Научно-исследовательская конференция, школьного общесва "Эрудит". Работа призера заседания физико-математической секции исследовательских работ учащихся.
Вложение | Размер |
---|---|
simmetriya_v_tehnike.doc | 64.5 КБ |
МБОУ СОШ №4
Научно-исследовательская конференция.
Секция математики.
Тема:
«Симметрия в технике»
Автор:
Гусев Александр Андреевич,
8 «В» класс.
Руководитель:
Куликова Ольга Александровна,
Учитель математики МОУ СОШ №4, г. Шатура,
2012 год
План работы.
Мы каждый день видим вокруг себя различные предметы. Какие-то из них созданы природой, а какие-то человеческими руками. И за теми и за другими можно наблюдать часами. Но моё внимание особенно привлекают предметы созданные человеком. Изучить их систему построения, технические возможности на сегодня и в будущем – это цели, стоящие перед моими ровесниками. Да, красиво смотреть на движущиеся механизмы, приятно осознавать, что человек их создаёт и управляет ими. Важно, чтобы они приносили пользу для людей и облегчали их труд. Создание умных машин – дело будущего, но основа уже заложена талантливыми учёными, изобретателями, инженерами. Все они базируются на фундаментальных знаниях, в частности на законах симметрии.
Цель моей работы – показать роль законов симметрии в технике.
Задача – доказать целесообразность и полезность симметрии в технике.
Объект моего исследования – разноплановые проявления симметрии при решении различных технических задач.
В основу работы я положил изучение журналов, таких как «Техника молодёжи», «Наука и техника», «Популярная механика», специальной технической литературы, данных интернета и окружающей меня техники.
Что же такое симметрия? Симме́три́я (др.-греч. συμμετρία «соразмерность», от μετρέω — «меряю»), в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.1
Ещё в древности такие мыслители, как Аристотель, Пифагор, Архимед и др. использовали законы симметрии для решения задач по физике и математике. Ярким примером использования законов симметрии могут служить египетские пирамиды, висячие сады Семирамиды, Тадж-Махал и др. Но эти примеры относятся к архитектуре. А примером использования симметрии в технике в те времена может служить строительство кораблей, боевых колесниц, таранов, метательных машин и механизмов,… Ярким примером использования закона симметрии в физике (угол падения равен углу отражения) служит открытие Архимеда, при помощи которого он фокусировал солнечные лучи на парусах неприятельских кораблей, воспламеняя их. А теперь обратимся к более поздним примерам. Наиболее часто и полно законы симметрии использовали оружейники для создания различных видов вооружений , ввиду того, что симметрия даёт прекрасную возможность балансировки оружия для наиболее эффективного его использования. Если посмотреть на средневековые луки, копья, арбалеты и т.д., то везде используется тот или иной закон симметрии – осевая, центральная, зеркально-поворотная.
Но прогресс не стоит на месте. Законы симметрии из оружейной области стали активно проникать в область мирной жизни. Давайте посмотрим на техническое устройство как на произведение искусства.
В технике красота, соразмерность механизмов часто бывает связана с их надежностью, устойчивостью в работе. Симметричная форма дирижабля, самолета, подводной лодки, автомобиля и т.д. обеспечивает хорошую обтекаемость воздухом или водой, а значит, и минимальное сопротивление движению.
В технике существует своего рода постулат: наиболее целесообразные и функционально совершенные изделия являются наиболее красивыми. В подтверждение этого постулата приведем слова генерального авиаконструктора О.К. Антонова: "Мы прекрасно знаем, что красивый самолет летает хорошо, а некрасивый плохо, а то и вообще не будет летать. Это не суеверие, а совершенно материалистическое положение... конструктор может идти часто от красоты к технике, от решений эстетических к решениям техническим".2
Виды симметрии в технике:
Пьер Кюри пришел к симметрии физических явлений от симметрии кристаллов (геометрических фигур) через симметрию материальных фигур. Это принесло важные результаты при описании физических свойств кристаллов и обещает большие успехи в других областях физики.
Но работы Пьера Кюри не оказали влияния на развитие идеи симметрии в физике. Причины этого странного парадокса, кроме указанных ранее (кристаллографичность работ Кюри, краткость, если не конспективность их изложения), состоит еще и в том, что они появились слишком поздно, тогда, когда физика уже накопила большой опыт несколько иного подхода к симметрии физических явлений, который связан с развитием механики в XVII—XIX веках.3
В то время механика была фактически всей физикой. Самым главным считалось изучение движения и взаимодействия тел. Соответствующие законы, кажущиеся нам сейчас такими очевидными, потребовали колоссального труда нескольких поколений выдающихся ученых. Коперник, Кеплер, Галилей, Декарт, Гюйгенс шаг за шагом двигались к пониманию истинных законов, управляющих движением материальных тел.
