История стекла, его виды, свойства, приемы обработки, методы изготовления. Дополнительный информационный и иллюстративный материал к теме "Кристаллы и аморфные вещества".
Вложение | Размер |
---|---|
Prezentaciya_Microsoft_PowerPoint.ppt | 1.23 МБ |
Слайд 1
Название этого материала в разных языках имеет разную этимологию. Большинство романских и германских — в разных формах транслирует латинское происхождение: verre, vidrio и vetro ( лат. vitrum — стекло ) или glass и Glas ( лат. glaciēs — лёд, твёрдость, крепость , ср. — лат. glaesum — янтарь ), немецкая трактовка, правда, предполагает именно последний вариант, как заимствование латынью из древнегерманского — янтарь, как известно, ассоциируется, прежде всего, с Прибалтикой , но встречается и на средиземноморском побережье... Фульгурит Славянские — самостоятельное. Причём формальной ассоциации с отглагольной морфемой «течь» может быть противопоставлено архаичное звучание — «сткло» (сохранилось в западно-славянских языках), то есть происхождение названия этого материала указывает на связь с сущностным, «технологическим» аспектом: стекло (сткло, скло) — стык (стк) — старославянский же «сплав» (в словаре В. Даля: «Стекло́ ср., сткло..., сплавъ песку (кремнистаго) съ поташомъ»). Первоначально стеклом называли лишь всем известный и наиболее распространённый продукт стеклоделия , относимый с некоторых пор в научном обиходе к силикатным стёклам . Когда была установлена идентичность строения, состава и свойств стекла многим минералам, последние стали квалифицироваться как разновидности его природного аналога, именуясь в соответствии с условиями формирования: некристаллизовавшиеся производные быстро остывшей лавы — вулканическим стеклом (пемза, обсидианы, пехштейн, базальты и др.), образовавшиеся из земной горной породы в результате удара космического тела — метеоритным (молдавит); особый класс стеклообразных минералов представляют фульгуриты (кластофульгуриты), которые образуются в результате удара мощного разряда молнии из силикатных отложений (SIO2 — песка , кварца , кремнезёма — т. е. тривиальных, наиболее распространённых сырьевых компонентов в рядовом стеклоделии), встречаются по преимуществу — на вершинах скалистых гор в районах с повышенной грозовой активностью, имеют место и полупрозрачные образцы кластофульгуритов. Основным поводом к созданию синтетического заменителя — органического стекла , стало отсутствие в пору его разработки (1930-е годы) материалов, пригодных для использования в авиации. Стеклом этот полимер — соответственно принадлежащий к классу органических веществ , именуется только по формальному сходству с таковым.Слайд 2
История стекла (технологии) Долгое время первенство в открытии стеклоделия признавалось за Египтом , чему несомненным свидетельством считались глазурованные стеклом фаянсовые плитки внутренних облицовок пирамиды Джессера (середина III тысячелетия до н. э.); к ещё более раннему периоду (первой династии фараонов) относятся находки фаянсовых украшений, то есть стекло существовало в Египте уже 5 тысяч лет назад. Археология Двуречья , в особенности — Древних Шумера и Аккада , склоняет исследователей к тому, что немногим менее древними образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датируемую периодом династии Аккада, то есть возраст её — около четырёх с половиной тысяч лет. Бусина зеленоватого цвета диаметром около 9 мм, хранящаяся в Берлинском музее , считается одним из древнейших образцов стеклоделия. Найдена она была египтологом Флиндерсом Питри около Фив , по некоторым представлениям ей пять с половиной тысяч лет. Н. Н. Качалов отмечает, что на территории Старовавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. Учёный утверждает — есть все основания считать, «что в Египте и в странах Передней Азии истоки стеклоделия... отделяются от наших дней промежутком приблизительно в шесть тысяч лет». Существует также несколько легенд, с той или иной степенью правдоподобия толкующих возможные предпосылки того, как сложилась технология. Н. Н. Качалов воспроизводит одну из них, поведанную античным естествоиспытателем и историком Плинием Старшим (I век). Эта мифологическая версия гласит, что однажды финикийские купцы на песчаном берегу, за неимением