Познакомимся с рациацией
Вложение | Размер |
---|---|
aleykin_artem.docx | 135.77 КБ |
Муниципальное бюджетное общеобразовательное учреждение «Ульяновский городской лицей при УлГТУ»
Проект
Радиация и её влияние на жизнь человека
Автор(ы) проекта:
Алейкин Артем
Руководитель проекта:
Котельникова Наталья Михайловна
Научный руководитель проекта:
Андреева Елена Валерьевна
Паспорт проектной работы.
Название проекта | Радиация и её влияние на жизнь человека |
Руководитель проекта | Котельникова Наталья Михайловна |
Научный руководитель проекта | Андреева Елена Валерьевна |
Учебный год | 2021 |
Класс | 11 |
Учебный предмет, в рамках которого проводится работа над проектом | Физика |
Учебные предметы, близкие к теме проекта | Химия |
Автор проекта | Алейкин Артем Максимович |
Тип проекта | Информационный проект |
Цель проекта | Выяснить, что представляет из себя радиация, какими свойствами она обладает, где используется. |
Задачи проекта | Предоставить подробную информацию о радиации. |
Краткая аннотация | В итоге мы узнаем, что такое радиация и где она используется. |
Продукт проекта | Презентация |
Оценка содержания проекта | |
Оценка оформления проекта | |
Оценка презентации проекта |
Содержание:
Введение4
1 Глава. Что такое радиация5
1.1 Радиация, основное понятие5
1.2 Виды радиации6
1.3 Источники радиации12
1.4 Влияние радиации на человека13
1.5 Крупнейший случай выхода из-под контроля радиации15
2 Глава. Практическое использование радиации в медицине16
2.1 Использование радиации в медицине16
2.2 Таблица с приведенными положительными и отрицательными сторонами радиации20
Заключение 21
Список используемой литературы 22
Приложение 23
Введение
В мире существует множество различных природных явлений опасных для человека. Но природа придумала множество различных способов защититься от них. Однако существует такое явление как – радиоактивность, человек не имеет особых органов чувств, чтобы определить её. Радиоактивность существовала всегда, она есть везде, и даже сами люди, слегка радиоактивны, так как в любой живой ткани есть радиоактивные вещества.
В сознании многих людей радиация ассоциируется с нечто чрезвычайно опасным. Случай с взрывом АЭС или атомной бомбой реально представляет реакцию как оружие смерти. И это так, ведь большое количество радиации действительно смертельно опасно.
В повседневной жизни её можно встретить абсолютно везде и во всём. Например, некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще — бананы.
Таким образом каждый из нас получает «какую-то» дозу радиации ежедневно. Но чтобы это привело к болезни или иному серьёзному случаю, её должно быть намного больше, нежели мы получаем каждый день.
Излучение так же влияет и на окружающую среду. Основными источниками заражения являются испытания ядерных бомб. На местах разрывов атомных зарядов остаётся «поле» радиоактивных веществ. Облака же этих веществ поднимаются высоко в воздух, примерно треть всех этих веществ попадает в тропосферу, таким образом они переносятся на довольно большие расстояния и выпадают вместе с дождями.
Радиация есть везде, она окружает нас повсюду.
Проблема: Малая осведомлённость людей о радиации.
Цель: Выяснить, что представляет из себя радиация, какими свойствами она обладает, где используется.
Задачи: На основе анализа литературы представить подробную информацию о радиации; изучить практическое применение; проанализировать положительные и отрицательные стороны применения радиации.
Объект: Радиация.
Предмет: Радиация и её влияние на жизнь человека.
Методы исследования: теоретический (анализ литературы).
Гипотеза: Радиация есть везде, и в нашей повседневной жизни она присутствует.
Предполагаемый результат: Презентация.
Приложение: ссылка на мою публикацию.
1 Глава. Что такое радиация.
Для начала дадим определение, что такое радиация:
В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют – ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.
Радиация – это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.
Ионизация – это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Альфа, бета и нейтронное излучение – это излучения, состоящие из различных частиц атомов.
Гамма и рентгеновское излучение – это излучение энергии.
Рис.1 Альфа излучение
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа излучение – это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.[1]
Рис.2 Нейтронное излучение
Рис.3 Бета излучение
Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.
При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.
Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.
Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.
Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.
Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.
Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.[1]
Рис.4 Гамма излучение
Гамма (γ) излучение – это энергетическое электромагнитное излучение в виде фотонов.
Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.
Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения
Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.
Основная опасность гамма излучения – это его способность преодолевать значительные расстояния.[1]
Рентгеновское излучение
Рентгеновское излучение – это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.[1]
1.3 Естественные источники радиации
Естественные источники радиации – это объекты окружающий среды и среды обитания человека, которые содержат природные радиоактивные изотопы и излучают радиацию.
