«Симметрия... есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство».
Герман Вейль
Вложение | Размер |
---|---|
isledovatelskaya_rabota_nedavnego_artema.doc | 113.5 КБ |
Исследовательская работа
Недавнего Артема,
ученика МБОУ г.Астрахани «СОШ №18 имени 28 Армии»
Введение
«Симметрия... есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство».
Герман Вейль
Симметрия – это такая особенность природы, про которую принято говорить, что она охватывает все формы движения и организации материи. Истоки понятия симметрии восходят к древним. Наиболее важным открытием древних было осознание сходства и различия правого и левого. Здесь природными образцами им служили собственное тело, а также тела
животных, птиц и рыб.
Объектом исследования является: симметрия
Предметом исследования: её значение в архитектуре и в природе, зеркальная симметрия.
Цель: целью моей исследовательской работы, является изучение центральной, осевой и зеркальной симметрии, рассмотрение симметрии в архитектуре и в природе.
Для достижения цели, я буду использовать следующие задачи:
Задача №1. Изучить различные виды симметрии и их особенности.
Задача №2. Рассмотреть отдельные виды симметрии в архитектуре,
Задача №3. Ознакомиться с зеркальной симметрией.
Задача №4. Рассмотреть симметрию человека.
Задача №5. Изучить симметрию в природе, её значение и особенности.
Гипотеза исследования: Какой симметрией обладают здания? Как отражает зеркало? Симметричен ли человек? Или его левые части только схожи с правыми? Большую ли роль играет симметрия в природе?
Всё это и следует выяснить мне в своей работе.
Глава 1. Симметрия
§1.Осевая симметрия
Две точки и называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка и перпендикулярна к нему. Каждая точка прямой, а считается симметричной самой себе.
На рисунки показано, что точки и , и
симметричны относительно прямой , а точка
симметрична самой себе относительно этой прямой.
Фигура называется симметричной относительно
прямой , если для каждой точки Фигуры симметричная
ей точка относительно прямой также принадлежит этой
фигуре. Прямая называется осью симметрии фигуры.
Говорят также, что Фигура обладает осевой симметрией.
Приведём примеры фигур, обладающих осевой симметрией :
У неразвёрнутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла. Равнобедренный треугольник имеет также одну ось симметрии, а равносторонний треугольник - три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат – четыре оси симметрии. У окружности их бесконечно много- любая прямая, проходящая через её центр, является осью симметрии.
Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.
§2. Центральная симметрия
Две точки и называются симметричными относительно точки ,если - середина отрезка . Точка считается симметричной самой себе.
Фигура называется симметричной относительно точки , если для каждой точки фигуры симметричная ей точка относительно точки также принадлежит этой фигуре. Точка называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.
Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много- любая точка прямой является её центром симметрии. Примером фигуры. Не имеющей центра симметрии, является произвольный треугольник. Рассмотрим симметрию в природе и начнём с науки Ботаники.
Ботаника – наука о растениях. Наше исследование было направлено на выявление примеров симметрии в растениях, то есть мы занимались проблемой поиска закономерностей внешнего строения растений.
Посмотрим на изящное создание Природы – кленовый лист. Кленовый лист симметричен. Если перегнуть его по среднему вертикальному стебельку-прожилке, то получившиеся части листа совпадут друг с другом. И перед нами две половинки – правая и левая! Можно провести опыт и с зеркалом; отражение в зеркале дополнит половину кленового листа до целого. Кленовый лист обладает зеркальной симметрией, и, если его нарисовать на листке бумаги, то полученная плоская фигура будет иметь ось симметрии.
Если присмотреться повнимательнее к прожилкам на левой и правой половинках кленового листа, то можно заметить некоторую разницу между ними. Поэтому говорят, что симметрия кленового листа не является математически точной, или математически безукоризненной. Но эти отклонения столь малы, что не вносят беспорядка в расположение частей и воспринимаются нами как симметричные объекты живой природы.
Дальнейшие наши поиски были сосредоточены на центральной симметрии. Она наиболее характерна для цветов и плодов растений. Центральная симметрия характерна для различных плодов, но мы остановились на ягодах: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии.