камней, сложили очаг из перевозимой ими африканской соды — утром на месте кострища они обнаружили стеклянный слиток. Изучающие историю происхождения этого материала когда-нибудь придут к единому мнению и относительно места — Египет , Финикия или Месопотамия , Африка или Восточное Средиземноморье и т. д., — и относительно времени — «около 6 тысяч лет назад», но характерную для феноменологии естествознания черту — «синхронность открытий», можно наблюдать по некоторым признакам и в данном случае, причём не имеет большого значения разница даже в сотни лет, в особенности, когда в реконструируемом способе варки стекла прослеживаются существенные различия. Актуальность легенд, повествующих о зарождении стеклоделия, сводится не столько к историческим и этногеографическим аспектам, которые с точки зрения теории познания лишь косвенно важны, — сколько к происхождению технологии как таковой, словно отделившейся от «случайных» процессов гончарных ремёсел, и ставшей отправной точкой для создания материала с новыми свойствами — первым шагом к управлению ими, а в дальнейшем — к постижению строения. Существует несколько версий, одна из которых именно на этом примере делает попытку решить вопрос: что есть стекло? — Н. Н. Качалов предлагает : ...отмерять этот срок от появления поливной керамики или вообще каких-либо глазурованных силикатных изделий. Всякая глазурь, закреплённая на глиняном или вообще силикатном черепке, по составу представляет собой стекло, и наиболее правдоподобная версия открытия стекла как самостоятельного материала связывается с наблюдением человека над процессами керамической технологии. Однако глазурь на древнем фаянсе играет второстепенную роль в изделии и является материалом непрозрачным, т. е. она лишена главного отличительного признака стекла, а потому может называться им лишь условно.
Слайд 3
Немногим ранее мысль о «стеклообразном родстве» всех силикатных материалов высказывает И. Ф. Пономарёв , причём учёный подчёркивает важность понимания не столько генезиса стекла, сколько роль исследования его строения для изучения свойств других силикатных материалов; одновременно он указывает, что эти соображения имеют место ещё у М. В. Ломоносова: Теория строения стекла имеет значение не только для понимания свойств изделий из чистого стекла, но и для всех силикатных изделий, которые в процессе производства находились при температуре выше 800°. Можно считать, что все силикатные материалы, рассматриваемые силикатной технологией, содержат стекло. Замечательны слова М. В. Ломоносова, написанные в «Письме о пользе стекла» (1752 г.): «Имеет от стекла часть крепости фарфор». Не только фарфор, но и фаянс, керамические изделия, огнеупоры, цемент — все они содержат то или иное количество стекла. Поэтому значение изучения стекла чрезвычайно расширяется и выводы, делаемые в исследованиях, посвящённых строению стекла, важны для понимания свойств самых различных технических силикатных продуктов. В изучении технологии египетского стекловарения определённых успехов добился английский исследователь А. Лукас. Его сведения дают следующее представление о развитии стекольного производства Египта «архаического» периода, который заканчивается IV тысячелетием до н. э. Так называемый «египетский фаянс» (бусы, амулеты, подвески, небольшие пластинки для инкрустаций) представляет собой изделия, покрытые зеленовато-голубой глазурью. Отнесение их к тому, с чем ассоциируется в настоящее время «фаянс» нельзя считать правильным, поскольку отсутствует главный признак этой категории изделий — глиняный черепок. Известен египетский фаянс с «черепком» трёх родов: стеатит, мягкая кварцевая мука и цельный природный кварц. Существует мнение, что наиболее ранние образцы изготовлены из стеатита. Минерал этот по составу представляет собой силикат магния, он присутствует в природе в больших количествах. Изделия, вырезанные из куска стеатита, для получения глазури покрывались порошкообразной смесью из сырых материалов, входящих в её состав, и обжигались. Глазурь эта, по химическому составу представляющая собой силикат натрия с небольшой примесью кальция — не что иное как легкоплавкое стекло, окрашенное в голубые и зеленовато-голубые тона медью, иногда с изрядной примесью железа.