К естественным источникам радиации относятся:
космическое излучение и солнечная радиация, излучение от радиоактивных изотопов, находящихся в Земной коре и в окружающих нас объектах.
Космическое излучение – это поток элементарных частиц, излучаемых космическими объектами в результате их жизни или при взрывах звезд.
Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.
Космическое излучение состоит:
Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.
Свой вклад в космическое излучение вносит ближайшая к нам звезда – Солнце. Энергия излучения от Солнца на несколько порядков ниже, чем энергия космического излучения, приходящего к нам из глубин космоса. Но плотность солнечной радиации выше плотности космического излучения, приходящего к нам из глубин космоса.
Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:
Все это продукты термоядерного синтеза проходящего в недрах Солнца.[1]
1.4. Влияние радиации на человека
Радиация и ее влияние на человека может вызывать серьезные нарушения в здоровье. Поражение касается не только организма того, кто подвергся облучению, но и следующих поколений, так как радиация влияет на генетический аппарат. Поэтому радиоактивное влияние имеет два эффекта:
Облучение хронического характера несет меньшую нагрузку на организм, чем разовое в той же дозе, ведь успевают происходить восстановительные процессы. Скапливание радионуклидов в организме происходит неравномерно. Более всего страдают дыхательные и пищеварительные органы, через которые в организм проникают радионуклиды, печень и щитовидная железа. Среди онкологий, вызванных радиацией, наиболее распространены рак щитовидки и молочной железы.
Лучевой лейкоз, то есть рак крови, может обнаружиться по прошествии четырех-десяти лет после облучения. Он особо опасен для тех, кто еще не достиг пятнадцатилетнего возраста. То, что радиация может приводить к этой болезни, свидетельствует ее рост у жителей Хиросимы и Нагасаки. Кроме того, было подмечено, что смертность среди рентгенологов увеличена именно по причине лейкоза.
Облучение радиацией также чревато онкологией легких. В частности, диагноз распространен среди шахтеров, работающих на урановых рудниках.
Самым известным последствием радиационного действия является лучевая болезнь. Ее провоцируют как разовые облучения, так и хронические. Большие дозы могут привести к летальному исходу.
Мутации, которые проходят в генетическом аппарате в следствие облучения, на данный момент изучены недостаточно. Это обусловлено тем, что они способны проявляться через многие годы в разных поколениях. Тогда становится трудно доказать, по какой именно причине произошла та или иная мутация.
Иногда они проявляются сразу. Такие мутации называют доминантными. Существуют рецессивные мутации, дающие знать о себе через поколения. Хотя они могут не выявиться в новых поколениях вообще. Мутации выявляются физическими или психическими нарушениями в здоровье потомков. Для этого поврежденному гену нужно соединиться с геном, обладающим одинаковым с ним повреждением.
При внешних облучениях появляются ожоги кожных и слизистых покровов, разные по степеням тяжести.
Строительство первой очереди Чернобыльской АЭС началось в 1970 году, для обслуживающего персонала рядом был возведен город Припять. 27 сентября 1977 года первый энергоблок станции с реактором РБМК-1000 мощностью в 1 тыс. МВт был подключен к энергосистеме Советского Союза. Позднее вступили в строй еще три энергоблока, ежегодная выработка энергии станции составляла 29 млрд киловатт-часов.
9 сентября 1982 года на ЧАЭС произошла первая авария – во время пробного пуска 1-го энергоблока разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, ликвидация последствий ЧП заняла около трех месяцев.
В ночь на 26 апреля 1986 года на 4-м энергоблоке ЧАЭС проводились испытания турбогенератора.
Планировалось остановить реактор (при этом планово была отключена система аварийного охлаждения) и замерить генераторные показатели.
Безопасно заглушить реактор не удалось. В 1 час 23 минуты мск на энергоблоке произошел взрыв и пожар.
ЧП стало крупнейшей катастрофой в истории атомной энергетики: была полностью разрушена активная зона реактора, здание энергоблока частично обрушилось, произошел значительный выброс радиоактивных материалов в окружающую среду.
После катастрофы на Чернобыльской АЭС
• Непосредственно при взрыве погиб один человек – оператор насосов Валерий Ходемчук (его тело не удалось обнаружить под завалами), утром того же дня в медсанчасти умер от полученных ожогов и травмы позвоночника инженер-наладчик системы автоматики Владимир Шашенок.
• 27 апреля был эвакуирован город Припять (47 тыс. 500 человек), а в последующие дни – население 10-километровой зоны вокруг ЧАЭС. Всего в течение мая 1986 года из 188 населенных пунктов в 30-километровой зоне отчуждения вокруг станции были отселены около 116 тыс. человек.
• Интенсивный пожар продолжался 10 суток, за это время суммарный выброс радиоактивных материалов в окружающую среду составил около 14 эксабеккерелей (порядка 380 млн кюри).