Центральную симметрию можно наблюдать на изображении следующих цветов: цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки. Весь цветок ромашки обладает центральной симметрией только в случае четного количества лепестков. В случае же нечетного количества лепестков, вспомните анютины глазки, он обладает только осевой. Для цветов характерна и поворотная симметрия, например: цветок шиповника. Этот цветок можно повернуть вокруг некоторой прямой на угол, равный 360 /5 (или кратный ему), и он совместится сам с собой. Эту прямую называют поворотной осью 5-го порядка. Цветок анютины глазки совместится сам с собой только при повороте на 360. Это значит, что цветок обладает лишь осью первого порядка.
Если внимательно приглядеться к стеблю растения, то окажется, что и здесь действует закон симметрии. Стебель обладает винтовой осью симметрии. У подсолнечника каждый листок появляется после поворота на 72. Листья на стебле располагаются по спирали так, чтобы, не мешая друг другу, воспринимать солнечный свет. Сумма двух предыдущих шагов спирали, начиная с вершины, равна величине последующего шага.
Выводы:
1.По нашим наблюдениям, в любом растении можно найти какую-то его часть, обладающую осевой, центральной или винтовой симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие.
2.Центральная симметрия наиболее характерна для плодов растений и некоторых цветов.
3.Стебли растений обладают осевой симметрией.
4.Симметрия форм, окраски цветков придаёт им красоту.
2.2. Животный мир и симметрия.
Рассмотрим, как связаны животный мир и симметрия. Как мы знаем, на плоскости существует два вида симметрии: осевая и центральная. Наше исследование заключалось в поиске примеров этих двух видов симметрии в животном мире. Начнём с осевой симметрии.
Все – и дети, и взрослые – удивляются, разглядывая бабочек. Какие лаборатории есть у Природы, что она творит такие чудеса?! Если бабочка сложит свои крылья, то они совпадут, так как крылышки у неё одинаковые. Но одинаковость эта не простая! Если на тельце бабочки провести вертикальную среднюю линию и поставить вдоль этой прямой линии зеркало. То одна половинка бабочки спрячется за зеркало. Но зато другая - отразится в зеркале и перед нами опять появится такая же бабочка. Половинка бабочки и её отражение в зеркале составили целую бабочку. Поэтому говорят, что бабочка зеркально симметрична.
Если мы нарисуем бабочку на листе бумаги, то особую роль для этой плоской фигуры будет играть вертикальная прямая, проходящая посередине туловища бабочки. По обе стороны от этой прямой на одинаковом расстоянии от неё находятся одинаковые элементы рисунка. В этом случае говорят, что данная плоская фигура симметрична относительно прямой, а прямую, которая разделяет фигуру на правую и левую половины, называют осью симметрии. В раскраске бабочки можно обнаружить небольшие отклонения. Поэтому говорят, что симметрия бабочки не является математически точной. Зеркальная симметрия характерна для всех представителей животного мира
Теперь рассмотрим центральную симметрию. По нашим наблюдениям, центральная симметрия наиболее характерна для животных, ведущих подводный образ жизни. Для этих животных характерна и поворотная симметрия, она служит не только для красоты; она прежде всего связана с приспособлением их к окружающему миру, с их жизнестойкостью.
Рассмотрим винтовую, или спиральную симметрию. Винтовая симметрия есть симметрия относительно комбинации двух преобразований – поворота и переноса вдоль оси поворота, т.е. перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты. Примерами природных винтов являются: бивень нарвала – левый винт; раковина улитки – правый винт; рога памирского барана – один рог закручен по левой, а другой по правой спирали.
Спиральная симметрия не бывает идеальной, например, раковина моллюсков сужается и расширяется на конце.
Глава 5. Симметрия в архитектуре
Интересно, какой симметрией обладают здания и различные памятники?
Так как к центральной симметрии относятся фигуры, такие как: окружность и параллелограмм, значит что, различные здания и памятники не могут обладать центральной симметрией.
А вот прямоугольник имеет осевую симметрию, значит, что и большинство зданий обладают осевой симметрией.
С симметрией мы часто встречаемся в архитектуре. Так, фасады многих зданий обладают осевой симметрией. Если рассмотреть архитектуру других городов и стран, можно вспомнить также великолепные памятники архитектуры глубокой древности, где пространственные закономерности проявляются особенно ярко. Это храмы древнего Вавилона и пирамиды Гизы, дворец в Ашшуре.
