Изучая теорему Пифагора
Вложение | Размер |
---|---|
teorema_pifagora.ppt | 347 КБ |
Слайд 1
Для чего нужны «пифагоровы штаны» ? Работу выполнили учащиеся 8е классаСлайд 2
Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах... Или Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.
Слайд 3
Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Причина такой популярности теоремы Пифагора это её простота, красота, значимость . Теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы ( геометрических, алгебраических, механических и т.д .), свидетельствует о её широком применении.
Слайд 4
Теорема почти всюду носит имя Пифагора, но в настоящее время все согласны с тем, что она была открыта не Пифагором. Однако одни полагают, что он первым дал её полноценное доказательство, другие же отказывают ему и в этой заслуге. Эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством для построения прямых углов при планировке земельных участков и сооружений зданий.
Слайд 5
Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось "ослиным мостом" или "бегством убогих", а сама теорема – "ветряной мельницей" или "теоремой невест". Учащиеся даже рисовали карикатуры и составляли стишки вроде этого: Пифагоровы штаны Во все стороны равны .
Слайд 6
Доказательство, основанное на использовании понятия равновеликости фигур. На рисунке изображено два равных квадрата. Длина сторон каждого квадрата равна a + b . Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.
Слайд 7
Доказательство, предлагаемое школьным учебником. CD – высота треугольника АВС. АС = √ АD*AB АС 2 = AD*AB Аналогично, ВС 2 = BD*AB Учитывая, что AD + BD = AB , получаем AC 2 + BC 2 = AD*AB+ BD*AB = (AD+BD)*AB= AB 2 А С В D
Слайд 8
Задача № 1 С аэродрома вылетели одновременно два самолёта: один - на запад, другой - на юг. Через два часа расстояние между ними было 2000 км. Найдите скорости самолётов, если скорость одного составляла 75% скорости другого. Решение: По теореме Пифагора: 4x2+(0,75x*2)2=20002 6,25x2=20002 2,5x=2000 x=800 0,75x=0,75*800=600. Ответ: 800 км/ч.; 600 км/ч.
Слайд 9
Задача № 2. Как следовало бы поступить юному математику, чтобы надёжным образом получить прямой угол? Решение: Можно воспользоваться теоремой Пифагора и построить треугольник, придав его сторонам такую длину, чтобы треугольник получился прямоугольный. Проще всего взять для этого планки длиной в 3, 4 и 5 каких-либо произвольно выбранных равных отрезков.
Слайд 10
Задача № 3. Найдите равнодействующую трёх сил по 200 Н каждая, если угол между первой и второй силами и между второй и третьей силами равен 60°. Решение: Модуль суммы первой пары сил равен: F1+22=F12+F22+2*F1*F2cosα где α-угол между векторами F1 и F2, т.е. F1+2=200√ 3 Н. Как ясно из соображений симметрии вектор F1+2 направлен по биссектрисе угла α, поэтому угол между ним и третьей силой равен: β=60°+60°/2=90°. Теперь найдём равнодействующую трёх сил: R2=(F3+F1+2 ) R=400 Н. Ответ: R=400 Н.
Слайд 11
Задача № 4. Молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2≥ a2+b2, значит h≥(a2+b2)1/2. Ответ: h≥(a2+b2)1/2.
Рыжие листья
Военная хитрость
Мать-и-мачеха
Три загадки Солнца
Простые летающие модели из бумаги