Слайд 4
Диатрета . Вторая половина IV-го века. Стекло. Государственное античное собрание . Мюнхен Египетские стеклоделы плавили стекло на открытых очагах в глиняных мисках. Спёкшиеся куски бросали раскалёнными в воду, где они растрескивались, и эти обломки, так называемые фритты , растирались в пыль жерновами и снова плавились. Фриттование использовалось ещё долго после средневековья, поэтому на старых гравюрах и при археологических раскопках мы всегда находим две печи — одну для предварительной плавки и другую для плавки фритт. Необходимая температура проплавления составляет 1450 °C, а рабочая температура — 1100—1200 °С. Средневековая плавильная печь («гуть» — по чешски) представляла собой низкий, топящийся дровами свод, где в глиняных горшках плавилось стекло. Выложенная только из камней и глинозёма, долго она не выдерживала, но надолго не хватало и запаса дров. Поэтому, когда лес вокруг гуты вырубали, её переводили на новое место, где леса было ещё в достатке. Ещё одной печью, обычно соединяемой с плавильной, была отжигательная печь — для закалки, где готовое изделие нагревалось почти до точки размягчения стекла, а затем — быстро охлаждалось, чтобы тем самым компенсировать напряжения в стекле (предотвратить кристаллизацию). В виде такой конструкции стеклоплавильная печь продержалась до конца XVII века, однако недостача дров вынуждала некоторые гуты, особенно в Англии, уже в XVII веке переходить на уголь; а так как улетучивающаяся из угля двуокись серы окрашивала стекло в жёлтый цвет, англичане начали плавить стекло в замкнутых, так называемых крытых горшках. Этим плавильный процесс затруднялся и замедлялся, так что приходилось подготавливать шихту не такой твёрдой, и тем не менее однако уже в конце XVIII века преобладающей делается топка углем. Интересны сведения, имеющие отношение и к истории стекла и тому факту, что стекло, в общем смысле, за время своего существования, в отличие от многих других материалов, не претерпело практически никаких изменений (самые ранние образцы того, что стали называть стеклом ничем не отличаются от известного всем — бутылочного; исключением, конечно, являются виды стёкол с заданными свойствами), однако в данном случае речь идёт о веществе и материале минерального происхождения, нашедшем применение в современной практике.
Слайд 5
Наука о стекле М . В. Ломоносов: Наука о стекле Основу научного подхода к исследованию и варке стёкол положил Михаил Васильевич Ломоносов . Учёным были проведены первые технологически систематизированные варки более 4 тысяч стёкол. Лабораторная практика и методические принципы, которые он применял, мало чем отличаются от считающихся в настоящее время традиционными, классическими.
Слайд 6
Использование технологических свойств минеральных стёкол Природное стекло, будучи одним из первых естественных материалов, который получил очень широкое применение в быту, и как орудие труда, и как часть разных видов оружия (ножи, наконечники стрел, копий и т. д.), — для изготовления украшений и других предметов обихода, — и как различные элементы ритуалов, напр. — ацтекских и майяских ; — благодаря своей структуре обладает и недоступным для многих других, традиционных по применению материалов, парадоксальными, казалось бы, свойствами, что использовано было теми же ацтеками, давшими уникальные инструменты. Именно свойства стекла как аморфного вещества, с одной стороны, наделяющего его хрупкостью, в чём его недостаток и неприменимость для изготовления, например, инструментов, к которым предъявляются требования повышенной прочности (былой недостаток — сейчас он в ряде случаев, и рядом технологических методик преодолён) , с другой стороны, это отсутствие кристаллической решётки дало ему и преимущество, которое является причиной того, что с первыми в истории медицинскими, хирургическими инструментами по их остроте, возможностям заточки, до сих пор не может сравниться ни один металлический скальпель. Рабочую часть последнего (фаску) можно заточить до определённого предела — в дальнейшем от «пилы» практически невозможно избавиться, в то время как этого порога, например, в обсидиановых скальпелях нет — отсутствие кристаллической решётки позволяет их затачивать до молекулярного уровня, что даёт неоспоримое преимущество в микрохирургии, к тому же они не подвержены коррозии. Настоящий пример, хоть и имеющий отношение к стеклообразным минералам, очень показателен для понимания такого структурного свойства стекла как аморфность. Но сейчас эти свойства используются и при создании прецизионных инструментов из искусственного стекла.