• Радиоактивному загрязнению подверглось более 200 тыс. кв. км, из них 70% – на территории Украины, Белоруссии и России.
• Наиболее загрязнены были северные районы Киевской и Житомирской обл. Украинской ССР, Гомельская обл. Белорусской ССР и Брянская обл. РСФСР.
• Радиоактивные осадки выпали в Ленинградской обл., Мордовии и Чувашии.
• Впоследствии загрязнение было отмечено 3, Норвегии, Финляндии и Швеции.
• Первое краткое официальное сообщение о ЧП было передано ТАСС 28 апреля. По словам бывшего генерального секретаря ЦК КПСС Михаила Горбачева, сказанным в интервью BBC в 2006 году, праздничные первомайские демонстрации в Киеве и других городах не были отменены из-за того, что руководство страны не обладало «полной картиной случившегося» и опасалось паники среди населения. Только 14 мая Михаил Горбачев выступил с телевизионным обращением, в котором рассказал об истинном масштабе происшествия.
• Советская госкомиссия по расследованию причин ЧП возложила ответственность за катастрофу на руководство и оперативный персонал станции. Созданный Международным агентством по атомной энергии (МАГАТЭ) Консультативный комитет по вопросам ядерной безопасности (INSAG) в своем отчете 1986 года подтвердил выводы советской комиссии.[2]
Часть 2. Практическая.
Воздействие ионизирующих излучений на организм человека может приводить к лучевой болезни, поражению нервной системы, лейкозу, росту опухолей. Но, несмотря на это, люди нашли применение радиации в медицине с благими целями.
ЛЕЧЕНИЕ ОБЛУЧЕНИЕМ – СПОСОБЫ И ВИДЫ
В медицине применяют несколько видов радиотерапии.
Это лечение облучением всего организма, которое применяется, в частности в терапии злокачественных опухолей щитовидной железы. Такая методика основана на уникальной способности клеток этого органа вытягивать йод из организма подобно магниту. Они делают это даже тогда, когда вместо обычного йода им «подсовывают» его радиоактивный изотоп. Сей невидимый «лекарь» находит и уничтожает больные клетки щитовидной железы, в том числе и распространившиеся по всему организму. Предварительно пораженную щитовидку удаляют.
Тактика действий в этом случае такова. Радиоактивный йод, используемый для лечения облучением, упаковывают специальным образом – по принципу «матрешки». Он находится в небольшом флаконе, который помещается в свинцовую капсулу, ее же, в свою очередь, упаковывают в металлическую банку. Чтобы добыть лекарство, техник вскрывает банку консервным ножом и открывает капсулу, затем переливает радиоактивный йод в стакан – делать это можно только за стеклом с помощью специальных приспособлений. Приготовленный раствор передается пациенту, который должен выпить его до дна. Сразу после этого облученный радиацией человек прикрывает рот салфеткой, чтобы не допустить попадания опасных паров в воздух, и отправляется в палату. Он проводит в изоляции 3-4 дня, пока уровень радиации не снизится до безопасного. Такие палаты отрезаны от внешнего мира: в них нет плинтусов, всегда плотно закрыты окна, а вода из крана течет не в канализацию, а в специальную накопительную емкость с установленными в ней фильтрами. Эти меры помогают предотвратить проникновение частиц радиоактивного йода за пределы палаты.
Метод основан на облучении пораженного органа изнутри с помощью радиоактивных веществ, которые находятся в имплантатах, имеющих вид трубки, капсулы или тонкого провода. Эти элементы вводят вручную или с помощью медицинского оборудования непосредственно в опухоль либо рядом с ней.
Брахитерапия бывает:
Пациент остается в медучреждении в течение всего периода нахождения имплантата в организме. Если облучение длится всего несколько минут, как правило, проводят повторные сеансы.
Отличие этого метода в том, что источник излучения находится на расстоянии от тела больного, то есть радиация воздействует на определенную часть организма снаружи. Такое лечение проводят курсами. Предварительно пациента обследуют, затем врач-радиолог определяет дозу применяемой с медицинскими целями радиации. После этого медики с помощью специального оборудования устанавливают точное место облучения. Дистанционная лучевая терапия требует от пациента сохранения неподвижной позы, чтобы излучение проецировалось исключительно на пораженные участки.
Врачи используют опасные свойства радиоактивных материалов для лечения большого числа заболеваний, в основном злокачественного характера. Цель лучевой терапии – уничтожить раковые клетки, которые быстрее здоровых растут и делятся, поэтому больше подвержены разрушающему действию ионизирующего излучения.
Современные методы лучевой терапии предусматривают минимальное вовлечение здоровых тканей в лечебный процесс. При общем облучении сделать это трудно, но лечебный эффект обычно превышает вред, так как здоровые клетки, в отличие от раковых, после радиотерапии восстанавливаются хотя бы частично.
