Леонардо Фибоначчи был выдающимся математиком средневековья. Плоды его математических трудов применяются во многих науках, искусстве и повседневной жизни по сей день. В этой статье рассмотрена известная всем последовательность его чисел и её свойства, а также показано её прикладноё значение.
Вложение | Размер |
---|---|
statya_chislovoy_ryad_fibonachchi.docx | 662.27 КБ |
Э.Е. Федосеева, Н.С. Шеманская
ЧИСЛОВОЙ РЯД ФИБОНАЧЧИ И ЕГО ПРИКЛАДНОЕ ЗНАЧЕНИЕ
Леонардо Фибоначчи был выдающимся математиком средневековья. Плоды его математических трудов применяются во многих науках, искусстве и повседневной жизни по сей день. В этой статье рассмотрена известная всем последовательность его чисел и её свойства, а также показано её прикладноё значение.
Математика, как одно из лучших, идеальных отображений мира, полна информации о нём, особенно, если взглянуть на неё диалектически. Диалектическим основам математики были посвящены труды многих видных диалектиков, начиная с Пифагора и заканчивая русским философом А.Ф. Лосевым. Вероятно, математика составляет сущность естественно-научных теорий. Хотя математика и является человеческим творением, она помогла раскрыть тайны физического мира, существующего независимо от нас. Стоит только удивляться, что природа проявляет столь высокую степень соответствия математическим формулам. Поэтому анализируя числовой ряд, мы анализируем мир в самой его основе, в его глубинном, концептуальном представлении.[1]
Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Если удается сформулировать "хорошую" математическую модель, для ее исследования можно применить весь арсенал науки, накопленный за тысячелетия. Недаром многие классики независимо высказывали одну и ту же мудрую мысль: "Область знания становится наукой, когда она выражает свои законы в виде математических соотношений". Чем более сложными являются объекты и процессы, которыми занимается наука, тем труднее найти математические абстракции, подходящие для описания этих объектов и процессов. В биологию, геологию и другие "описательные науки" математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Эта область математической биологии и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммуно- логии и других областей, связанных с клеточными популяциями. Самая первая известная модель, сформулированная в биологической постановке- знаменитый ряд Фибоначчи, который приводит в своем труде Леонардо из Пизы в 13 веке (известного впоследствии как Фибоначчи). Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов.
Этот ряд вошел в историю как ряд Фибоначчи, а его члены – числа Фибоначчи. Он представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,..[1] Два первых числа соответствуют первому и второму месяцу размножения. 12 последующих – месячному приросту поголовья кроликов. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих: 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618.
Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бес- конечности, когда меньший отрезок так относится к большему, как больший ко всему.[3] Это первая известная в Европе рекурсивная последовательность чисел (в которой соотношение между двумя или более членами ряда может быть выражена в виде формулы). Рекуррентная формула для членов ряда Фибоначчи была записана французским математиком Альбертом Гирером в 1634 г.
Приведём некоторые свойства последовательности Фибоначчи:
Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого сечения.
Последовательность Фибоначчи асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно. Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его. Но даже затратив на это Вечность, невозможно узнать соотношение точно, до последней десятичной цифры. Краткости ради, мы будем приводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (средневековый математик) назвал его Божественной пропорцией. Среди его современных названий есть такие, как Золотое сечение, Золотое среднее и отношение вертящихся квадратов. Kеплеp назвал это соотношение одним из «сокровищ геометрии». В алгебре общепринято его обозначение греческой буквой (фи) Ф = 1.618
Представим золотое сечение на примере отрезка.
Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,
AC/CB = CB/AB или AB/CB = CB/AC.
Представить это можно примерно так: A-----C--------B
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618..., если AB принять за единицу, AC = 0,382.. А как известно, числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи[7].
Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.
Приведём некоторые примеры, показывающие интересные приложения этой математической последовательности:
1. Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».
Среди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38.
И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого[2].
Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.
3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.
Ряд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.
4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Замечательные изобретательность, мастерство, время и труд архитекторов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты. Длина грани, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) - это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.
5. Искусство. Еще в 1925 году искусствовед Л.Л.Сабанеев, проанализировав 1770 музыкальных произведений 42 авторов, показал, что подавляющее большинство выдающихся сочинений можно легко разделить на части или по теме, или по интонационному строю, или по ладовому строю, которые находятся между собой в отношении золотого сечения. Причем, чем талантливее композитор, тем в большем количестве его произведений найдено золотых сечений. У Аренского, Бетховена, Бородина, Гайдна, Моцарта, Скрябина, Шопена и Шуберта золотые сечения найдены в 90% всех произведений. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения.
Таким образом, Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.
В заключении можно отметить, что математизация подходов к изучению природы от описания явлений (физических, химических и др.) до понимания гармонии, красоты является актуальной и перспективной. И в этом аспекте ряд чисел Фибоначчи, золотая пропорция выглядят лишь частным случаем, одним из многих вариантов числовых соотношений. Таким образом, изучение одного вопроса с различных сторон, позволяет не только понять сущность, но и установить имеющиеся закономерности.
СПИСОК ЛИТЕРАТУРЫ
А. Усачев. Что значит выражение "Белые мухи"?
Знакомимся с плотностью жидкостей
Шум и человек
Как зима кончилась
"Разделите так, как делили работу..."