Слайд 7
Строение стёкол Термин «строение стекла» подразумевает описание двух тесно связанных, но рассматриваемых зачастую независимо аспектов — геометрии взаимного расположения атомов и ионов, составляющих стекло и характера химических связей между образующими его частицами. Как уже было отмечено, структура стекла соответствует структуре жидкости в интервале стеклования. Этим определяется то, что вопросы строения стеклообразующих расплавов и стёкол самым тесным образом связаны друг с другом. Любое достижение в исследовании строения жидкостей и расплавов создаёт дополнительные возможности развития учения о строении стекла и наоборот. Развитие представления о строении стекла проходит через гипотезы, объясняющие эксперименты, — к теориям, оформляющимся математически, и предполагающим количественную проверку в эксперименте. Таким образом понимание строения стеклообразных веществ (и частично — жидких) обусловлено совершенством методов исследования и математического аппарата, техническими возможностями. Выводы же позволяют в дальнейшем, совершенствуя методологию, развивать теорию строения стекла и подобных ему аморфных веществ.
Слайд 8
Методы исследования Строго говоря, экспериментальные методы исследования строения стёкол насчитывают менее ста лет, поскольку к таковым во всей полноте представления о структуре стекла можно отнести только методику рентгенографического анализа, действительно, дающую реальную картину строения вещества. В числе первых, кто начал использовать рассеяние рентгеновского излучения для анализа строения стёкол, были ученики академика А. А. Лебедева , который ещё в 1921 году выдвинул так называемую «кристаллитную» гипотезу строения стекла, а в начале 1930-х годов с целью исследования названным методом — первым же в СССР организовал в своей лаборатории группу — во главе с Е. А. Порай-Кошицем и Н. Н. Валенковым. Однако первостепенную роль не только в теоретическом аспекте вопроса, оценке термодинамических характеристик, но и в реализации эксперимента, в понимании методики его постановки, в оценке и согласовании с теорией его результатов, играют так называемые модельные методы. К ним относятся метод ЭДС , электродный, масс-спектрометрический метод и метод ядерного магнитного резонанса . И если первый имел применение уже на начальных этапах развития электрохимии , второй обязан своим происхождением стеклянному электроду , который нашёл полноценное применение одновременно и в качестве объекта исследования (материал стеклянного электрода), и в качестве прибора, дающего информацию не только о протекании процессов в веществе, из которого он состоит, но и косвенную — о его строении. Электродный метод был предложен в начале 1950-х годов М. М. Шульцем . В числе первых, кто начал исследовать стекло методом ЯМР был американский физик Ф. Брэй . Сейчас арсенал модельных методов пополнился ,благодаря использованию конфокальной оптической микроскопии, позволяющей наблюдать расположение микрометровых коллоидных частиц объёмно. Атомы, образующие стекло, в опыте имитируются частицами коллоидного геля, взвешенными в полимерной матрице. Об эспериментах под руководством П. Рояла сказано в следующем разделе.