Представить современную медицину без рентгенологической диагностики невозможно. Недаром медики называют рентгеновские лучи исцеляющими. Они помогают ставить точные диагнозы в стоматологии, хирургии, травматологии.
С целью диагностики в медицине применяют также радиоактивные изотопы. Этот метод называется «сцинтиграфия». После введения в организм источники радиации концентрируются в определенном органе. Врач локализует место излучения и оценивает его с помощью высокочувствительной гамма-камеры, которая устанавливается над исследуемым местом. Она передает снимок на монитор компьютера, помогая врачу «увидеть», что происходит с данной частью организма. В зависимости от количества и особенностей распределения в тканях радиоактивного изотопа специалисты делают выводы о функциях и состоянии органа.
Лечебно-диагностическое применение радиации в медицине связано с соблюдением мер безопасности не только врачами и пациентами, но также родственниками и близкими больного.
Наружная лучевая терапия не делает человека радиоактивным. Он может свободно общаться с родственниками в промежутках между лечебными сеансами. При внутреннем лечении облучением ситуация складывается по-разному:
Что касается системной лучевой терапии, то в этом случае человек представляет определенную опасность для окружающих, так как его организм выделяет радиоактивные вещества с дыханием, потом и другими физиологическими жидкостями. После лечения врач может ограничить облученному радиацией человеку контакты с окружающими: ему запрещается приближаться к другим людям ближе 2 м либо просто рекомендуется исключить рукопожатия, поцелуи, объятия.
К сожалению, не все могут соблюдать эти ограничения в отношении посторонних людей. Узнать, не представляет ли для вас опасности прошедший радиотерапию человек, поможет бытовой дозиметр. Если вы планируете ребенка или в семье уже есть дети, этот прибор станет вашим надежным средством защиты от случайного облучения.
2.2. Таблица
Я провожу анализ и строю таблицу.
В левой колонке плюса радиации, а в правой – минусы.
Плюсы | Минусы |
Использование в медицине | Облучение и его генетические последствия |
Нет привязки к крупным рекам или месторождениям горючих ископаемых | Ядерные станции могут представлять глобальную угрозу |
Низкая стоимость электроэнергии | Проблема захоронения радиоактивных отходов |
Использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов | Экологическая опасность (последствия аварий на АЭС) |
Использование в медицине – Радиотерапия, лучевая терапия, радиационная терапия, радиационная онкология — лечение ионизирующей радиацией (рентгеновским, гамма-излучением, бета-излучением, нейтронным излучением, пучками элементарных частиц из медицинского ускорителя). Применяется в основном для лечения злокачественных опухолей.
Облучение и его генетические последствия – облучение приводит к тяжелым заболеваниям, многие из которых калечат здоровье человека на всю оставшуюся жизнь.
Проблема захоронения радиоактивных отходов – Главная проблема захоронения радиоактивных отходов в остром недостатке оборудования для их прессовки и сжигания. Не хватает и современных технических средств. Решение вопроса, на текущий момент, заключается отказе от длительного хранения в пользу окончательного захоронения РАО.
Вывод.
Из данных приведенной таблицы можно сделать вывод, что радиация на самом деле присутствует в нашей жизни в немалом количестве, у нее присутствуют редкие качества (например: отсутствие выбросов вредных веществ, большой запас энергии), которые помогают человечеству справится со своими потребностями, однако овладеть столь необычной «силой» не так уж и просто.
Но если это получится, то, несомненно, радиация принесёт гораздо больше пользы, чем вреда. Может быть, в будущем люди научатся более рационально использовать источники радиации, обезопасить их применение или вовсе ввести их в нашу повседневную жизнь, как это было со смартфонами.
2.4. Заключение
В результате проведения своей исследовательской работы, для себя я полностью переосмыслил все понятия и, ранее имеющиеся у меня, знания о радиации. Во многом радиация, для простых, не углубляющихся в это людей, представляется прежде всего болезнями со смертельным исходом. Но на самом деле, при умелом использовании, она не будет наносить существенного вреда на человеческий организм.
В большинстве случаев люди просто-напросто не имеют достаточного количества информации о радиации, но хотели бы знать о ней больше. Эта проблема и является основой боязни слова «Радиация» и именно её необходимо решать в первую очередь.
Таким образом я подвожу черту своего проекта, надеюсь у меня получилось справится со своей основной задачей и донести до вас, слушателей, что такое радиация и зачем она нужна.
Библиографический анализ литературы и сети Internet.
Дата обращения: 10.03.2020
Твёрдое - мягкое
Земля на ладонях. Фантастический рассказ
На горке
Неньютоновская жидкость
Мать-и-мачеха