляются слои металла. В результате на одном кристалле формируется несколько тысяч электрических микроприборов. Размеры такой микросхемы обычно 5 мм, а отдельных микроприборов – порядка 10–6 м.
В последнее время всё чаще стали обсуждать возможность создания электронных микросхем, в которых размеры элементов будут сопоставимы с размерами самих молекул, т.е. порядка 10–9–10–10 м. Для этого на очищенную поверхность монокристалла никеля или кремния с помощью туннельного микроскопа напыляются небольшие количества атомов или молекул других веществ. Поверхность кристалла охлаждается до –269 °С, чтобы исключить заметные перемещения атомов вследствие теплового движения. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне. Это уже предел «миниатюризации».
6. Вольфрам и молибден. На современном уровне технического развития резко возросли скорости нагрева и охлаждения деталей приборов и машин, значительно увеличился интервал температур, при которых им приходится работать. Очень часто требуется длительная работа при очень высоких температурах, в агрессивных средах. Также необходимы машины, способные выдерживать большое число температурных циклов.
При таких сложных условиях эксплуатации детали и целые узлы многих машин и приборов очень быстро изнашиваются, покрываются трещинами и разрушаются. Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам. Монокристаллы вольфрама и молибдена, полученные при помощи зонной плавки, используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.
7. Кварц. Это диоксид кремния, один из самых распространённых минералов земной коры, по сути, песок. Природные кристаллы кварца имеют размеры от песчинок до нескольких десятков сантиметров, встречаются кристаллы размером до одного метра и более. Чистый кристалл кварца бесцветен. Ничтожные посторонние примеси вызывают разнообразную окраску. Прозрачные бесцветные кристаллы – это горный хрусталь, фиолетовые – аметист, дымчатые – раухтопаз. Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике.
Кварц также обладает пьезоэлектрическими свойствами, т.е. способен преобразовывать механическое воздействие в электрическое напряжение. Благодаря этому свойству кварц широко применяется в радиотехнике и электронике – в стабилизаторах частоты (в том числе и в часах), всевозможных фильтрах, резонаторах и т.д. С помощью кристаллов кварца возбуждают (и измеряют) малые механические и акустические воздействия.
Рис. 7 Применение кристаллов в быту и технике
Из плавленного кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.
5 Практическая часть
Выращивание кристаллов в домашних условиях
Мы вырастили в домашних условиях кристаллы медного купороса.
1. Материал - сульфат меди порошок (медный купорос, CuSO4) - 500г. В процессе теоретической работы над темой мы выяснили, что чем чище соль сульфата меди - тем красивее вырастут кристаллы. Мы взяли обычный медный купорос, который продаётся в отделах «Всё для сада и огорода».
Рис. 8 Медный купорос
2. Стеклянный химический термостойкий стакан вместимостью 200-300мл или обычная стеклянная банка.
Рис. 9 Стеклянная ёмкость
3. Мы налили в банку тёплую воду так, чтобы до краёв осталось 3-4 см. Постепенно добавляли медный купорос в воду и тщательно перемешивали ложкой. Получился насыщенный раствор темно - синего цвета. Банку мы подогрели на водяной бане, чтобы растворить оставшиеся кристаллы.
Рис. 10 Готовый раствор
Мы выбрали самые крупные кристаллики из соли медного купороса, привязали их на нитки. Нитки привязали к обычной шариковой ручке и опустили эту «затравку» в банку, поставили в кухне на шкаф.
Через сутки кристаллы выросли приблизительно до 1 см. в диаметре. Они были похожи на драгоценные камни. Окончательно вытащили их из банки мы недели через две, просушили и покрыли бесцветным лаком. За это время кристаллы на ниточках выросли не много, но на дне тоже образовался кристаллический осадок.
Рис. 11 Так выглядит кристалл медного купороса, выращенный из раствора
Заключение
Кристаллы активно используются в современной науке и технике. Широко в промышленности применяются природные и искусственные алмазы.
Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах.
Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.
Большой интерес для техники представляют жидкие кристаллы. Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии. Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.
Исключительная роль выпала на долю кристаллов и в современной электронике и микроэлектронике. С их помощью работают такие приборы, как термисторы, фоторезисторы, диоды, транзисторы.
В последнее время всё чаще стали обсуждать возможность создания электронных микросхем, в которых размеры элементов будут сопоставимы с размерами самих молекул, т.е. порядка 10–9–10–10 м. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне.
Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам. Монокристаллы вольфрама и молибдена используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.
Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике. Из плавленого кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.
Практическая часть нашей работы заключалась в выращивании кристаллов. Мы убедились, что довольно легко и быстро вырастают кристаллы медного купороса. К тому же они очень красивые. А кристаллы из обычной поваренной соли нам вырастить не удалось.
Литература
Ах эта снежная зима
Почему Уран и Нептун разного цвета
Учимся ткать миленький коврик
Как нарисовать черёмуху
Кактусы из сада камней