Слайд 9
Классические гипотезы Изучение структуры монокристаллических веществ даже в настоящее время требует совершенствования экспериментальных методов и теории рассеяния. Теория М. Лауэ , закон Брэгга-Вульфа и рентгеноструктурный анализ идеальных кристаллов преобразовали законы кристаллографии Е. С. Фёдорова в законы, опирающиеся на понимание структуры и точных координат атомов базиса монокристалла: кинематическая — для идеального несовершенного (мозаичного) кристалла, и динамическая — для монокристалла — предоставляют значения интегральной рассеивающей способности, которые в этих случаях не пребывают в соответствии с экспериментальным значениям для реальных, значительно более сложных кристаллов. И для материаловедения наиважнейшими являются как раз эти отклонения от идеальной структуры, изучаемые через дополнительное рассеяние рентгеновских лучей, не подразумеваемое ни кинематической, ни динамической теориями рассеяния идеальных кристаллов. Дополнительные сложности возникают при исследовании структур жидких и стеклообразных веществ, не предполагающих применения даже подобия методов кристаллографии, кристаллохимии и физики твёрдого тела — наук изучающих твёрдые кристаллические тела. Вышеизложенные предпосылки стали основой для возникновения почти полутора десятков гипотез строения стекла, значительная часть их, опирающаяся лишь на сравнительно узкий круг свойств и закономерностей, не подвергнутых гносеологическому анализу степени достоверности, лишена первичной базы для формировнаия теории, тем не менее с эффектными названиями регулярно декларируется. Уже были кристаллиты, беспорядочная сетка, полимерное строение, полимерно-кристаллитное строение, ионная модель, паракристаллы, структоны, витроиды, стеклоны, микрогетерогенность, субмикронеоднородность, химически неоднородное строение, мицеллярная структура, и другие названия, возникновение которых продиктовано потребностью истолкования результатов одного, в лучшем случае — нескольких частных экспериментов. Оптимисты требуют строгой общей теории стеклообразного состояния, пессимисты вообще исключают возможность её создания. В отличие от кристаллических твердых тел (все атомы упакованы в кристаллическую решетку), в стеклообразном состоянии такой дальний порядок расположения атомов отсутствует. Стекло нельзя назвать и сверхвязкой жидкостью, обладающей лишь ближним порядком — взаимным упорядочением только соседних молекул и атомов. Для стекол характерно наличие так называемого среднего порядка расположения атомов — на расстояниях, лишь немногим превышающих межатомные. Именно решению вопроса о среднем порядке, о возможной структурной упорядоченности такого рода, посвящены опыты, проводимые под руководством П. Рояла, которые должны подтвердить гипотезу Ч. Фрэнка полоувековой давности, в соответствии с которой запирание атомов в структуре стекла происходит в процессе взаимопрониковения икосаэдрических группировок — 20-гранных стериометрических фигур с пятикратной симметрией. Предварительные результаты опытов с очень упрощённой моделью стекла позволяют предположить справедливость этой гипотезы .
Слайд 10
Термодинамические характеристики стеклообразующих расплавов и стёкол Образование первичного звена («центра») кристаллизации в расплаве приводит к появлению поверхности раздела кристаллической и жидкой фаз, что влечёт рост свободной энергии системы, которая при температурах ниже температуры ликвидуса, т. е. отвечающих жидкому состоянию , термодинамически менее устойчивому, чем кристаллическое, иначе — метастабильному , — энергии, меньшей, чем свободная энергия жидкости той же массы . При уменьшении размеров тела отношение его поверхности к объёму увеличивается — меньший радиус центра кристаллизации отвечает росту свободной энергии , связанной с появлением раздела фаз. Для любой жидкости в метастабильном состоянии при каждой заданной температуре характерен критический радиус центра кристаллизации, менее которого свободная энергия некоторого объёма вещества, включающего этот центр, выше свободной энергии объёма вещества той же массы, но без центра. При радиусе, равном критическому, эти энергии равны, а при радиусе, превышающем критический, дальнейший рост термодинамически закономерен . Противоречия термодинамике, справедливой для макрообъектов, снимает наличие следующего явления: постоянные флуктуации энергии в микрообъектах (относительно небольших по числу атомов), сказываются их внутренними энергетическими колебаниями некоторой средней величины . При снижении температуры число «докритических» центров увеличивается, что сопровождается ростом их среднего радиуса. Помимо термодинамического — на скорость образования центров влияет кинетический фактор: свобода перемещения частиц относительно друг друга обуславливает скорость образования и рост кристаллов .