Глава 6. Зеркальная симметрия
§1. Наш мир в зеркале
На рисунке(в приложении №1) приведен простой пример объекта и его зеркального двойника - треугольник А В С и треугольник А1 В1 С1 (здесь МN - пересечение плоскости зеркала с плоскостью рисунка). Каждой точке объекта соответствует определенная точка зеркального двойника. Эти точки находятся на одном перпендикуляре к прямой M N , по разные стороны и на одинаковом расстоянии от нее.
Обычно считают, что наблюдаемый в зеркале двойник является точной копией самого объекта. В действительности это не совсем так. Зеркало не просто копирует объект, а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. В сравнении с самим объектом его зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Этот эффект хорошо виден на одном рисунке (в приложении №2) и фактически незаметен на другом.
Предположим, что одна половина объекта является зеркальным двойником по отношению к другой его половине. Такой объект называют зеркально симметричным. Он преобразуется сам в себя при отражении в соответствующей зеркальной плоскости. Эту плоскость называют плоскостью симметрии.
В случае двухмерного (плоского) объекта вместо плоскости симметрии рассматривается ось симметрии - линия пересечения плоскости симметрии с плоскостью объекта. В случае одномерного (линейного) объекта рассматривается центр симметрии - точка пересечения прямой объекта с плоскостью симметрии. На рисунке (в приложении№3) приведены примеры зеркально симметричных объектов: а) одномерный объект (О - центр симметрии), б) двухмерный объект (MN-ось симметрии), в) трехмерный объект (S-плоскость симметрии).
Напишем на листе бумаги заглавными печатными буквами два слова "КОФЕ" и "ЧАЙ". Затем возьмем зеркало и поставим его вертикально так, чтобы линия пересечения плоскости зеркала с плоскостью листа делила эти слова по горизонтали.
Зеркало не подействовало на слово " КОФЕ ", тогда как слово " ЧАЙ " оно изменило до неузнаваемости. Этот " фокус " имеет простое объяснение. Разумеется, зеркало одинаковым образом отражает нижнюю половину обеих слов. Однако в отличие от слова " ЧАЙ " слово " КОФЕ " обладает горизонтальной осью симметрии, именно поэтому оно не искажается при отражении в зеркале.
§2. Как отражает зеркало
Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно, возникнут трудности.
Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отражает его. Но взрослые обычно отвечают в подобных случаях: “Не задавай глупых вопросов!” Человек сникает, начинает стесняться, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).
Но вспомним о словах Бертольда Бреста: “Глупых вопросов не бывает, бывают только глупые ответы”.
Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличительное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль Ван Ройен, именовавший себя Снеллиусом (1580 - 1626), наблюдал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.
Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философскую мысль вплоть до XIX века.
Закон отражения Снеллиуса объясняет явление зеркального отражения.
Каждой точке предмета соответствует её отражение в зеркале, и потому в нём наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.
Глава 7. Симметрия человека
§1. Человек — существо симметричное
Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей.
И все же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы.
НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание.
Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе. Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя).
В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлиненным черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлиненной формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию.
. Безукоризненная симметрия скучна
И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой.
Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния.
Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой).
Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от нее и придают характерные, индивидуальные черты.
И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.
Значение симметрии в познании природы
Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять.
Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки.
Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует.
В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах.
Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны.
Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.
Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических.
Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.
Говоря о роли симметрии в процессе научного познания, следует особо выделить применение метода аналогий. По словам французского математика Д. Пойа, "не существует, возможно, открытий ни в элементарной, ни в высшей математике, ни, пожалуй, в любой другой области, которые могли быть сделаны без аналогий". В основе большинства этих аналогий лежат общие корни, общие закономерности, которые проявляются одинаковым образом на разных уровнях иерархии.
Заключение
Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.
С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают плоскостью симметрии. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колёса.
В результате проделанной работы я изучил различные виды симметрии и их особенности, Рассмотрел отдельные виды симметрии в архитектуре. Ознакомился с зеркальной симметрией, симметрией человека, а также изучил симметрию в природе, её значение и особенности.
Заканчивая свое исследование, я бы хотел сказать, что симметрия играет весьма не малую роль в жизни человека, и очень жаль, что в последние время ей уделяется так мало внимания, ведь многие привычные для нас вещи по своей природе, обладают какой – либо симметрией.
Л. Нечаев. Яма
Вокруг света за 80 дней
Сказка про Серого Зайку
За еду птицы готовы собирать мусор
Марши для детей в классической музыке