Окончательно эти законы были сформулированы Исааком Ньютоном (1643—1727). Но поскольку движение совершается в пространстве и во времени, ему пришлось обобщить и сформулировать некие положения, постулирующие их свойства.
Ньютон считал, что существует абсолютное пространство, свободное и независимое от каких-либо тел. Это абсолютное пространство изотропно, то есть любые направления в нем одинаковы. Кроме того, оно однородно, так как любые две точки пространства ничем не отличаются друг от друга. Существует также абсолютное время, независимое от каких-либо процессов, текущее вечно и равномерно. Равномерность течения времени предполагает его однородность: скорость течения времени со временем не меняется.4
Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?
Конечно, нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах трельяжи. Они имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во втором зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.
Угловое зеркало с прямым углом между составляющими его зеркалами отличается еще некоторыми интересными свойствами. Если смастерить его из двух маленьких зеркал, то можно убедиться в том, что в таком зеркале с прямоугольным раствором (а сейчас речь только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления.
В технике обычно не составляют зеркала, а используют прямоугольную призму, у которой соответствующие грани обеспечивают зеркальный ход лучей.
Прямоугольные призмы, как бы «складывающие» ход луча «гармошкой», сохраняя его необходимую длину, заданную фокусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°.
На старинных картинах можно видеть капитанов и полководцев с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли.
Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» — это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от нее, движется обратно параллельно направлению первого удара.
Свойство отраженного луча сохранять направление при повороте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями.
Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничителях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направление источника света.
Большую роль трехгранные зеркальные уголковые отражатели играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значительное рассеяние его, той небольшой доли отраженных радиоволн, которая возвращается к радару, обычно достаточно для распознания объекта.
Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же «прозрачны» для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают металлическими уголковыми отражателями. Длина граней у такого «зеркала» всего около 30 см , но этого довольно, чтобы возвращать достаточно мощное эхо.
Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево — наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение «выпрямляется».
Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответствующей форме оно может иметь еще одну плоскость, перпендикулярную зеркалам, но она здесь не рассматривается. Нас интересует только плоскость симметрии, проходящая между зеркалами, в которой, так сказать, взаимно отражаются оба зеркала.
Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное восприятие. Если бы плоскость симметрии умела говорить, она бы заявила: «Я не меняю ни правое на левое, ни верх на низ. Я вообще не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня. Если человек своей продольной осью встанет параллельно моей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом». Как видим, все зависит от точки зрения.
Но в конечном итоге истинно то, что можно измерить и сосчитать. Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. подобными открытиями ломали более чем двадцативековую традицию.
Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки «в натуральную величину» выглядит маленькой куколкой. Иногда зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в уменьшенном.
Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уменьшенный вариант, а потом актер играет перед экраном, на который проецируется его уменьшенное изображение.
Известный «чародей» Иохен Цмек в своей увлекательной книге «Волшебный мир магии» описывает, как подобные чудеса можно делать без фотографии. Когда уменьшенный предмет должен сам собой появиться в пространстве, с помощью вогнутого зеркала его изображение проецируется таким образом, чтобы он казался стоящим на подставке.
Иллюзионист Александр Фюрст строил этот трюк следующим образом. Зритель видел маленькую сцену с сильно уменьшенными артистами. Чтобы спроецировать их в таком виде на экран, Фюрст использовал в своем сооружении угловое зеркало. Именно перед ним двигались артисты. Но зеркало переворачивало их на 180° и ставило тем самым «на голову», и уже это изображение вогнутое зеркало, еще раз перевернув, отбрасывало на маленькую сцену. Непременным условием эффекта была безупречная чистота всех зеркал.
Изучив применение законов симметрии на протяжении всего исторического периода с древности через Средние века к Новому времени и современности можно сделать следующие выводы:
На заре развития авиации наши знаменитые учёные Н. Е. Жуковский и С. А. Чаплыгин исследовали полёт птиц, чтобы сделать выводы относительно наивыгоднейшей формы крыла и условий его полёта. Большую роль в этом сыграла, конечно, симметрия. Даже современные боевые истребители, такие как Су-27, МиГ-29 и Т-50 в основе своей спроектированы по законам симметрии.
Глядя на транспортные средства, я задал себе вопрос: Чем объясняется частое присутствие симметрии в технике? Изучив необходимую литературу, я понял, что симметрия, прежде всего, определяется целесообразностью. Никому не нужен кривой автомобиль или самолёт с крыльями разной длины. Кроме того симметричные объекты красивы.
Значит красота и симметрия спасут мир и сделают его лучше!
Список литературы:
Рисуем акварелью: "Романтика старого окна"
Пчёлы и муха
Аэродинамика и воздушный шарик
Рождественские подарки от Метелицы
Компас своими руками