Слайд 11
Свойства стекла Стекло — неорганическое изотропное вещество, материал, известный и используемый с древнейших времён. Существует и в природной форме, в виде минералов ( обсидиан — вулканическое стекло), но в практике — чаще всего, как продукт стеклоделия — одной из древнейших технологий в материальной культуре. Структурно — аморфное вещество, агрегатно относящееся к разряду — твёрдое тело. В практике присутствует огромное число модификаций, подразумевающих массу разнообразных утилитарных возможностей, определяющихся составом , структурой , химическими и физическими свойствами. Независимо от их химического состава и температурной области затвердевания, стекло обладает физико-механическими свойствами твёрдого тела , сохраняя способность обратимого перехода из жидкого состояния в стеклообразное (данное определение позволяет наблюдать, что фигурально к стёклам, в расширительном значении, относят все вещества по аналогии процесса образования и ряда формальных свойств, так называемого стеклообразного состояния — на сём она исчерпываться, поскольку материал, как известно, прежде всего характеризуется своими практическими качествами, которые и определяют более строгую детерминацию стёкол как таковых в материаловедении).
Слайд 12
Улучшение свойств стекла Основной недостаток обычных стёкол — хрупкость . Для того, чтобы расширить сферу применения стекла, его подвергают закалке (закалённое стекло), создают многослойные композиты ( триплекс ). Армирование, вопреки распространенному мнению, ослабляет стекло, делает его более хрупким по сравнению с таким же монолитным стеклом.
Слайд 13
Стеклообразующие вещества К стеклообразующим веществам относятся: Оксиды : SiO2 B2O3 P2O5 TeO2 GeO2 Фториды : AlF3 и др.
Слайд 14
Виды стекол В зависимости от основного используемого стеклообразующего вещества, стекла бывают оксидными (силикатные, кварцевое , германатные, фосфатные, боратные), фторидными, сульфидными и т. д. Базовый метод получения силикатного стекла заключается в плавлении смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2. Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты (обычно кварцит , горный хрусталь ), его химическая формула — SiO2. Кварцевое стекло может быть также природного происхождения (см. выше —кластофульгуриты), образующееся при попадании молнии в залежи кварцевого песка (этот факт лежит в основе одной из исторических версий происхождения технологии). Кварцевое стекло характеризуется весьма малым коэффицинтом температурного расширения и потому его иногда используют в качестве материала для деталей точной механики, размеры которых не должны меняться при изменении температуры. Примером служит использование кварцевого стекла в точных маятниковых часах. Оптическое стекло — применяют для изготовления линз , призм, кювет и др. Химико-лабораторное стекло — стекло, обладающее высокой химической и термической устойчивостью.
Слайд 15
Основные промышленные виды стекла В качестве главной составной части в стекле содержится 70—75 % двуокиси кремния (SiO2), получаемой из кварцевого песка при условии соответствующей грануляции и свободы от всяких загрязнений. Венецианцы для этого применяли чистый песок из реки По или даже завозили его из Истрии, тогда как богемские стеклоделы получали песок из чистого кварца. Второй компонент — окись кальция (CaO) — делает стекло химически стойким и усиливает его блеск. На стекло она идёт в виде извести. Древние египтяне получали её из щебня морских раковин, а в средние века она приготовлялась из золы деревьев или морских водорослей, так как известняк в качестве сырья для приготовления стекла был ещё не известен. Первым подмешивать к стеклянной массе мел, как тогда назывался известняк, стали богемские стеклоделы в XVII веке . Следующей составной частью стекла являются оксиды щелочных металлов — натрия (Na2O) или калия (K2O), нужные для плавки и выделки стекла. Их доля составляет примерно 16—17 %. На стекло они идут в виде соды (Na2CO3) или поташа (K2CO3), которые при высокой температуре легко разлагаются на окиси. Соду сначала получали выщелачиванием золы морских водорослей, а в местности, удалённой от моря, применяли содержащий калий поташ, получая его выщелачиванием золы буковых или хвойных деревьев. Различаются три главных вида стекла: Содово-известковое стекло (1Na2O : 1CaO : 6SiO2) Калийно-известковое стекло (1K2O : 1CaO : 6SiO2) Калийно-свинцовое стекло (1K2O : 1PbO : 6SiO2)
Слайд 16
Свинцовое стекло Свинцовое стекло (или «хрусталь»), получается заменой окиси кальция окисью свинца. Оно довольно мягкое и плавкое, но весьма тяжёлое, отличается сильным блеском и высоким коэффициентом светопреломления, разлагая световые лучи на все цвета радуги и вызывая игру света. ] Боросиликатное стекло Включение оксида бора вместо щелочных составляющих шихты придаёт этому стеклу свойства тугоплавкости, стойкости к резким температурным скачкам и агрессивным средам. Изменение состава и ряд технологических особенностей, в свою очередь, сказывается на себестоимости — оно дороже обычного силикатного. Пористое стекло Воздействие воды и растворов кислот на силикатные стёкла выражается образованием на их поверхности тонкой плёнки пористого строения — об этом было известно давно. В определённой области тройной диаграммы лежат составы малоустойчивых щелочно-боросиликатных стёкол, такое воздействие на которые (в особенности — растворов кислот) результатом может иметь образование насквозь пористых продуктов — так называемых пористых стёкол. В этом случае в раствор переходит пребывавший в составе исходного материала практически весь щелочной оксид, весомая часть борного ангидрида , а пористый продукт реакции будет на 93—96 % состоять из кремнезёма и при определённых условиях сохранит внешние качества исходного стеклянного материала: блестящую полированную поверхность и форму. Получение пористых стёкол значительных размеров и толщины возможно только из стекла некоторых определённых составов. Пористые стёкла по объёму, соответствующему исходному — сравнительно небольшие, образуются из щелочно-боросиликатных стёкол, входящих в стёкла более сложного состава, и из двухкомпонентных боросиликатных стёкол, содержащих от 60 % SiO2. Первые исследования пористых стёкол и их структуры относятся к началу 1930-х годов. Одной из первых публикаций, посвящённых настоящей теме, явилась работа 1931 года И. В. Гребенщикова и Т. А. Фаворской . Особую интенсивность изучение свойств щелочно-боросиликатных стёкол и получаемых из них пористых стёкол И. В. Гребенгщиковым и его сотрудниками приобрело с 1940 года . Тогда и в последующих исследованиях было получено представление о том, что пористые стёкла, обладая некоторыми общими характерными особенностями, одновременно демонстрируют большое разнообразие структур, находящееся в зависимости от условий их образования, термической истории исходного стекла и его состава. В дальнейшем многими исследователями были получены материалы данной категории разнообразной структуры, чрезвычайно широкого диапазона обусловленных ею свойств, имеющие очень большую сферу применения.
Слайд 17
Прозрачное и цветное стекло Прозрачное стекло Рецептура прозрачного стекла была известна ещё в древности, о чём свидетельствуют античные флаконы и бальзамарии, в том числе и цветные,— на помпейских фресках мы видим совершенно прозрачную посуду с фруктами. Но вплоть до средневековья, когда огромное распространение получают витражи, не приходится встречать образцов стеклоделия, выраженно обладающих этими свойствами.
Слайд 18
Оптическое стекло К оптическому стеклу предъявляют особые технические требования, первое из которых — однородность, оцениваемая до сих пор на основании экспертного анализа по степени и количеству находящихся в нём свилей и прозрачности в заданном диапазоне спектра. Наличие у государства собственного производства оптического стекла является показателем уровня его научно-технического развития. Типы оптических стекол делятся на сорта:крон и флинт и зависят от показателя преломления (у кронов меньше,у флинтов больше) и коэффициента дисперсии. ГОСТ3514-76.
Слайд 19
Цветное стекло Обычная стеклянная масса после остывания имеет желтовато-зелёный или голубовато-зелёный оттенок. Стеклу можно придать окраску, если в состав шихты произвести включение, например, тех или иных оксидов металлов, которые в процессе варки изменят его структуру, что после остывания, в свою очередь, заставляет стёкла выделять определённые цвета из спектра проходящего сквозь них света. Железистые соединения окрашивают стекло в цвета — от голубовато-зелёных и жёлтых до красно-бурых, окись марганца — от жёлтых и коричневых до фиолетовых, окись хрома — в травянисто-зелёный, окись урана — в желтовато-зелёный (урановое стекло), окись кобальта — в синий (кобальтовое стекло), окись никеля — от фиолетового до серо-коричневого, окись сурьмы или сульфид натрия — в жёлтый (в самый же красивый жёлтый окрашивает, однако, коллоидное серебро ), окись меди — в красный (так называемый медный рубин в отличие от золотого рубина, получаемого прибавкой коллоидного золота). Костяное стекло получается замутнением стекломассы пережжённой костью, а молочное — прибавкой смеси полевого и плавикового шпата . Теми же прибавками, замутив стекломассу в очень слабой степени, получают опаловое стекло. Окрашенные стёкла, помимо других областей применения, используют в качестве цветных светофильтров .
Слайд 20
Художественное стекло Этот материал изначально, и в силу разнообразия своих декоративных возможностей, и благодаря уникальным свойствам, в том числе — подобию красивейшим самоцветам, а порой в чём-то и превосходя их, именно через изобразительное творчество, с момента, когда слиток впервые оказалось на ладони мастера, — радует и, вероятно, всегда, чаруя, будет присутствовать в жизни способного ценить его красоту. Нелишним будет напомнить и то, что некогда ценой своей с золотом могло соперничать только стекло. Действительно, самые ранние его рукотворные образцы — украшения. Выдувание стекла — операция, позволяющая из вязкого расплава получить различные формы — шары, вазы, бокалы.
Слайд 21
С точки зрения стеклодува стёкла делятся на «короткие» (тугоплавкие и термостойкие, например — «пирекс»), пластичные в весьма узком диапазоне температур и «длинные» (легкоплавкие, например — молибденовое) — имеющие этот интервал значительно более широким. Важнейший рабочий инструмент стеклодува, его выдувальная трубка - это полая металлическая трубка длиной 1—1,5 м, на одну треть обшитая деревом и снабжённая на конце латунным мундштуком. Пользуясь трубкой, стеклодув набирает из печи расплавленное стекло, выдувает его в форме шара и формует. Для этого ему нужны металлические ножницы для отрезания стеклянной массы и прикрепления её к трубке, длинные пинцетообразные клещи из металла для вытягивания и формования стеклянной массы, для образования тиснёных украшений и т. д., сечка для отсекания всего изделия от трубки и деревянная ложка (скалка, долок — в форме коклюшки) для разравнивания набранной стекломассы. Предварительно отформованное с помощью этих инструментов стекло («баночку») стеклодув вкладывает в форму из дерева или железа. Оставшийся от отшибания след (насадок, колпачок) приходится удалять шлифовкой. Готовое изделие отшибают от трубки на вилы и несут в отжигательную печь. Отжиг изделия производится несколько часов при температуре около 500°С с тем, чтобы снять возникшие в нём напряжения. Неотожжённое изделие может из-за них рассыпаться при малейшем прикосновении, а иногда и самопризвольно. В демонстрационных целях это явление издавна эффектно показывается на батавских слёзках - застывших каплях из стекла. Шлифовка и полировка стекла Огранка стекла Металлизация и окрашивание стекла
Слайд 22
Смарт-стекло Смарт-стекло — класс стекольных материалов. Представляет собой композит из слоев стекла и различных химических материалов, используемый в архитектуре и производстве для изготовления светопрозрачных конструкций (окон, перегородок, дверей и т.п.), изменяющий свои оптические свойства (матовость, коэффициент пропускания, коэффициент поглощения тепла и т.д.) при изменении внешних условий, например, освещенности или температуры или при подаче электрического напряжения.
10 зимних мастер-классов для детей по рисованию
Зимний лес в вашем доме
Разлука
Мост Леонардо
Ёжикина Радость